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ABSTRACT 

 

This paper shows that incorporating what we call antidotal variables (AV) into a causal treatment 

effects analysis can with one cross-sectional regression identify the causal effect, the spillover 

effect, as well as possible biases from selectivity. We apply the AV technique to analyze leave 

taking arising from the California Paid Family Leave (CPFL) program. Our analysis yields between 

a 55% and 70% larger treatment effect than the traditional DID methods, which we attribute to 

confounding effects and spillovers, neither of which are found in traditional studies. 
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1. INTRODUCTION 

This paper presents a new method to estimate treatment effects, spillover effects, and selection 

bias using a single cross-sectional dataset. Spillover effects—often overlooked—go by many 

names, including violations of the “stable unit treatment value assumption” (SUTVA) (Rubin, 

1986), interference (Sobel, 2006), peer effects (Adamopoulou, 2012), neighborhood effects 

(Christafore and Leguizamon, 2019), herd effects (Benjamin-Chung et al., 2018), and network 

effects (DiMaggio and Garip, 2012). Ignoring spillovers can bias treatment effect estimates, as 

shown in studies on police deterrence (Sherman and Weisburd, 1995), job training returns 

(Ashenfelter, 1978), and paid family leave (Kang et al., 2022). Spillovers also matter 

independently; for example, understanding peer effects in job training helps policymakers 

optimize seat assignments (Baird et al., 2023). Our method focuses on spillovers where untreated 

individuals are indirectly affected by treatment, leading to biased treatment effect estimates. 

Statisticians mainly approach spillovers experimentally (Forastiere et al., 2021), typically 

through two-stage randomized trials. These divide the population into clusters, with treatment 

randomly assigned to varying proportions within each cluster. Simply put, differences in outcomes 

among untreated individuals across clusters enable one to compute spillovers. This approach has 

a large literature (Hudgens and Halloran 2008; Liu et al. 2016; Liu 2019a and 2019b; Sävje et al. 

2021; and Tchetgen and VanderWeele 2012). More recent work is able to get at treatment 

selectivity, namely noncompliance within each cluster (Wilke, Green, and Cooper 2020; Imai and 

Jiang 2020; Imai et al, 2021 and DiTraglia et al. 2023).  

     Not always can one subdivide a population into clusters with varying proportions of 

treated individuals. An alternative is a placebo design, in which the proportion of subjects treated 

does not vary, but in which a randomly selected cluster receives a fake (different or no) treatment 

unrelated to the outcome (Wilke, Green and Cooper 2020; Imai and Jiang 2020; Huber and 

Steinmayr 2021). Here, the treatment effect is measured by comparing the outcome of the treated 
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group with the outcome of the placebo group, and the spillover is measured by comparing the 

outcome of the non-treated groups in both clusters.  

      Not all spillovers can be analyzed experimentally. In the above examples, Kansas City 

cannot be divided into police presence clusters because crime rates are precinct-specific and all 

residents are equally treated. Further, one precinct may affect another, as criminals might move to  

less policed areas. Similarly, comparing mothers in California in a difference-in-differences setting 

(Kang et al., 2022) to mothers before and after Paid Family Leave’s passage (or to mothers in other 

states) does not allow for clusters with varying treatment intensity – treatment is either present or 

absent. For this reason we propose an alternative method to estimate spillovers which can be 

implemented in a quasi-experimental setting. 

      The approach requires an intercession, defined by an “antidotal variable” (AV), which if 

received, nullifies both the treatment effect and its spillovers. As such, similar to epidemiological 

effect modification (VanderWeele and Robins 2007 and VanderWeele 2009), those receiving the 

antidote are unaffected by the treatment or its spillovers.  The approach includes a validity test to 

ensure the AV is mean independent of unobserved outcome determinants (the error component), 

a crucial assumption for identification. It also controls for potential confounding from other 

concurrent policies often assumed away in most DID studies, allowing identification of treatment 

effects even in the presence of another concomitant treatment. The approach works in a single 

cross-section either in an experimental or observational setting. When the AV only partially 

nullifies the treatment and spillover effects, estimates can be bounded. To our knowledge, this is 

the first unified framework to identify the average treatment effect (ATE) or the average treatment 

effect on the treated (ATT), the average spillover bias (the SUTVA violation) on the untreated 

(ASEU), and the selectivity bias (SELB). 

The logic is as follows: Instead of two groups (treated and untreated), there are now four. 

First, the treated group splits into those who receive the antidote and those who don’t. Since the 

antidote negates the treatment effect, the outcome difference between these two constitutes the 
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treatment effect. If the antidote and treatment are mean independent of the parameters, this 

difference equals the average treatment effect (ATE). If not, it represents the average treatment 

effect of the treated (ATT) because the treated sample is innately different than the untreated 

sample. Second, the control group also splits into those with and without the antidote. The outcome 

difference here yields the average spillover effect on the untreated (ASEU), as the antidote cancels 

spillovers on the untreated. Third, those getting the antidote split into those that get the treatment 

and those that do not get the treatment. The outcome difference between these is the selectivity 

bias (SELB), since neither group experiences the treatment or spillovers, but they differ due to 

treatment selection. In short, the antidotal variable enables one to identify the ATE or ATT as well 

as the ASEU and SELB by nullifying both the treatment effect within the treated as well as the 

spillover effects within the control. 

Antidotal variables differ from traditional instrumental variables. While both are unrelated 

to the error term, an instrument affects the treatment itself, whereas an AV leaves the treatment 

intact but negates its effect. Unlike a negative control (Lipsitch et al. 2010), an AV doesn’t 

eradicate the treatment and is administered to both the treatment and control subgroups. 

Importantly, it nullifies the treatment effect in the treatment group and the spillover effects in the 

control group, enabling one to identify the ASEU.  

An antidotal variable also differs from a placebo. This is crucial because it highlights how 

the approach identifies the bias arising from SUTVA violations. Placebo recipients do not actually 

get the treatment but can still experience spillovers from the treated. In contrast, those getting an 

antidote are protected from spillover effects, whether or not they receive the treatment or spillover. 

This distinction enables the AV approach to identify the ASEU, which a placebo approach would 

not.  

Antidotal variables can be actively administered, such as using earplugs, as described in 

the intuitive hypothetical loud music example discussed in the next section. Alternatively, an 

antidotal variable could be immutable, for example an innate characteristic in a population 
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subsample that makes them immune to the treatment. In this latter case, the subgroup incurs no 

treatment effect despite being treated. In the application we discuss later in the paper, this 

immunity likely applies to middle aged California women covered by the California Paid Family 

Leave (CPFL) program, who typically do not benefit from paid family leave because they neither 

have young children nor sufficiently old parents, despite being covered. 

The antidotal variable approach also differs from standard DID methods. Both compute 

differences. However, the DID compares changes between a treatment and control group, usually 

over a given time, before and after a treatment, which can be biased if there are spillovers. In 

contrast the AV approach computes cross-sectional differences, thus not requiring time-series or 

panel data. We compare estimates from both methods when assessing the impact of the California 

Paid Family Leave (CPFL) program.  

The California Paid Family Leave program began in 2004. It allows parents up to six weeks 

paid leave to take care of young children.  A common analysis compares utilization rates in 

California before and after passage of the law relative to utilization rates in other comparable states 

over the same time period. However, this DID approach has at least two potential biases. One is 

the spillover bias, if those in neighboring states respond to the California policy despite not being 

covered.  Another, is the selectivity bias which can potentially change with time, especially if there 

are confounders. The usual assumption is that the control states and California have a constant 

non-changing selectivity component before and after the law. However, many other policies may 

be implemented concurrently, either in California, or in other states, or in both. In such cases, the 

selectivity component will be different before and after the implementation of the law. For 

example, in 2004 California also enacted the Private Attorneys General Act (PAGA) which helps 

low-wage workers enforce labor rights by allowing class-action lawsuits for Labor Code 

violations.  

The antidotal variable method deals with both spillover (a SUTVA violation) and selectivity 

issues. Although CPFL applies to all Californians, young childbearing aged women are the main 
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beneficiaries, not older women without young children (Rossin-Slater, Ruhm, and Waldfogel 

2011; Baum and Ruhm 2014). As such, age 45-55 can serve as an antidotal variable to help identify 

the ATE or ATT, along with the ASEU and SELB. Even if this group is partially affected (an 

imperfect antidote), the AV method is still able to identify the bounds for these effects. 

We apply this antidotal variable approach (in Section 5) using two measures of leave 

utilization. We find at least a 55% increase in the probability of leave taking and an 70% increase 

in leave taking hours. This holds despite a selectivity bias indicating that Californians are in general 

about 40% less likely to take leave. We find insignificant ASEU (SUTVA bias), which is reasonable 

when comparing California to the rest of the country. Similarly, we find equivalent CPFL effects 

when comparing California to its three neighboring states, but here we detect a negative ASEU, 

meaning leave taking decreased in those neighboring states after the CPFL was instituted.  

2. A HYPOTHETICAL EXAMPLE 

To lay an intuitive foundation for the antidotal variable approach, consider (Figure 1) a 

hypothetical example of noise pollution based on the overpowering boomboxes prevalent in the 

1980s.  

Imagine one wants to determine the impact of loud music (𝐷, the treatment) on mental 

well-being (𝑌, the outcome). Individuals with initially high-medium stress (well-being level 𝑌 =

2), the treatment group (D=1), listen to loud music to reduce their stress and gain well-being so  

that 𝑌 = 4. Others with low-medium stress (well-being level 𝑌 = 3), the control group (D=0), may 

not need to, but may find the resulting loud boombox music (to them noise) highly stressful 

resulting in well-being 𝑌 = 1. The difference in well-being associated with stress levels between 

these two groups, namely those who listen to the boombox music and those who do not intend to 

(low stress minus high stress), after the boombox is played (i.e., 4 -1=3), provides a biased estimate 

of the treatment effect for two reasons. The first stems from the sample selection process. 

Participants in the treatment group, those who listen to the music, have themselves selected into 

the treatment group, meaning their pre-treatment average stress level (high-medium, or welfare 
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𝑌 = 2) differs from the control group's (low-medium, or 𝑌 = 3 ). The second results from violation 

of SUTVA caused by treatment spillover. Control group members forced to listen to the loud music, 

but do not wish to do so, are adversely affected, thereby increasing their stress level from low-

medium to high stress lowering the well-being (i.e., 1-3 = -2, the spillover effect). These are 

illustrated in the middle column of Figure 1.    

 

 

  Antidote: Earplugs 

Treatment:  

Loud Music 

W=1 (no earplug) 

No Antidote 

W=0 (earplug) 

Antidote 

D=0  

No 

Treatment 

(no loud 

music) 

• Without Treatment: low-medium 

stress 𝑌̅𝑛2 = 3  

• No direct loud music (but overhears 

loud music from others), no earplugs 

• With Spillover: high stress 𝑌̅𝑛2 = 1 

• (Subsample: 𝑛2) 

• Without Treatment: low-medium 

stress  𝑌̅𝑛4 = 3  

• No loud music, earplugs 

• With Treatment: low-medium stress 

𝑌̅𝑛4 = 3  

• (Subsample: 𝑛4) 

D=1  

Treatment  

(loud 

music) 

• Without Treatment: High-medium 

stress 𝑌̅𝑛1 = 2 

• Direct loud music, no earplug 

• With Treatment: Low stress     

𝑌̅𝑛1 = 4 

•  (Subsample: 𝑛1) 

• Without Treatment: High-medium 

stress 𝑌̅𝑛3 = 2 

• Direct loud music, earplugs 

• With Treatment: High-medium stress 

𝑌̅𝑛3 = 2 

• (Subsample: 𝑛3) 
Figure 1 The Impact of Loud Boombox Music on Stress: Subsample classifications n1, n2, n3, and n4 are defined in the 

text. Treatment (ATT):  𝛽𝑇 = 𝑌̅𝑛1 − 𝑌̅𝑛3 = 4 − 2 = 2; Selectivity:  𝜃 =  𝑌̅𝑛3 − 𝑌̅𝑛4 = 2 − 3 = −1; 

Spillover:  𝛿 =  𝑌̅𝑛2 − 𝑌̅𝑛4 = 1 − 3 = −2  

 

Now suppose earplugs were distributed randomly to a subsample of individuals, and for 

this example, everyone receiving them uses them. If earplugs negate the effect of the loud music, 

then those wearing earplugs are not affected by the loud music. As such, we consider earplugs to 

be an antidote to the loud music. This characterization results in four groups: First is the medium-

high stressed group who listen to loud music to destress (subsample 𝑛1 in Figure 1 in which 𝑌 =

2). They now have low stress (𝑌 = 4). Second are low-medium ( 𝑌 = 3) stress individuals who do 

not intentionally listen, but now must endure the ambient loud music, what they consider noise 

(subsample 𝑛2 in Figure 1). Their stress level is now high ( 𝑌 = 1). Third are high-medium stressed 
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individuals who normally would have listened to the loud music, but are now wearing earplugs 

(subsample 𝑛3 in Figure 1). Their stress level remains the same (high-medium, or 𝑌 = 2). Fourth 

are those with low-medium stress who do not listen to the loud music, but are wearing earplugs 

anyway (subsample 𝑛4 in Figure 1) to protect themselves from overhearing ambient loud music. 

They remain low-medium stressed or 𝑌 = 3.  

Now consider differences between the subsamples based on the antidotal variable 

approach. The difference in average stress levels between groups 𝑛1 and 𝑛3, i.e.,  𝑌𝑛1
−  𝑌𝑛3

=

 4 − 2 (low and high-medium stress) is the effect of listening to loud music for those who listen to 

loud music. If the distribution of earplugs is random, this difference would represent the ATT (or 

the ATE if there is no essential heterogeneity in the treatment effect). Group 𝑛3 and 𝑛4 do not hear 

loud music at all since they use earplugs. The difference in their stress levels would reflect the 

difference in their non-treatment averages. This represents the SELB (i.e., high-medium minus low-

medium, or 𝑌𝑛3
− 𝑌𝑛4

= 2 − 3 = −1). Finally, the difference between groups 𝑛2 and 𝑛4 is the 

ASEU (i.e., high minus low-medium stress, or 𝑌𝑛2
− 𝑌𝑛4

= 1 − 3 = −2). This is because group 𝑛2 

does not intentionally listen to the loud music, but instead is forced to, while group 𝑛4 is completely 

unaffected. Thus, this earplug intercession enables one to identify the ATE or ATT as well as both 

the ASEU and SELB. It is noteworthy that, unlike the AV approach, the naïve simple difference in 

outcomes  between the treated and no-treatment groups (4-1=3), and the DID type treatment effect 

estimate, namely the difference in the potential treatment – no-treatment differences for the 

treatment and no-treatment groups ((4-2)-(1-3)=4) are  clearly biased. 

 

3.  A SPILLOVER AUGMENTED POTENTIAL OUTCOME FRAMEWORK 

 

Consider a cross-sectional setting where some units receive treatment and others do not. The untreated units 

may experience spillovers—either fully or in attenuated form—from treated peers. Thus, lack of direct 

treatment does not imply lack of exposure. Similarly, the treated units may also receive additional exposure 
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through spillovers from other treated peers, causing their outcomes to reflect both direct and indirect effects. 

Spillovers can therefore occur from treated to untreated units and between treated units themselves. Each 

unit 𝑖 thus occupies one of four states: (1) treated without spillover, (2) treated with spillover, (3) untreated 

with spillover, and (4) untreated without spillover. 

Let 𝐷𝑖 ∈ {0, 1} denote unit 𝑖's treatment status, where 𝐷𝑖 = 1   indicates receipt of treatment and 

𝐷𝑖 = 0 indicates no treatment. Let 𝑆𝑖 ∈ {0, 1} denote spillover exposure, where 𝑆𝑖 = 1 implies exposure to 

spillover and 𝑆𝑖 = 0 implies no such exposure. Each unit therefore belongs to one of four treatment-

spillover states, represented by the ordered pair ((𝐷𝑖, 𝑆𝑖) ∈  {(1,0), (1,1), (0,1), (0,0)}. The corresponding 

potential outcomes are 𝑌𝑖(1,1), 𝑌𝑖(1,0), 𝑌𝑖(0,1), and 𝑌𝑖(0,0), where, 𝑌𝑖(1,1) denotes the outcome when unit 

𝑖 receives both treatment and spillover; 𝑌𝑖(1,0) when it only receives the treatment; 𝑌𝑖(0,1) when it only 

receives the spillover; and 𝑌𝑖(0,0) when it receives neither. For notational simplicity lets define 𝑌𝑖(1+) =

𝑌𝑖(1,1), 𝑌𝑖(1) = 𝑌𝑖(1,0),  𝑌𝑖(1𝑆) = 𝑌𝑖(0,1) and 𝑌𝑖(0) = 𝑌𝑖(0,0). 

We focus on three parameters: the average treatment effect (ATE), the average spillover effect on 

the untreated (ASEU), and the selectivity bias (SELB)). While selection on gains, arising from essential 

heterogeneity, as illustrated in the Loud Boombox example, may be present, it is not a parameter of interest. 

We account for it but do not estimate it. Accordingly, the parameters of interest are: 

𝐴𝑇𝐸 = 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)]  

  𝐴𝑆𝐸𝑈 = 𝐸[(𝑌𝑖(1𝑆) − 𝑌𝑖(0))|𝐷𝑖 = 0] = 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0] 

 𝑆𝐸𝐿𝐵 = 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0] 

3.1 Corresponding Regression Formulation 

To specify the regression model, we express the potential outcomes as a linear function of covariates, with 

regression errors capturing unobserved determinants and idiosyncratic shocks. Let  

𝑌𝑖(1) = 𝜇0 + 𝛽̃𝑇𝑖𝑊𝑖 + 𝜔𝑖
0 (1𝑎) 

𝑌𝑖(1𝑆) = 𝜇0 + 𝛿𝑖̃𝑊𝑖 + 𝜔𝑖
0 (1𝑏) 

𝑌𝑖(0) = 𝜇0 + 𝜔𝑖
0 (1𝑐) 

𝑌𝑖(1+) = 𝜇0 + 𝛽̃𝑇𝑖𝑊𝑖 + 𝛿𝑖̃𝑊𝑖 + 𝜔𝑖
0 (1𝑑) 
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The coefficient 𝜇0 denotes the intercept, 𝛽̃𝑇𝑖 captures unit 𝑖's treatment effect, and 𝛿𝑖̃ represents the spillover 

effect. The error term 𝜔𝑖
0 absorbs unobserved determinants, with 𝐸[𝜔𝑖

0] = 0. We include 𝑊𝑖 to denote unit 

𝑖’s antidote exposure, where 𝑊𝑖 = 1 indicates no antidote and 𝑊𝑖 = 0 nullifies both treatment and spillover 

effects. For purpose of this derivation, we here assume 𝑊𝑖 = 1, the no antidote status deferring a detailed 

treatment of the 𝑊𝑖 = 0 case to later sections. 

The observed outcome takes the following form: if individual 𝑖 receives the treatment (𝐷𝑖 = 1), 

then two cases arise—either the individual is also exposed to spillovers (𝑆𝑖 = 1) or not (𝑆𝑖 = 0). The 

observed outcome reflects the corresponding potential outcome from this treatment–spillover combination.  

𝑌𝑖(1, 𝑆) =  𝑌𝑖(1,1)𝑆𝑖 + 𝑌𝑖(1,0)(1 − 𝑆𝑖) 

 

Substituting the values from (1a, 1d) 

 

𝑌𝑖(1, 𝑆) =  (𝜇0 + 𝛽̃𝑇𝑖𝑊𝑖 + 𝛿𝑖̃𝑊𝑖 + 𝜔𝑖
0)𝑆𝑖 + (𝜇0 + 𝛽̃𝑇𝑖𝑊𝑖 + 𝜔𝑖

0)(1 − 𝑆𝑖) 

 

Simplifying 

 

𝑌𝑖(1, 𝑆) = 𝜇0 + 𝛽̃𝑇𝑖𝑊𝑖 + 𝛿𝑖̃𝑊𝑖𝑆𝑖 + 𝜔𝑖
0 (2) 

 

Similarly, if individual 𝑖 does not receive the treatment (𝐷𝑖 = 0), two cases arise: either 𝑖 experiences a 

spillover (𝑆𝑖 = 1) or not (𝑆𝑖 = 0). The observed outcome corresponds to the potential outcome associated 

with the spillover status. 

𝑌𝑖(0, 𝑆) =  𝑌𝑖(0,1)𝑆𝑖 + 𝑌𝑖(0,0)(1 − 𝑆𝑖) 

 

Substituting the values from (1b-1c) 

𝑌𝑖(0, 𝑆) =  (𝜇0 + 𝛿𝑖̃𝑊𝑖 + 𝜔𝑖
0)𝑆𝑖 + (𝜇0 + 𝜔𝑖

0)(1 − 𝑆𝑖) 

Simplifying 

𝑌𝑖(0, 𝑆) = 𝜇0 + 𝛿𝑖̃𝑊𝑖𝑆𝑖 + 𝜔𝑖
0 (3)  

Given the two potential outcomes of 𝑖 with treatment (𝐷𝑖 = 1) and without treatment (𝐷𝑖 = 0), the observed 

outcome is 

𝑌𝑖 = 𝑌𝑖(1, 𝑆)𝐷𝑖 +  𝑌𝑖(0, 𝑆)(1 − 𝐷𝑖) (4) 

𝑌𝑖 = (𝜇0 + 𝛽̃𝑇𝑖𝑊𝑖 + 𝛿𝑖̃𝑊𝑖𝑆𝑖 + 𝜔𝑖
0)𝐷𝑖 + (𝜇0 + 𝛿𝑖̃𝑊𝑖𝑆𝑖 + 𝜔𝑖

0 )(1 − 𝐷𝑖) (5) 

𝑌𝑖 = 𝜇0 +  𝛽̃𝑇𝑖𝑊𝑖𝐷𝑖 + 𝛿𝑖̃𝑊𝑖𝑆𝑖 + 𝜔𝑖
0 (6) 

where the observed outcome depends on the treatment, spillover, and antidote exposures. The treatment 

and spillover enter the outcome equation independently so that the treatment status provides no information 

about the spillover exposure. To identify the relevant parameters we impose the following assumptions. 
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Assumption 1: Spillovers only occur from the treated units to the untreated units (treated-to-untreated), 

implying 𝑆𝑖 = (1 − 𝐷𝑖). 

 

Assumption 2 (consistency and overlap): For each unit 𝑖, the observed outcome satisfies 𝑌𝑖 = 𝑌𝑖(𝐷𝑖, 𝑆𝑖), 

meaning the observed outcome corresponds to the potential outcome under the treatment and spillover 

actually received; and for every 𝑖, the probabilities of the treatment and spillovers are strictly between 0 

and 1, i.e.,  0 < 𝑃(𝐷𝑖), 𝑃(𝑆𝑖) < 1. 

 

Assumption 1 imposes a specific structure on the spillover that implies the untreated units always receive a 

spillover. As a result, the potential outcome 𝑌𝑖(0,0), an untreated unit without a spillover is excluded. The 

assumption also rules out spillovers among treated units, eliminating 𝑌𝑖(1,1). Thus, only two potential 

outcomes remain: 𝑌𝑖(1) = 𝑌𝑖(1,0), the outcome under treatment without spillover; 𝑌𝑖(1𝑆) = 𝑌𝑖(0,1), the 

outcome under spillover without treatment 

Under Assumptions 1 and 2, equation (6) can also be expressed as  

𝑌𝑖 = 𝜇0 +  𝛽̃𝑇𝑖𝑊𝑖𝐷𝑖 + 𝛿𝑖̃𝑊𝑖(1 − 𝐷𝑖) + 𝜔𝑖
0 (6′) 

3.1.1 Identification 

With Assumptions 1 and 2, the observed outcome can be expressed in a switching regression form: 

𝑌𝑖 = 𝐷𝑖𝑌𝑖(1) + (1 − 𝐷𝑖)𝑌𝑖(1𝑆)  

Rearranging the equation above yields: 

𝑌𝑖 = 𝑌𝑖(1𝑆) + [𝑌𝑖(1) − 𝑌𝑖(1𝑆)]𝐷𝑖  

Simplifying 

𝑌𝑖 = 𝑌𝑖(1𝑆) + Δ𝑖𝐷𝑖  

where Δ𝑖 = [𝑌𝑖(1) − 𝑌𝑖(1𝑆)] represents the naïve difference in 𝑖’s outcome with and without the direct 

treatment. Note that Δ𝑖 does not represent the treatment effect for unit 𝑖. 

As illustrated in Appendix A (Theorem A.1), the naïve difference in observed averages outcomes 

between the treated and untreated groups (Δ) can be expressed as   

Δ = 𝐴𝑇𝐸 − 𝐴𝑆𝐸𝑈 + (1 − 𝜋)  (𝐴𝑇𝑇 − 𝐴𝑇𝑈) + 𝑆𝐸𝐿𝐵  
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where 𝜋 is the proportion of units that receive treatment, ATT and ATU are the average treatment effects on 

the treated and untreated, defined as 𝐴𝑇𝑇 = 𝐸[𝑌𝑖(1)|𝐷 = 1] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1] and 𝐴𝑇𝑈 =

𝐸[𝑌𝑖(1)|𝐷𝑖 = 0] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0]. Here Δ differs from the common causal inference framework used to 

identify ATE because it contains the ASEU term since SUTVA is not satisfied given that there are spillovers. 

Hence, standard causal inference methods yield a biased and inconsistent estimator of ATE. Moreover, 

standard inference methods cannot identify the ASEU and SELB. 

3.2 Heterogeneous Effects and Selectivity 

The coefficients 𝛽̃𝑇𝑖 and 𝛿𝑖 in (6) and (6’) vary by unit 𝑖. Let 𝜂𝑖 and 𝑣𝑖  represent the heterogeneity in the 

treatment effect and spillover effect, respectively, such that: 

𝛽̃𝑇𝑖 = 𝛽𝑇 + 𝜂𝑖 

𝛿𝑖 = 𝛿 + 𝑣𝑖 

where 𝐸[𝜂𝑖] = 0 and 𝐸[𝑣𝑖] = 0. With these, (6) can be rewritten as  

𝑌𝑖 = 𝜇0 + 𝛽𝑇𝑊𝑖𝐷𝑖 + 𝜂𝑖𝑊𝑖𝐷𝑖 + 𝛿𝑊𝑖𝑆𝑖 + 𝑣𝑖𝑊𝑖𝑆𝑖 + 𝜔𝑖
0 (7) 

It is possible that those who select into the treatment differ in average outcome from those who do 

not in absence of the treatment or spillover. This can lead to a selectivity bias. To incorporate this bias, we 

decompose unit 𝑖’s 𝜔𝑖
0into two parts: 𝜃𝑖 which reflects the inherent difference from those not treated and 

𝜓𝑖, the remaining component. As such  

𝜔𝑖
0 = 𝜃𝑖𝐷𝑖 + 𝜓𝑖 (8) 

where the first term 𝜃𝑖𝐷𝑖is the selectivity component and the latter term 𝜓𝑖 is the remainder such that 

𝐸[𝜓𝑖] = 0. Further assume, 𝜃𝑖 = 𝜃 + 𝜙𝑖. 

As such, equation (7) can be written as 

𝑌𝑖 = 𝜇0 + 𝛽𝑇𝑊𝑖𝐷𝑖 + 𝜂𝑖𝑊𝑖𝐷𝑖 + 𝛿𝑊𝑖𝑆𝑖 + 𝑣𝑖𝑊𝑖𝑆𝑖 + 𝜃𝐷𝑖 + 𝜙𝑖𝐷𝑖 + 𝜓𝑖 (9) 

Further simplification and redefining 𝑢𝑖 = 𝜂𝑖𝑊𝑖𝐷𝑖 + 𝑣𝑖𝑊𝑖𝑆𝑖 + 𝜙𝑖𝐷𝑖 + 𝜓𝑖 𝑖𝑛 (9) yield the corresponding 

estimable regression equation. 

𝑌𝑖 = 𝜇0 + 𝛽𝑇𝑊𝑖𝐷𝑖 + 𝛿𝑊𝑖𝑆𝑖 + 𝜃𝐷𝑖 + 𝑢𝑖  

               = 𝜇0 + 𝛽𝑇𝑊𝑖𝐷𝑖 + 𝛿𝑊𝑖(1 − 𝐷𝑖) + 𝜃𝐷𝑖 + 𝑢𝑖 (10)
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3.3 The Effect Parameters and Regression Coefficients  

Given the structure in (10), the effects of interest (ATE or ATT, ASEU, SELB) can be expressed as regression 

parameters. To maintain consistency, we include 𝑆𝑖 in the conditioning. This does not alter the interpretation 

since 𝐷𝑖 fully determines 𝑆𝑖. However, this specification helps identify whether the subsample of interest 

belongs to the spillover exposure group. As such, in a framework without any AV (equivalent to 𝑊𝑖 = 1 for 

all units), the parameters in equation (10) can be used to express various effects in the following way (see 

Appendix A, Lemma A1-A3). 

𝐴𝑇𝐸 = 𝐸[𝑌𝑖(1)] − 𝐸[𝑌𝑖(0)] = 𝛽𝑇𝑊𝑖 (11𝑎) 

 

𝐴𝑆𝐸𝑈 = 𝐸[𝑌𝑖(1𝑆)|𝐷 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖(0)𝐷 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1]

= 𝛿𝑊𝑖 + 𝐸[𝑣𝑖𝑊𝑖|𝐷 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1] (11𝑏)
 

𝐴𝑇𝑇 = 𝛽𝑇𝑊𝑖 + 𝐸[𝜂𝑖𝑊𝑖𝐷𝑖|𝐷 = 1, 𝑆𝑖 = 0 𝑊𝑖 = 1] (11𝑐) 

𝑆𝐸𝐿𝐵 = 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1] 

𝐸[𝜃𝑖𝐷𝑖|𝐷 = 1, 𝑆𝑖 = 0 𝑊 = 1] − 𝐸[𝜃𝑖𝐷𝑖|𝐷 = 0, 𝑆𝑖 = 0, 𝑊𝑖 = 1] = 𝐸[𝜃𝑖|𝐷𝑖 = 1] = 0 (11𝑑) 

Also (10) allows us to express the naïve observed difference Δ as  

Δ = E[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1]  

= 𝛽𝑇 − (𝛿 − 𝐸[𝑣𝑖𝑊𝑖(1 − 𝐷𝑖)|𝐷 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1]) + 𝐸[𝜂𝑖𝑊𝑖𝐷𝑖|𝐷 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] + 𝜃 (12) 

Appendix B also shows, 𝐸[𝜂𝑖𝑊𝑖𝐷𝑖|𝐷 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] = (1 − 𝜋)  {𝐸[𝜂𝑖|𝐷 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] −

𝐸[𝜂𝑖|𝐷 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1]}. Substituting in (11a-11d) into yields 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1] =  Δ 

= 𝐴𝑇𝐸 − 𝐴𝑆𝐸𝑈 + (1 − 𝜋)[𝐴𝑇𝑇 − 𝐴𝑇𝑈] + 𝜃 (13) 

Equation (10) implies that the difference in observed outcomes does not identify any of the effects. 

3.4 Introducing the Antidotal Variable (AV) 

Although 𝑊𝑖 is included above, so far we considered the case where no unit receives the antidote, i.e., 𝑊𝑖 =

1 for all units. We now embed what we call an AV into the framework. This means some units now are 

exposed to the antidote. For those units 𝑊𝑖 = 0. Those exposed could belong to the treatment group or 



13 

 

control group.  As such, an AV nullifies the effect of the treatment, whether it be the actual treatment effect 

itself or the spillover. Thus, unlike the regular instrumental variable framework, which designates a variable 

that determines potential treatment participation, the AV abrogates the potential effect of a treatment. As 

such, this approach differs from the standard IV method in that the AV relates to the impact, in that it 

eradicates the treatment effect, but does not determine the treatment status itself, as in standard IV. We 

incorporate the AV as 𝛽𝑇𝑖 = 𝛽̃𝑇𝑖𝑊𝑖 and 𝛿𝑖 = 𝛿𝑖𝑊𝑖 so that 𝛽𝑇𝑖 = 0 and 𝛿𝑖 = 0 when the antidote is applied, 

i.e., when 𝑊𝑖 = 0. 

3.5 Identifying Assumptions Regarding the AV 

To achieve point identification we make four additional assumptions relating to the antidotal variable 𝑊𝑖: 

Assumption 3: Exposure to the AV fully eliminates both the treatment and spillover effects,  

𝛽𝑇𝑖 = {
𝛽̃𝑇𝑖 , 𝑊𝑖 = 1

0, 𝑊𝑖 = 0
 and 𝛿𝑖 = {

𝛿𝑖 , 𝑊𝑖 = 1
0, 𝑊𝑖 = 0

 

Assumption 4 (overlap): For every 𝑖, the probability of receiving antidote assignment  𝑊𝑖 is strictly between 

0 and 1, i.e., ., 0 < 𝑃(𝑊𝑖) < 1. 

Assumption 5 (unconditional unconfoundedness or ignorability): The antidote assignment  𝑊𝑖 is 

independent of potential outcomes  𝑌𝑖(1), 𝑌𝑖(1𝑆), 𝑌𝑖(0), 𝑌𝑖(1+) i.e., [𝑌𝑖(1), 𝑌𝑖(1𝑆), 𝑌𝑖(0), 𝑌𝑖(1+)] ⊥ 𝑊𝑖. 

Assumption 6 (no essential heterogeneity): The heterogeneities in the treatment effect, the spillover effect 

and the selectivity bias are mean independent of treatment assignment (𝐷𝑖) and antidote assignment (𝑊𝑖), 

i.e., 𝐸[𝜂𝑖|𝐷𝑖, 𝑊𝑖] = 𝐸[𝜂𝑖] = 0, 𝐸[𝑣𝑖|𝐷𝑖, 𝑊𝑖] = 𝐸[𝑣𝑖] = 0 and  𝐸[𝜙𝑖| 𝐷𝑖, 𝑊𝑖] = 𝐸[𝜙𝑖] = 0. 

3.6 Identification of the ATE or ATT (𝜷𝑻), ASEU (𝜹), SELB (𝜽) with the AV  

Proposition 1a: Assumptions 1–5 imply that the naïve difference in the average observed outcome between 

the treatment group without the antidote (𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1) and the treatment group with the antidote 

(𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0) identifies the ATT, i.e.,  

𝐴𝑇𝑇 = 𝛽𝑇 = 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0] 

The formal proof of this proposition is provided in Appendix B. The intuition behind this result is that the 

difference within the treatment group does not suffer from selectivity bias. Moreover, because Assumption 

1 and Assumption 5 imply that there is no spillover among treated units, and 𝑊𝑖 is unrelated to the respective 
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potential outcomes, the distribution of heterogeneous treatment effects 𝛽̃𝑇𝑖 is the same for the subgroups 

(𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1) and (𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0). As a result, the difference in average observed 

outcomes between these two groups identifies the ATT. 

Proposition 1b: Assumptions 1–6 imply that the observed difference in the average observed outcome 

between the treatment group without the antidote (𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1) and treatment group with the 

antidote (𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0) identifies the ATE, i.e.,  

𝛽𝑇 = 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0] 

The formal proof of this proposition is provided in Appendix B. The intuition follows the same logic as 

above, except that the additional no essential heterogeneity assumption implies that distribution of 

heterogeneous treatment effects 𝛽̃𝑇𝑖 is independent of treatment status. As a result, the same difference can 

now be interpreted as the ATE. 

Proposition 2: Assumptions 1–5 imply that the naïve difference in the average outcome between the control 

group without the antidote (𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1) and the control group with the antidote (𝐷𝑖 = 0, 𝑆𝑖 =

1, 𝑊𝑖 = 0)  identifies the ASEU, i.e.,  

𝛿 = 𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0] 

The formal proof of this proposition is provided in Appendix B. The intuition behind this result is that the 

difference within the control group is free from selectivity bias, and as per assumption 5, 𝑣𝑖 is independent 

of 𝑊𝑖. The only effect experienced by this group is treatment spillover. As a result, this difference identifies 

the ASEU. 

Proposition 3: Assumptions 1–6 imply that the naïve difference in the average outcome between the 

treatment group with the antidote and the control group with the antidote identifies the SELB, i.e., with  

𝜃 = 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0] − 𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0] 

The formal proof of this proposition is provided in Appendix B. The intuition behind this result is that the 

difference between antidotal groups in the treatment and control groups does not reflect any treatment or 

spillover effects. These groups essentially mimic the no-treatment outcomes for both the treatment and 

control groups. Thus, the difference in their averages measures the spillover effects or SELB. 
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3.7 Identification in the Presence of Concurrent Treatments 

 

One advantage of the AV approach is that neither the treatment effect (ATT or ATE) nor the 

ASEU (SUTVA bias) are confounded by concomitant treatments as long as the AV is unrelated to 

those other concomitant treatments. See Appendix C for the proof.  

3.8 The Imperfect Antidote Case 

An antidote may sometimes be imperfect. This can arise either when the antidote fails to 

completely nullify the effects of the treatment or when there is imperfect compliance with regard 

to antidote uptake. In our prior example, a defective earplug fails to provide complete noise 

protection.  

Define 𝜏 to depict the antidote’s efficacy such that  0 ≤ 𝜏 ≤ 1. When 𝜏 = 1, the antidote 

𝑊𝑖 = 0 fully nullifies the effects of the treatment and spillover. Conversely, when 𝜏 = 0, the 

antidote has no effect in neutralizing these effects.  

Given an imperfect antidote, point estimates for the ATE (or ATT), ASEU and SELB cannot 

be identified. However, one can bound these estimates based on additional widely accepted 

assumptions such as Monotone Treatment Response (MTR), Monotone Treatment Selection (MTS) 

and Optimal Treatment Selection (OTS) (Manski 1997; Manski and Pepper 2000). MTR assumes 

the treatment never harms. MTS implies the treated group’s average outcome always differ from 

that of the control group. OTS suggests the treated group benefits on average, while the control 

group is harmed by the treatment. Appendix D formally defines each of these assumptions. Figure 

2 (top panel and bottom panel) presents two sets of bounds (derived in Appendix D) with two sets 

of additional assumptions.  

3.9 Immunity: When antidotes are immutable 

Immutable antidotes are traits assigned by nature. They are innate characteristics that entities do 

not choose or develop, yet these traits shield them from the effect of treatment. Because of this 
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inherent randomness of this type of antidote, the immutability assumption implies that 𝜂𝑖 ⊥⊥ 𝑊𝑖,  

𝑣𝑖 ⊥⊥ 𝑊𝑖 and 𝜙𝑖 ⊥⊥ 𝑊𝑖  are generally satisfied, that is  𝐸[𝛽𝑇𝑖|𝑊𝑖 = 1] = 𝐸[𝛽𝑇𝑖|𝑊𝑖 = 0],    
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Figure 2. Assumptions and identified bounds: Here 𝜏 (0 ≤ 𝜏 ≤ 1) represents the efficacy of the treatment. 𝜏 = 1 means the 

antidote is fully effective and 𝜏 = 0 means antidote is fully ineffective. See Appendix D for details. As these expressions suggest, 

the length of the bound is dependent on the efficacy of the antidote. 

 

𝐸[𝛿𝑖̃ |𝑊𝑖 = 1] = 𝐸[𝛿𝑖̃|𝑊𝑖 = 0], and 𝐸[𝜃𝑖  |𝑊𝑖 = 1] = 𝐸[𝜃𝑖|𝑊𝑖 = 0]. In other words, immutability 

means ATE or ATT is the same for the treated units with or without antidote, and the ASEU is also 

the same for the untreated units across both groups.  

𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 < 1] 

≤ 𝛽𝑇 ≤ 

𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1]  

𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 < 1] 

≤ 𝛽𝑇 ≤ 

𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 < 1]   

𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 < 1]

≤ 𝛿 ≤
𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 < 1]

 

 

𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 < 1] 

≤ 𝛿 ≤ 

𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 < 1]  

−𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 < 1] 

≤ 𝜃 ≤ 

𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 < 1]  

−𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 < 1] 

≤ 𝜃 ≤ 

𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 < 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 < 1]  
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In our AV application middle aged women are typically unaffected by paid family leave 

because of demographic considerations. Women in that age group tend not to have young children 

or sick parents. For them, immunity 𝑊𝑖 is likely independent of 𝜂𝑖 and 𝑣𝑖 because there is no 

selection on the gain. 

Factors such as age, gender, and institutional preconditions are examples of potentially 

immutable variables that could act as antidotes which in many cases are unrelated to the 

effectiveness of either the treatment or potential spillovers. Parameters 𝛽𝑇, 𝛿 and 𝜃 are all 

identified when using an immutable antidotal variable. 

3.10 Nonrandom Antidote Adoption 

As of now, we assume that 𝑊𝑖 is administered randomly and hence is independent of 𝜂𝑖, 𝜙𝑖, 𝑣𝑖, 

and 𝜔𝑖
0. However, this assumption is violated when respondents select whether to take the antidote 

based on the gain. (Immutable antidotes are innate so that selection based on the gain is not 

relevant.) In Appendix E we examine the implications of relaxing each part of this assumption. To 

summarize, it is still possible to identify the ASEU and SELB, but one cannot identify the ATE or 

ATT when the treatment effect heterogeneity 𝜂𝑖 is mean dependent on 𝑊𝑖. It is, still possible to 

identify both the treatment effect and the selectivity bias, though not the ASEU when the spillover 

effect heterogeneity 𝑣𝑖 is mean dependent on 𝑊𝑖. Finally, the selectivity bias cannot be identified 

if 𝜙𝑖 is mean dependent on 𝑊𝑖, but the treatment effect and the bias that is caused by a violation 

of the SUTVA can still be identified. However, as illustrated in the next section, one is able to test 

mean independence of 𝑊𝑖 and 𝑢𝑖.  

3.11 Testing Whether the Antidote Assignment (𝑾) is Random 

One generally cannot identify all three parameters of interest (the treatment effect (𝛽𝑇), the bias 

arising from a SUTVA violation (𝛿), and the selectivity bias (𝜃) from a single cross-section when 

𝑊𝑖 is mean dependent of 𝑢𝑖. However, as shown in Appendix F, an advantage of the AV method is 

that it allows testing whether 𝑊𝑖 is correlated with 𝑢𝑖 using a cross-section of data where the 
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treatment and control groups can be observed without treatment. A natural source of such data is 

a cross-section from the pre-treatment period. If available, one can run the following simple 

regressions to implement the test:  

Treated group: 𝑌𝑖 = 𝛾0 + 𝛾1𝑊𝑖 + 𝜁𝑖  (14𝑎) 

Untreated group: 𝑌𝑖 = 𝛾0
′ + 𝛾1

′𝑊𝑖 + 𝜁𝑖
′ (14𝑏) 

within the treated and untreated groups. When 𝛾1 = 0 and 𝛾′1 = 0, and remain the same post-

treatment, one can infer that non-randomness of 𝑊𝑖 does not affect the parameter identification, as 

it should not, given there is no treatment to nullify provided the insignificance remains valid in 

post-treatment period. If 𝛾1 ≠ 0 and 𝛾′1 = 0, then one identifies ASEU (𝛿), but the ATE or ATT 

and SELB (𝛽𝑇 and 𝜃) cannot be identified. Conversely, if 𝛾1 = 0 and 𝛾′1 ≠ 0, then one identifies 

𝛽𝑇, but cannot identify ASEU (𝛿) and SELB (𝜃). If 𝛾1 ≠ 0 and 𝛾′1 ≠ 0, then none of the parameters 

of interest are identified. However, even in this pre-treatment test, for causal inference in post-

treatment period one must assume that the insignificance of 𝛾1 and 𝛾′1 holds in the post-treatment 

period.  Unlike this approach, standard IV validity cannot be tested using pre-treatment data, as 

any variation in the IV without variation in treatment (which remains zero in this case) implies 

weak correlation and violates the relevance condition.   

3.12: When 𝑾𝒊 nonrandom: 

When the antidote is likely not randomly assigned, or the test above fails, one can invoke 

conditional ignorability—a weaker assumption than unconditional ignorability.  

Assumption 7 (conditional unconfoundedness or ignorability): Given a set of covariates 𝑋𝑖, the 

antidote assignment  𝑊𝑖 is independent of potential outcomes  𝑌𝑖(1), 𝑌𝑖(1𝑆), 𝑌𝑖(0), i.e., [𝑌𝑖(1), 

𝑌𝑖(1𝑆), 𝑌𝑖(0)] ⊥ 𝑊𝑖|𝑋𝑖 where 𝑋𝑖 is the vector of covariates. 

When Assumption 5 is not satisfied, but Assumption 7 is, one can still retrieve all three effects. The 

corresponding regression equation would be modified to  

𝑌𝑖 = 𝜇0 + 𝛽𝑇𝑊𝑖𝐷𝑖 + 𝛿𝑊𝑖(1 − 𝐷𝑖) + 𝜃𝑖𝐷𝑖 + 𝑋′𝑖𝜌 + 𝑢𝑖 (15) 

where 𝜌 is the vector of corresponding coefficients. 
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4. SIMULATIONS 

To validate the approach and test for consistency of the estimators, we conduct several simulation 

exercises. First, we simulate data based on a process where 𝑊𝑖 is randomly assigned, meaning it 

is independent of 𝐷𝑖   and the error term 𝑢𝑖. Second, we relax the independence of 𝑊𝑖 and 𝐷𝑖 while 

generating the data. We use various parameter values and sample sizes (100, 1000, 10000, 100000, 

1000000). See Appendix G for the details. The results (Appendix Table G.1) show that the method 

reproduces the estimates which approach their true values as sample size grows, implying the 

consistency of the estimators. 

It is not necessary that 𝑊𝑖 is independent of 𝐷𝑖. This is because each parameter is identified 

based on subsamples in which one of either 𝑊𝑖 or 𝐷𝑖 remain fixed, while the other varies. See 

Appendix G for details on the reasoning and simulation results (Appendix Table G.2). 

 

5. AN APPLICATION 

For illustrative purposes, to demonstrate the antidotal variable method, we examine take-up rates 

for the California’s paid family leave (CPFL) program. Initiated in 2004, CPFL allows employees 

to take up to 6 weeks of paid leave, usually for child care responsibilities, though it could be used 

for taking care of ailing parents. Past analyses used difference-in-differences (DID) techniques to 

estimate CPFL’s effect on leave take-up (Rossin-Slater et al. 2013; Baum and Ruhm 2014; and 

Das and Polachek 2015). Typically, this type of analysis estimated the difference in take-up from 

before to after the law in California, relative to a control. We replicate this type of analysis, and 

then present results based on an antidotal variable approach. In the process, we point out how the 

antidotal variable approach alleviates a number of the biases potentially inherent in DID. 

Moreover, unlike the AV approach, previous DID studies did not estimate ASEU and SELB. 

We utilize data from CPS-AESC rounds from 2001-2006 collected in March of each year. 

The CPS-AESC is nationally representative and includes information on individuals’ 
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demographics, work and other characteristics. We focus on two measures of leave taking: (1) leave 

hours and (2) leave incidence.  

We divide the data into two time periods: 2004-06, the period when CPFL was in effect; 

and 2001-2003, the period before CPFL’s implementation.1 Table 1 presents the summary 

statistics for leave taking hours before and after CPFL became effective. Between 2001-2003 and 

2004-2006, women in California increased leave taking, whereas in other states women’s leave 

taking decreased (from 1.21 hours in 2001-03 to 1.59 hours in 2004-2006 in California compared 

to a decrease from 2.06 hours in 2001-2003 to 1.91 hours in 2004-2006 in other states). This 

increase predominated in the younger age group, as leave increased for young employees in 

California, whereas it decreased for all other groups in California as well as in the other states 

(2.11 versus 1.93 for the young in other states and 1.35 versus 1.06 for the old in California and 

1.98 versus 1.88 for the old in other states). 

 

Table 1:  Hours of Leave Taking  

  2001-2003  2004-2006 

  W=1 W=0   W=1 W=0  

D  25-40 45-55 ALL  25-40 45-55 ALL 

0 Other states 2.11 1.98 2.06  1.93 1.88 1.91 

1 Calif 1.12 1.35 1.21  1.97 1.06 1.59 

         
 Total 1.99 1.91    1.96  1.93 1.79      1.87 

Source: Nonmilitary respondents in the IPUMS-CPS (AESC rounds); authors’ computations. Hours of leave 

taking are defined as the difference in a worker’s usual weekly work hours and actual work hours. 

 

Table 2 presents the summary statistics for leave taking incidence before and after CPFL 

became effective. This table shows a very similar pattern as observed in Table 1. California’s 

incidence of leave taking rises to 3.3 percent in 2004-06 from 2.7 percent in 2001-03. Other states 

 
1 Technically the law was implemented in July 2004. However, the law actually passed the state legislature in 2002, 

both employers and employees most likely anticipated the change and changed their leave taking behaviour earlier in 

2004 slightly before the enactment date. Hence, the effect on leave taking may start appearing even before the July 

2004, which is why we include 2004 in the post-policy period. 
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experience a decline (3.8 percent in 2004-06 from 4.1 percent in 2001-03). As before, only young 

women in California experienced an increase in leave taking.  

In Tables 1 and 2 we denote California as receiving treatment 𝐷𝑖 = 1 and the other states 

as untreated 𝐷𝑖 = 0. Since CPFL primarily addresses the leave taking need of women of 

childbearing age, we assume older women 45-55 are unaffected by the paid family leave because 

they typically do not have young children and hence are unlikely to take family leave.2 We assign 

𝑊𝑖 = 0 for women between 45-55 years of age since it is unlikely that women in that age group 

have young children. We denote 𝑊𝑖 = 1 for those women 25-40. The 𝑊𝑖 = 0 group (45-55 year 

old) is important because the antidotal approach requires a group which is unaffected by the paid 

family leave. It is likely that this group fits the bill. 

 

Table 2: Incidence of leave (proportion)  

  
 2001-2003  2004-2006 

   W=1 W=0   W=1 W=0  

D   25-40 45-55 ALL  25-40 45-55 ALL 

0  Other states 0.042 0.040 0.041  0.039 0.037 0.038 

1  Calif 0.025 0.031 0.027  0.039 0.025 0.033 

          
  Total 0.040 0.039 0.040  0.039 0.036 0.038 

Source: Nonmilitary respondents in the IPUMS-CPS (AESC rounds); authors’ computations. For each respondent 

leave taking is a binary variable which takes value 0 if the respondent is at work, and 1 if the respondent has a job 

but is on leave at the time of the interview.  

 

DID estimates CPFL’s effect by computing the before and after differences between 

California and the rest of the US. This ATT (or ATE if California has the same potential distribution 

of treatment effects as other states) amount to 0.53 (computed as (1.59-1.21) - (1.91-2.06) = 0.53) 

for hours and a 0.009 (computed as (0.033-0.027) - (0.038-0.041) = 0.009) increase in the 

incidence of taking a leave.  

 
2 Biases in our estimates could result to the extent older women actually take leave to look after older parents, but 

according to Wettstein and Zulkarnain (2017), this is more confined to those over 55, which for this reason we drop 

from the sample. Further, the incidence and amount of parent-motivated leave taking for 45-55 and 25-40 years old 

adult children is similar. This implies little if any estimation bias, given the antidotal variable technique exploits 

differences in outcomes between these two groups. Nevertheless, we also bound our estimates using the approach 

outlined for imperfect antidotes. 
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The antidotal variable approach entails four groups. Group 1 (𝐷𝑖 = 1 and 𝑊𝑖 = 1) are those 

who receive treatment and do not have the antidote (age 25-40 in California). Group 2 (𝐷𝑖 = 0 and 

𝑊𝑖 = 1) constitute those not receiving the antidote (age 25-40) in the other (control) states. Group 

3 (𝐷𝑖 = 1 and 𝑊𝑖 = 0) comprise those receiving treatment but getting the antidote (age 45-55 in 

California). Finally, group 4 (𝐷𝑖 = 0 and 𝑊𝑖 = 0) are those in the control group who get the antidote 

(are 45 – 55 in other states). Define the mean values of leave-taking hours and leave incidence for 

each group as 𝑌̅1, 𝑌̅2, 𝑌̅3, and 𝑌̅4. Based on Table 1 (hours of leave), 𝑌̅1 =   1.97, 𝑌̅2 = 1.93, 𝑌̅3 = 

1.06, and 𝑌̅4 = 1.88.  Based on Table 2 (the incidence of leave), these values are 𝑌̅1 = 0.039, 𝑌̅2 = 

0.039, 𝑌̅3 = 0.025, and 𝑌̅4 = 0.037. The antidotal variable approach defines the average treatment 

effect (ATE) as 𝑌̅1 - 𝑌̅3, SELB as 𝑌̅3 - 𝑌̅4, and ASEU bias as 𝑌̅2 - 𝑌̅4. Thus, the ATE is 0.91 hours, 

the SELB is -0.82 hours, and the ASEU is 0.05 hours. For incidence, the values are 0.014, -0.012, 

and 0.002 respectively. 

Several differences between the two approaches are noteworthy. First, the DID approach 

requires two cross-sections spanning two time periods (2001-2003 and 2004-2006) and identifies 

only one parameter. The antidotal approach requires only one cross-section in one time period 

(2004-2006) and identifies three parameters. Second, the DID approach assumes that in the 

absence of treatment, the unobserved differences between treatment and control groups are the 

same overtime. This means nothing else should change between California and the control states 

except paid family leave; otherwise these other interventions can affect the result as new 

confounders. Changing confounders between the two periods manifest themselves as changes in 

selectivity, which can be identified in the antidotal variable approach by comparing group mean 

values 𝑌̅3 and 𝑌̅4 in the earlier 2001-2003 time period. Third, DID assumes no SUTVA violations. 

In our example, this means California’s paid family leave cannot affect the leave taking behavior 

in the control states. 

Interestingly, the average treatment effect we just found differs between the two 

approaches. The DID estimate (0.53) is about half the antidotal variable estimate (0.91) for hours 
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leave, and about 2/3 the size based on incidence (0.009 versus 0.014). The DID approach assumes 

the selectivity bias remains constant across both periods so that no other policy or comparable 

changes occur in California relative to the control states once the policy is implemented. In short, 

there cannot be changes in the confounding effects. Typically, most DID studies spend much time 

trying to justify this, but do so by relying on institutional considerations, typically without hard 

evidence. However possible confoundedness can bias the estimates if other factors change in 

California and the control states. Evaluating 𝑌̅3 - 𝑌̅4 in 2001-2003 yield -.63 in hours and -.009 in 

incidence probability. Noteworthy, these are higher than the -.82 and -.012 values in 2004-2006, 

thus implying changes in the confounding effects. Indeed, these changes in confounding effects 

explain upwards of 60% (computed as (-.009-(-.012))/(.009-.014)=0.60) of the discrepancy when 

considering incidence. As we will show shortly, we observe no statistically significant treatment 

or SUTVA effects when examining 2001-2003, an expected placebo test.  

 

Table 3: Testing mean independence of the antidotal variable W               

(2001-03 subsample) 

 (1) (2) (3) (4) 

VARIABLES HRABSNT 

D=1 

HRABSNT 

D=0 

DLEAVE 

D=1 

DLEAVE 

D=0 

     

W -0.229 0.131 -0.00590 0.00275 

 (0.284) (0.0994) (0.00555) (0.00201) 

Constant 1.348 1.978 0.0306 0.0396 

 (0.231) (0.0750) (0.00454) (0.00151) 

     

Observations 3,809 49,173 4,082 52,973 

R-squared 0.000 0.000 0.000 0.000 
Source: IPUMS-CPS (AESC rounds); authors’ computations. 
HRABSNT=hours of leave; DLEAVE=incidence of leave. Robust standard errors in parentheses. 

 

While these statistics indicate that young women in California take more leave, other 

unincluded covariates can affect the results. For this reason, we now use a regression framework 

to apply the antidotal variable approach in a more rigorous way based on (10). However, to do so, 

we first test whether the antidotal variable 𝑊𝑖 is mean independent of 𝑢𝑖. Mean independence 

implies we can obtain unbiased and consistent estimates. We utilize hours and incidence of leave 
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as dependent variables in an OLS regression on 𝑊𝑖 using 2001-03 data, the period prior to the 

policy implementation. For each dependent variable we run an OLS regression on  𝑊𝑖, once for 

California and once for the other states. Table 3 presents the results. An insignificant coefficient 

implies mean independence between the antidotal variable 𝑊𝑖 and the error term 𝑢𝑖 assuming the 

results carry over in the post-treatment period.  While one might expect average leave-taking to 

differ between young and old during 2001–03 in both California and non-California states, the 

data in Table 3 show no significant differences. As illustrated, the coefficients for the antidotal 

variable 𝑊𝑖 are insignificant in each of these regressions. Thus, the results suggest that 𝑊𝑖 is mean 

independent of 𝑢𝑖. Based on this finding we proceed to estimate the ATE, SELB, and ASEU using 

the antidotal variable method. 

Table 4 (columns 2 and 4) presents the causal effect of CPFL on weekly leave taking hours 

obtained from regressions based on (10) and (15). Young women in California take 0.91 hours 

more leave, which is the same as previously computed (based on Table 1) because this regression 

with no covariates simply reports differences in mean values between the four groups. Including 

control variables household size (to get at the presence of children) and schooling level (education) 

did not change the coefficients appreciably. The table also shows that the selection bias is in the 

range of -0.82. As before, we find little evidence of any bias arising from violation of 𝑆𝑈𝑇𝑉𝐴. 

This might be expected since California’s policy change is unlikely to have a significant effect on 

the rest of the country’s labor market. Of course, in the PFL example, if SUTVA is violated within 

California—say, through changes in older workers' relative wages—the ATE estimate may be 

biased. However, this is unlikely, as older workers typically hold different types of jobs, despite 

similar leave-taking rates. 

As indicated earlier, one can bound the estimates if one believes older age (45-55) serves 

as an imperfect antidote. MTR and 𝑌𝑖 ≥ 0 are satisfied because leave incidence and leave taking 

exceed zero, and paid family leave does not lower leave taking when implemented. Accordingly, 

based on formulas given in Figure 2, we construct the following bounds on the ATE, and the 
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SUTVA and selectivity biases using these assumptions along with the means of various 

subsamples: 0.91 ≤ 𝛽𝑇 ≤ 1.97,  0.05 ≤ 𝛿 ≤ 1.93, and  −1.88 ≤ 𝜃 ≤ 1.06. The results mean that 

the ATE and the SUTVA bias are identified, but the selectivity bounds span zero. 

 

Table 4: Regression results for the United States 

 (1) (2) (3) (4) 

VARIABLES HRABSNT 

2001-03 

HRABSNT 

2004-06 

HRABSNT 

2001-03 

HRABSNT 

2004-06 

DW: 𝛽𝑇  -0.229 0.908 -0.274 0.888 

 (0.284) (0.287) (0.285) (0.288) 

D: 𝜃  -0.630 -0.821 -0.644 -0.819 

 (0.243) (0.223) (0.244) (0.222) 

W(1-D): 𝛿 0.131 0.0475 0.0929 0.0268 

 (0.0994) (0.0943) (0.101) (0.0960) 

Household Size   0.0432 0.00947 

   (0.0205) (0.0204) 

Education   0.00727 0.00766 

   (0.00217) (0.00201) 

Constant 1.978 1.879 1.231 1.179 

 (0.0750) (0.0707) (0.207) (0.194) 

     

Observations 52,982 53,416 52,982 53,416 

R-squared 0.001 0.000 0.001 0.001 
Source: IPUMS-CPS (AESC rounds); authors’ computations. 

HRABSNT=hours of leave during last week. 

Robust standard errors in parentheses; coefficient of 𝐷𝑊= 𝛽𝑇 (the treatment effect); 

coefficient of 𝐷= 𝜃 (selectivity bias); coefficient of 𝑊(1 − 𝐷)= 𝛿 (spillover bias). 

 

One advantage of the antidotal approach is the ability to do a placebo test using the 2001-

2003 data. Given CPFL did not occur until 2004, we rerun (10) and (15) for 2001-3. We should 

find no effect of CPFL and no SUTVA bias as neither is present in 2001-3 prior to the policy’s 

implementation. As can be seen in columns (1) and (3) of Tables 4 and 5, the coefficients of DW 

(treatment effect) and W(1-D) (SUTVA bias) are both statistically insignificant. However, 

noteworthy, as seen above, the selectivity coefficient remains significant, but smaller, likely 

because of changing confounding variables between the two time periods.  

Table 5 presents the results on the incidence of leave taking. As before simply looking at 

the means, young women in California take 1.4 percentage points more leave than young women 



26 

 

in the other states. This amounts to 55 percent increase in the probability of leave taking. The 

selectivity bias in this case is about -1 to – 1.2 percentage points, i.e., young women in California 

are 40 – 48 percent less likely to take leave than young women in the other states. The bounds for 

incidence of leave taking are 0.014 ≤ 𝛽𝑇 ≤ 0.039,  0.002 ≤ 𝛿 ≤ 0.039, and −0.037 ≤ 𝜃 ≤

0.025.  Again, the SUTVA bias is insignificantly different from zero. Also, as above, both the 

treatment effect and selectivity bias estimates are zero in the pre-treatment period.  

 

Table 5: Regression Results for the United States 

 (1) (2) (3) (4) 

VARIABLES DLEAVE 

2001-03 

DLEAVE 

2004-06 

DLEAVE 

2001-03 

DLEAVE 

2004-06 
DW: 𝛽𝑇  -0.00590 0.0139 -0.00732 0.0131 

 (0.00555) (0.00577) (0.00556) (0.00579) 
D: 𝜃  -0.00899 -0.0120 -0.00949 -0.0125 

 (0.00479) (0.00426) (0.00480) (0.00427) 
W(1-D): 𝛿 0.00275 0.00184 0.00152 0.000831 

 (0.00201) (0.00191) (0.00202) (0.00194) 

Household Size   0.00144 0.000844 

   (0.000417) (0.000425) 

Education   0.000224 0.000186 

   (4.30e-05) (3.99e-05) 

Constant 0.0396 0.0372 0.0164 0.0187 

 (0.00151) (0.00141) (0.00423) (0.00392) 

     

Observations 57,055 57,748 57,055 57,748 

R-squared 0.001 0.000 0.001 0.001 
Source: IPUMS-CPS (AESC rounds); authors’ computations. 

DLEAVE=incidence of leave. 

Robust standard errors in parentheses; coefficient of 𝐷𝑊= 𝛽𝑇 (the treatment effect); coefficient 

of 𝐷= 𝜃 (selectivity bias); coefficient of 𝑊(1 − 𝐷)= 𝛿 (spillover bias). 

 

One reason for a virtually zero SUTVA bias is we compare California to the rest of the 

nation. In the case of a policy like CPFL, one would expect the SUTVA bias, if it exists, to arise 

because women in the control states react to the introduction of California’s paid family leave 

policy, but this reaction is likely muted for those in states distant to California. Utilizing all states 

but California as the controls possibly lead to no SUTVA bias. For this reason, we repeat the 

analysis, this time limiting our control states to the three states bordering California: Arizona 
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Nevada and Oregon. 

Table 6 and 7 present these results. As before, we observed a positive treatment effect, 

essentially the same magnitude as before (0.91 for hours and 0.013 for incidence). Selectivity is 

larger (-1.41 for hours and -0.038 for incidence) meaning California differs more from its 

neighboring states than from the whole US. Here, there is a negative SUTVA effect (-0.84 for hours 

and -0.03 for incidence) meaning neighboring states reduce leave taking after the CPFL was 

instituted. Notably, all coefficients are insignificant in 2001-03 when there was no treatment. 

Somewhat surprisingly, this includes the coefficient for selectivity. This pre-treatment zero 

coefficient, compared to the non-zero post-treatment coefficient, implies the possibility of other 

unobserved confounders, thus exacerbating the difference between California and its neighbors in 

2004-2006. 

The findings with respect to the incidence of leave taking are similar to that of hours work. 

The treatment effect and SUTVA bias are zero before CPFL came into effect. The zero selectivity 

during 2001-03 also suggests that California, Arizona. Oregon and Nevada are similar in terms of 

their workers’ leave taking. However, in 2004-06, all three are statistically significant. The bias 

due to SUTVA violation is significant supporting the results obtained for hours of leave taking. 

 

6. CONCLUSION 

The fundamental problem of treatment effect identification is each observation can only be seen 

in one of two states: treated or untreated. Counterfactual outcomes are not observed. The industry 

standard strategy to overcome this shortcoming is primarily through random assignment of 

treatment, but this is not always possible, especially in observational settings. This led to a number 

of fixes such as IV, DID, RDD, RCT and other methods, but essentially all these solutions are 

designed to make the treatment and control groups as similar as possible, thereby mimicking 

randomization  as  best  as  can  be done.  Nevertheless,  the threat of a potential SUTVA violation 
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Table 6: Regression Results for California and Neighboring States 

 (1) (2) (3) (4) 

VARIABLES HRABSNT 

2001-03 

HRABSNT 

2004-06 

HRABSNT 

2001-03 

HRABSNT 

2004-06 

DW: 𝛽𝑇  -0.229 0.908 -0.243 0.903 

 (0.284) (0.287) (0.290) (0.294) 

D: 𝜃  -0.0563 -1.403 -0.0576 -1.408 

 (0.394) (0.437) (0.397) (0.437) 

W(1-D): 𝛿 0.574 -0.833 0.577 -0.839 

 (0.436) (0.467) (0.441) (0.470) 

Household Size   0.0102 0.00957 

   (0.0489) (0.0543) 

Education   0.00369 -0.000633 

   (0.00498) (0.00474) 

Constant 1.404 2.461 1.056 2.490 

 (0.319) (0.383) (0.552) (0.577) 

     

Observations 6,172 5,927 6,172 5,927 

R-squared 0.001 0.003 0.001 0.003 

Source: IPUMS-CPS (AESC rounds); authors’ computations. 

HRABSNT=hours of leave during last week. 

Robust standard errors in parentheses; coefficient of 𝐷𝑊= 𝛽𝑇 (the treatment effect); 

coefficient of 𝐷= 𝜃 (selectivity bias); coefficient of 𝑊(1 − 𝐷)= 𝛿 (spillover bias). 

 

 

Table 7: Regression Results for California and Neighboring States 

 

 (1) (2) (3) (4) 

VARIABLES       DLEAVE 

2001-03 

DLEAVE 

2004-06 

DLEAVE 

2001-03 

DLEAVE 

2004-06 

DW: 𝛽𝑇  -0.00590 0.0139 -0.00644 0.0133 

 (0.00555) (0.00578) (0.00557) (0.00585) 

D: 𝜃  -0.000968 -0.0379 -0.00139 -0.0383 

 (0.00784) (0.00967) (0.00793) (0.00970) 

W(1-D): 𝛿 0.000185 -0.0300 -0.000358 -0.0306 

 (0.00811) (0.0103) (0.00820) (0.0104) 

Household Size   0.000656 0.000851 

   (0.000951) (0.00111) 

Education   3.28e-05 2.62e-05 

   (9.18e-05) (9.78e-05) 

Constant 0.0316 0.0631 0.0271 0.0584 

 (0.00639) (0.00880) (0.0106) (0.0123) 

     

Observations 6,663 6,447 6,663 6,447 

R-squared 0.000 0.003 0.000 0.004 

Source: IPUMS-CPS (AESC rounds); authors’ computations. 

DLEAVE=incidence of leave. 

Robust standard errors in parentheses; coefficient of 𝐷𝑊= 𝛽𝑇 (the treatment effect); 

coefficient of 𝐷= 𝜃 (selectivity bias); coefficient of 𝑊(1 − 𝐷)= 𝛿 (spillover bias). 
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remains. Moreover, these approaches cannot identify the treatment effect in the presence of 

concomitant treatments.  

In this paper we examine another approach. We introduce an antidotal variable (AV) to both 

treatment and control groups that negates the impact of the treatment for this set of individual 

observations. Abrogating the treatment effect, as such, separates the sample into four groups, 

instead of two. From these four groups, we identify the treatment effect, as well as selectivity and 

SUTVA violation biases. The only requirement is that the antidotal variable be mean independent 

of the error term, which can be tested using pre-treatment data. This is a weaker assumption than 

standard IV approaches, which requires a variable related to the treatment but unrelated to the 

dependent variable directly, a condition that for the most part one cannot test. 

Despite the power of the antidotal variable approach, there are limitations. First, one needs to 

find an antidotal variable that abrogates the treatment effect for a subsample of the data. This could 

be a direct intervention nullifying the treatment or a characteristic of a subsample of observations 

for which the effect of the treatment is nullified. In some applications, antidotal variables may be 

difficult to find. Second, the antidotal variable should be independent of treatment effects before 

the application of the antidote. This likely holds if the antidote is randomly administered. It also 

holds if the non-antidoted group would have behaved similarly to the antidoted group if they did 

not receive the antidote, a weaker condition. Third, the antidote is assigned to both treated and 

untreated groups. Violation of this latter assumption simply makes it impossible to identify the 

SUTVA bias. Fourth, the antidote needs to abrogate the treatment spillover effects. Finally, we rule 

out any spillovers from the treated to others in the treated group who do not receive the antidote. 

A violation of this assumption prevents identification of the treatment effect.  

To validate the approach and test for consistency, we simulated data based on randomly 

assigning treatment and antidotes. In all cases estimated coefficients converged relatively quickly 

to the true parameter values.  
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Also, we applied the approach to estimate the impact of paid family leave. A simple DID 

approach found CPFL increased leave taking by about ½ hour per week and leave incidence by 

about 1 percentage point. The antidotal variable approach yielded about 0.9 hours and 1.4  

percentage points, most of the differences arising because of selectivity. DID assumes selectivity 

(the difference between California and the other states) remain constant from before and to after 

the law’s implementation. But the antidotal variable approach showed this not to be the case, as it 

was able to pick up other factors, such as California’s simultaneously implemented 2004 Private 

Attorneys General Act (PAGA), that could affect leave taking. In addition, the approach showed 

SUTVA spillover effects between California and its neighboring states Arizona, Nevada, and 

Oregon, arising after the law’s implementation. 

Whereas we apply the AV technique to analyze the California Paid Family Leave program, 

it potentially has applications beyond this example. To conclude, we provide two examples, one 

of a perfect antidote related to virus immunity, and the other an imperfect antidote related to lead 

poisoning, but there are also many other possible examples. First, suppose one wishes to measure 

a causal effect of exposure to a virus, say hours of sleep, ability to work, or some other outcome. 

Individuals previously infected by the virus develop antibodies. They are immune to exposure (the 

treatment), whereas others are susceptible to exposure. The antibodies make no difference in the 

outcome (sleep or the ability to work) whether a person previously had been infected. As such, 

past infection with the same virus acts as a perfect antidote to new exposure. Second, suppose one 

wishes to estimate the causal effect of lead on adult IQ.  According to epidemiology literature 

(Thomas et al. 2011), the effects of lead differ based on the aminolevulinate delta-dehydratase 

(ALAD) genotype so that individuals with different types of ALAD genotypes experience different 

effects of lead exposure. At the same time, in the absence of lead exposure, ALAD genotypes 

variations are not related to IQ. Thus, the different ALAD types act as an antidote to lead exposure. 

Here ALAD variations provide an imperfect antidote because they do not completely nullifying 

lead’s adverse effects. 
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Appendix A: The Identification Problem 

 

 

Theorem A.1: If Δ represents the naïve difference in the average outcome between the treated 

and the untreated group with spillover, then  

Δ = 𝐴𝑇𝐸 − 𝐴𝑆𝐸𝑈 + (1 − 𝜋)(𝐴𝑇𝑇 − 𝐴𝑇𝑈) + 𝑆𝐸𝐿𝐵 

Proof: 

Section 3.1.1 suggests that for unit 𝑖, the potential naïve difference in outcomes between the 

treated and untreated states is Δ𝑖 = 𝑌𝑖(1) − 𝑌𝑖(1𝑆). However, this difference is unobservable 

since either 𝑌𝑖(1) or 𝑌1(1𝑆) is always missing. Moreover, because 𝑌𝑖(1𝑆) ≠ 𝑌𝑖(0), Δ𝑖 does not 

capture individual 𝑖’s treatment effect. In our setting, in the absence of an antidote, we observe 

the naïve difference in the average outcome of the treatment group and control group.  This 

difference can be written as  

 

Δ = 𝐸[𝑌𝑖(1)|𝐷 = 1, 𝑆𝑖 = 0, 𝑊 = 1] − 𝐸[𝑌𝑖(1𝑆)|𝐷 = 0, 𝑆𝑖 = 1, 𝑊 = 1] (𝐴. 1) 

 

where, 𝑊𝑖 = 1 indicates absence of the antidote, the default case as in standard treatment effect 

analysis. The averages 𝐸[𝑌𝑖(1)|𝐷 = 1, 𝑆𝑖 = 0, 𝑊 = 1] represents the average outcome 𝑌 for the 

treated group, and 𝐸[𝑌𝑖(1𝑆)|𝐷 = 0, 𝑆𝑖 = 0, 𝑊 = 1] represents the average outcome 𝑌 for the 

untreated group exposed to treatment spillover. 

 

The definition of ATE is 

𝐴𝑇𝐸 = 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)] = 𝐸[𝑌𝑖(1)] − 𝐸[𝑌𝑖(0)] (𝐴. 2) 

 

Neither 𝐸[𝑌𝑖(1)] nor 𝐸[𝑌𝑖(0)]  is observed for the entire population. However, if 𝜋 represents the 

fraction of the population receiving treatment, 𝐸[𝑌𝑖(1)] can be rewritten as: 

 

𝐸[𝑌𝑖(1)] = 𝜋𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] + (1 − 𝜋)𝐸[𝑌𝑖(1)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1] (𝐴. 3) 

 

Rearranging (A.3) and substituting it into (A.2) yields:  
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𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] 

= 𝐴𝑇𝐸 + (1 − 𝜋){𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖(1)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1]} + 𝐸[𝑌𝑖(0)] (𝐴. 4) 

 

In a similar way, the ASEU can be expressed as 

𝐴𝑆𝐸𝑈 = 𝐸[𝑌𝑖(1𝑆) − 𝑌𝑖(0)|𝐷 = 0, 𝑊 = 1]

= 𝐸[𝑌𝑖(1𝑆)|𝐷 = 0, 𝑆𝑖 = 1, 𝑊 = 1)] − 𝐸[𝑌𝑖(0)|𝐷 = 0, 𝑆𝑖 = 1, 𝑊 = 1)] (𝐴. 5)
 

 

Rearranging (A.5) yields 

𝐸[𝑌𝑖(1𝑆)|𝐷 = 0, 𝑆𝑖 = 1, 𝑊 = 1)] = 𝐴𝑆𝐸𝑈 + 𝐸[𝑌𝑖(0)|𝐷 = 0, 𝑆𝑖 = 1, 𝑊 = 1)] (𝐴. 6) 

 

Substituting  𝐸[𝑌𝑖(1)|𝐷 = 1, 𝑆𝑖 = 0, 𝑊 = 1] and 𝐸[𝑌𝑖(1𝑆)|𝐷 = 0, 𝑆𝑖 = 1, 𝑊 = 1)] from (A.4) 

and (A.6) into (A.1) yields 

 

Δ = 𝐴𝑇𝐸 + (1 − 𝜋){𝐸[𝑌𝑖(1)|𝐷 = 1, 𝑆𝑖 = 0, 𝑊 = 1] − 𝐸[𝑌𝑖(1)|𝐷 = 0, 𝑆𝑖 = 1, 𝑊 = 1]} + 𝐸[𝑌𝑖(0)]

−𝐴𝑆𝐸𝑈 − 𝐸[𝑌𝑖(0)|𝐷 = 0, 𝑆𝑖 = 1, 𝑊 = 1)] (𝐴. 7)
 

 

The following component of (A.7) can be rewritten as 

 

(1 − 𝜋){𝐸[𝑌𝑖(1)|𝐷 = 1, 𝑆𝑖 = 0, 𝑊 = 1] − 𝐸[𝑌𝑖(1)|𝐷 = 0, 𝑆𝑖 = 1, 𝑊 = 1]} 

= (1 − 𝜋) {

𝐸[𝑌𝑖(1)|𝐷 = 1, 𝑆𝑖 = 0, 𝑊 = 1] − 𝐸[𝑌𝑖(0)|𝐷 = 1, 𝑆𝑖 = 0, 𝑊 = 1]

−(𝐸[𝑌𝑖(1)|𝐷 = 0, 𝑆𝑖 = 1, 𝑊 = 1] + 𝐸[𝑌𝑖(0)|𝐷 = 0, 𝑆𝑖 = 1, 𝑊 = 1])

+𝐸[𝑌𝑖(0)|𝐷 = 1, 𝑆𝑖 = 0, 𝑊 = 1] − 𝐸[𝑌𝑖(0)|𝐷 = 0, 𝑆𝑖 = 1, 𝑊 = 1]
} (𝐴. 8) 

Note that  

𝐴𝑇𝑇 = 𝐸[𝑌𝑖(1)|𝐷 = 1, 𝑆𝑖 = 0, 𝑊 = 1] − 𝐸[𝑌𝑖(0)|𝐷 = 1, 𝑆𝑖 = 0, 𝑊 = 1] 

𝐴𝑇𝑈 = (𝐸[𝑌𝑖(1)|𝐷 = 0, 𝑆𝑖 = 1, 𝑊 = 1] − 𝐸[𝑌𝑖(0)|𝐷 = 0, 𝑆𝑖 = 1, 𝑊 = 1]) 

𝑆𝐸𝐿𝐵 = 𝐸[𝑌𝑖(0)|𝐷 = 1, 𝑆𝑖 = 0, 𝑊 = 1] − 𝐸[𝑌𝑖(0)|𝐷 = 0, 𝑆𝑖 = 1, 𝑊 = 1] 

 

where ATT is the average treatment effect on the treated, ATU is the average treatment effect on 

the untreated, and SELB represents the selectivity bias. 
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Substituting ATT, ATU, and SELB into (A.8) yields: 

= (1 − 𝜋)(𝐴𝑇𝑇 − 𝐴𝑇𝑈) + (1 − 𝜋)𝑆𝐸𝐿𝐵  (𝐴. 9) 

 

Similarly, the other component of (A.7) can be written as 

 

−𝐸[𝑌𝑖(0)|𝐷 = 0, 𝑆𝑖 = 1, 𝑊 = 1)] + 𝐸[𝑌𝑖(0)]

= −𝐸[𝑌𝑖(0)|𝐷 = 0, 𝑆𝑖 = 1, 𝑊 = 1)] + 𝜋𝐸[𝑌𝑖(0)|𝐷 = 1, 𝑆𝑖 = 0, 𝑊 = 1]

+ (1 − 𝜋)𝐸[𝑌𝑖(0)|𝐷 = 0, 𝑆𝑖 = 1, 𝑊 = 1] 

= 𝜋𝐸[𝑌𝑖(0)|𝐷 = 1, 𝑆𝑖 = 0, 𝑊 = 1] − 𝜋𝐸[𝑌𝑖(0)|𝐷 = 0, 𝑆𝑖 = 1, 𝑊 = 1] 

= 𝜋{𝐸[𝑌𝑖(0)|𝐷 = 1, 𝑆𝑖 = 0, 𝑊 = 1] − 𝐸[𝑌𝑖(0)|𝐷 = 0, 𝑆𝑖 = 1, 𝑊 = 1]} 

= 𝜋𝑆𝐸𝐿𝐵 (𝐴. 10) 

 

Substituting (A.9) and (A.10) into (A.7) yields 

Δ = 𝐴𝑇𝐸 − 𝐴𝑆𝐸𝑈 + (1 − 𝜋)(𝐴𝑇𝑇 − 𝐴𝑇𝑈) + (1 − 𝜋)𝑆𝐸𝐿𝐵 + 𝜋𝑆𝐸𝐿𝐵  
 

 

 

or, 

Δ = 𝐴𝑇𝐸 − 𝐴𝑆𝐸𝑈 + (1 − 𝜋)(𝐴𝑇𝑇 − 𝐴𝑇𝑈) + 𝑆𝐸𝐿𝐵 (𝑄𝐸𝐷) 
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Lemma A1: In the absence of selectivity (𝜃𝑖 = 0), spillover (𝑆𝑖 = 0), antidote (𝑊𝑖 = 1), and 

essential heterogeneity, ATE is represented by 𝛽𝑇, i.e. 

𝐴𝑇𝐸 = 𝐸[𝑌𝑖(1)] − 𝐸[𝑌𝑖(0)] = 𝛽𝑇 

Proof: In the absence of selectivity (𝜃𝑖 = 0), spillover (𝑆𝑖 = 0), the antidote (𝑊𝑖 = 1), equation 

(9) simplifies to: 

𝑌𝑖 = 𝜇0 + 𝛽𝑇𝐷𝑖 + 𝜂𝑖𝐷𝑖 + 𝜓𝑖   

Given the consistency assumption (𝑌𝑖 = 𝑌𝑖(𝐷𝑖)), we can express this in its potential outcomes 

form as: 

𝑌𝑖(𝐷𝑖) = 𝜇0 + 𝛽𝑇𝐷𝑖 + 𝜂𝑖𝐷𝑖 + 𝜓𝑖  (𝐴𝐿1.1) 

The unconditional expectations, with respect to treated and untreated units, are given by:  

𝐸[𝑌𝑖(1)] = 𝜇0 + 𝛽𝑇 + 𝐸[𝜂𝑖] (𝐴𝐿1.2𝑎) 

𝐸[𝑌𝑖(0)] = 𝜇0 (𝐴𝐿1.2𝑏) 

In absence of any essential heterogeneity that is 𝐸[𝜂𝑖|𝐷𝑖 = 1] = 𝐸[𝜂𝑖] = 0 and 𝐸[𝜓𝑖] = 0, 

(AL1.2a) further reduces to 

𝐸[𝑌𝑖(1)] = 𝜇0 + 𝛽𝑇 

Thus, by definition of ATE 

𝐴𝑇𝐸 = 𝐸[𝑌𝑖(1)] − 𝐸[𝑌𝑖(0)] = 𝛽𝑇𝑊𝑖 (𝐴𝐿1.3) 

Without the ‘no essential heterogeneity’ assumption, the conditional expectations of (AL1.1) 

with respect to the treatment group would be  

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1] = 𝜇0 + 𝛽𝑇 + 𝐸[𝜂𝑖|𝐷𝑖 = 1] (𝐴𝐿1.4𝑎) 

𝐸[𝑌𝑖(0)|𝐷𝑖 = 1] = 𝜇0 (𝐴𝐿1.4𝑏) 

 

The difference of (AL1.4a) and (AL1.4b) gives the ATT, that is  

𝐴𝑇𝑇 =  𝐸[𝑌𝑖(1)|𝐷𝑖 = 1] −  𝐸[𝑌𝑖(0)|𝐷𝑖 = 1] = 𝛽𝑇 + 𝐸[𝜂𝑖|𝐷𝑖 = 1]  

 

Incorporating all group identifiers yields: 

𝐴𝑇𝑇 =  𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] −  𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1]

= 𝛽𝑇𝑊𝑖 + 𝐸[𝜂𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1]  (𝐴𝐿1.5)
 

 

Lemma A2: In the absence of selectivity (𝜃𝑖 = 0), the antidote (𝑊𝑖 = 1), and essential 

heterogeneity in the spillover effect, the ASEU is represented by 𝛿, i.e. 

𝛿 = 𝐴𝑆𝐸𝑈 =  𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1]  
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Proof: Given the consistency property, the potential outcomes for the untreated group are 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1] = 𝜇0 + 𝛿 (𝐴𝐿2.1𝑎) 

𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1] = 𝜇0 (𝐴𝐿2.1𝑏) 

 

With no essential heterogeneity in 𝜙𝑖, the difference of these (AL2.1a) and (AL2.1b) gives the 

ASEU, that is  

𝐴𝑆𝐸𝑈 = 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1] 

= 𝛿 (𝐴𝐿2.2) 

 

Lemma A3: In the absence of the treatment and antidote, the difference in average outcomes 

between the treated and untreated groups reflects selectivity bias (SELB), represented by 𝜃, i.e., 

𝑆𝐸𝐿𝐵 =  𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1] = 𝜃 

 

Proof: In the absence of the treatment, spillover, and the antidote, the average outcome for the 

treated group as per (10) is: 

 

𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] = 𝜇0 + 𝐸[𝜃𝐷𝑖 + 𝜓𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] 

= 𝜇0 + 𝜃 + 𝐸[𝜓𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] = 𝜇0 + 𝜃 (𝐴𝐿3.1) 

 

In the absence of the treatment, spillover, and the antidote, the average outcome for the treated 

group under equation (10) is:  

𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1] = 𝜇0 + 𝐸[𝜃𝐷𝑖 + 𝜓𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1] 

= 𝜇0 + 𝐸[𝜓𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] = 𝜇0 (𝐴𝑙3.2) 

Subtracting (AL3.2) from (AL3.1) yields 

 

𝑆𝐸𝐿𝐵 = 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1] = 𝜃 (𝐴𝐿3.3) 
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Appendix B: Nonparametric Identification of ATT or ATE, ASEU, SELB 

Proposition 1a: Assumptions 1–5 imply that the naïve difference in the average outcome between 

the treatment group without the antidote (𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1) and the treatment group with 

the antidote (𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0) identifies the ATT, i.e.,   

 

𝛽𝑇 = 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0] 

 

Proposition 1b: Assumptions 1–6 imply that the observed difference in the average outcome between the 

treatment group without the antidote (𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1) and the treatment group with the antidote 

(𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0) identifies the ATE, i.e.,  

𝛽𝑇 = 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0] 

 

Proof: 

In the presence of an antidote, the sample is divided into four groups:   

(i) Treatment group without the antidote (𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1),   

(ii) Treatment group with the antidote (𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0),   

(iii) Control group without the antidote (𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1),   

(iv) Control group with the antidote (𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0).   

 

As shown in Figure 1, these correspond to 𝑛1, 𝑛3, 𝑛2 and 𝑛4 respectively. 

 

At the same time, Assumptions 1, 3 and 5 (no treated-to-treated spillover, fully effective AV and 

unconditional unconfoundedness) suggest that 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0] =  𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] (𝐵. 1) 

The left-hand sides of equations (B.1) represent the average outcomes of the treatment groups with 

the antidote. Essentially, Assumption 1, 3 and 5 say that this group's outcome would be the same 

as if they had not received treatment or experienced any spillover. As such, this mean 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0] serve as the counterfactuals for 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1]. 
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When the antidote is randomly assigned (Assumption 5), 𝐸[𝜔𝑖
0|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] =

𝐸[𝜔𝑖
0|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0]. This assumption implies that: 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] = 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0] (𝐵. 2𝑎) 

Moreover, the same random assignment of 𝑊𝑖 also implies that: 

𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] = 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0] (𝐵. 2𝑏) 

 

Combining (B.1) and (B.2b) one can write 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0] =  𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0] (𝐵. 3) 

 

Now consider the definition of ATT  

𝐴𝑇𝑇 = 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0]   

 

Substituting values of 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0] and 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0] from (B.2a) and (B.3) 

yields 

 

𝐴𝑇𝑇 = 𝛽𝑇 = 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0]
 

 

Applying consistency assumption (Assumption 2) 

𝐴𝑇𝑇 = 𝛽𝑇 = 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0] (𝐵. 4) 

Thus, in presence of essential heterogeneity, ATT is identified  

 

To go from Proposition 1a to Proposition 1b one requires Assumption 6, that is the absence of 

essential heterogeneity in  𝛽𝑇𝑖 . This assumption implies  

𝐸[𝜂𝑖|𝐷𝑖] = 𝐸[𝜂𝑖] = 0 

That is, ATT=ATU=ATE. Thus, with Assumption 1-5 and Assumption 6 (no essential 

heterogeneity), the same difference identifies ATE, i.e.,  

𝐴𝑇𝐸 = 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0]  
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Again, applying consistency property in Assumption 2, 

𝐴𝑇𝐸 = 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0] (𝐵. 5) 

 

Proposition 2: Assumptions 1–6 imply that the naïve difference in the average outcome between 

the control group without the antidote (𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1) and control group with the antidote 

(𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0) identifies ASEU, i.e.,  

 

ASEU =𝛿 = 𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0] 

 

Proof: 

Following the same line of proof, we now consider two subsamples: the control group without the 

antidote (𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1) and the control group with the antidote (𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 =

0). As shown in Figure 1, these correspond to 𝑛2 and 𝑛4 subsamples, respectively. 

No essential heterogeneity in   𝛿𝑖 implies 

 

𝐸[𝑣𝑖|𝐷] = 𝐸[𝑣𝑖] = 0 

 

Again, Assumption 3 suggests that the antidote is fully effective in nullifying the spillover effect. 

This means that: 

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0] = 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1] (𝐵. 6) 

 

The left-hand side of equations (B.6) represents the average outcomes of the control groups with 

the antidote. Essentially, this indicates that this group's average outcome would be the same as if 

it had not experienced any spillover. As such, this mean serves as the counterfactual for 

𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1]. 

 

Again, when the antidote is randomly assigned, the average outcome of the control with the 

antidote will equal the average outcome of the full control group under the different treatment 

status. 

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1] = 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1] (𝐵. 7𝑎) 

𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1] = 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1] (𝐵. 7𝑏) 
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Again, by Assumption 3,  

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0] = 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1] 

 

Substituting value of 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1] from (B.7b) 

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0] = 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1] (𝐵. 7𝑏′) 

 

Now consider the definition of ASEU  

𝐴𝑆𝐸𝑈 = 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1]  

 

Substituting values of 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1] and 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1] from (B.7a) and 

(B.7b’) 

𝐴𝑆𝐸𝑈 = 𝛿 = 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊 = 1] − 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0]  

 

With Assumption 2 (consistency assumption), 

𝐴𝑆𝐸𝑈 = 𝛿 = 𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0] (𝐵. 8) 

 

Proposition 3: Assumptions 1–4 imply that the difference in the average outcome between the 

treatment group with the antidote (𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0) and the control group with the antidote 

(𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0) identifies SELB, i.e., with  

 

𝜃 = 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0] − 𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0]. 

 

Proof: 

The selectivity bias is defined as  

𝜃 = 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1] (𝐵. 10) 

 Equations (𝐵. 3) and  (𝐵. 7𝑏′) show that 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0] = 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0] (𝐵. 11𝑎) 
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𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0] = 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0] (𝐵. 11𝑏) 

 

Thus, directly substituting (𝐵. 11𝑎) and (𝐵. 11𝑏) into(𝐵. 10) yields  

𝑆𝐸𝐿𝐵 = 𝜃 = 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0] − 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0] 

Again, with Assumption 2 (consistency assumption), 

𝑆𝐸𝐿𝐵 = 𝜃 = 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0] − 𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0] (𝐵. 12) 
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Appendix C: Concurrent Treatment Does Not Confound Either 𝜷𝑻 or 𝜹 

 

The advantage of the antidotal approach is that neither the estimates of the treatment effect nor the 

SUTVA bias will be confounded by any concomitant treatments if the antidote nullifies the effect 

of the treatment of interest and is unrelated to the concomitant treatments that causes confounding. 

To see this, consider (10) again. 

𝑌𝑖 = 𝜇0 + 𝛽𝑇𝑊𝑖𝐷𝑖 + 𝛿𝑊𝑖(1 − 𝐷𝑖) + 𝜃𝐷𝑖 + 𝑢𝑖 

Suppose 𝑇𝑖 is another treatment administered alongside the main treatment. Treated units (𝐷𝑖=1) 

also receive this additional treatment (𝑇𝑖 = 1), while untreated units (𝐷𝑖 = 0) do not (𝑇𝑖 = 0). 

 

𝑌𝑖 = 𝜇0 + 𝛽𝑇𝑊𝑖𝐷𝑖 + 𝛼𝑇𝑇𝑖 + 𝛿𝑊𝑖(1 − 𝐷𝑖) + 𝜃𝐷𝑖 + 𝑢𝑖 

The error term 𝑢𝑖 now includes any heterogeneity in 𝛼𝑇. As long as this heterogeneity is 

independent of all other factors, and unrelated to 𝑊𝑖, it does not affect either the treatment effect 

or the SUTVA bias estimates. Accordingly, the observed averages for groups 𝑛1, 𝑛2, 𝑛3, and 𝑛4 

are 

𝑛1: 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑇𝑖 = 1, 𝑊𝑖 = 1]

= 𝜇0 + 𝛽𝑇 + 𝜃 + 𝛼𝑇 + 𝐸[𝑢𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑇𝑖 = 1, 𝑊𝑖 = 1] 

𝑛2: 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑇𝑖 = 1, 𝑊𝑖 = 1] = 𝜇0 + 𝛿 + 𝐸[𝑢𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑇𝑖 = 0, 𝑊𝑖 = 1] 

𝑛3: 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑇𝑖 = 1, 𝑊𝑖 = 0]

= 𝜇0 + 𝜃 + 𝛼𝑇 + 𝐸[𝑢𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑇𝑖 = 1, 𝑊𝑖 = 0] 

𝑛4: 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑇𝑖 = 0, 𝑊𝑖 = 0] = 𝜇0 + 𝐸[𝑢𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑇𝑖 = 0, 𝑊𝑖 = 0] 

Given that 𝑢𝑖 is mean independent of 𝑊𝑖 by Assumption 5, and if all other assumptions are satisfied, 

the treatment effect is calculated by differencing the averages of 𝑛1 and 𝑛3, i.e., 
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𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑇𝑖 = 1, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑇𝑖 = 1, 𝑊𝑖 = 0] = 𝛽𝑇

= 𝐴𝑇𝐸 

By the consistency assumption (Assumption 2) 

𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑇𝑖 = 1, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑇𝑖 = 1, 𝑊𝑖 = 0] = 𝛽𝑇 = 𝐴𝑇𝐸 

 

Similarly, with Assumption 1-6, the ASEU is the difference between 𝑛2 and 𝑛4 

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑇𝑖 = 0, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑇𝑖 = 0, 𝑊𝑖 = 0] = 𝛿

= 𝐴𝑆𝐸𝑈 

Again, with the consistency assumption, the difference in the observed counterparts of these means 

yield the estimate of 𝐴𝑆𝐸𝑈, i.e.,  

𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑇𝑖 = 0, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑇𝑖 = 0, 𝑊𝑖 = 0] = 𝛿 = 𝐴𝑆𝐸𝑈 

 

However, with concomitant treatments as in this case, SELB is not identified. This is evident from 

the difference between 𝑛3 and 𝑛4 

𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑇𝑖 = 1, 𝑊𝑖 = 0] − 𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑇𝑖 = 0, 𝑊𝑖 = 0] = 𝜃 + 𝛼𝑇 

which shows the estimate combines the effects of the concomitant treatment and the selectivity 

component without affecting the ATT or ATE or ASEU. 
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Appendix D: Bounds When the Antidote is Imperfect 

 

An imperfect antidote does not fully negate treatment and its spillover effects. Consequently, 𝛽𝑇, 

𝜃 and 𝛿 are not generally identified. Nevertheless, these parameters can be set-identified with 

additional assumptions.  

For illustration, consider regression equation (10) in the case of perfect antidotes. 

 

𝑌𝑖 = 𝜇0 + 𝛽𝑇𝑊𝑖𝐷𝑖 + 𝛿𝑊𝑖𝑆𝑖 + 𝜃𝐷𝑖 + 𝑢𝑖 (𝐷. 1) 

 

Let 𝜏 represent an unknown fraction (0 ≤ 𝜏 ≤ 1) indicating the extent the antidote neutralizes the 

treatment's effect. With this modification, equation (D.1) can be rewritten as: 

 

𝑌𝑖 = 𝜇0 + [1 − 𝜏(1 − 𝑊𝑖)]𝛽𝑇𝐷𝑖 + 𝜃𝐷𝑖 + 𝛿[1 − 𝜏(1 − 𝑊𝑖)]𝑆𝑖 + 𝑢𝑖  (𝐷. 2) 

 

When 𝜏 = 1, applying the antidote (𝑊𝑖 = 0) fully nullifies the effects of the treatment and 

spillover. Conversely, when 𝜏 = 0, the antidote is completely ineffective at neutralizing the 

effects.   

 

When 𝜏 is between 0 and 1, and 𝑊𝑖 = 1, the treatment and spillover effects (i.e., 𝛽𝑇 , 𝛿) remain 

intact. However, when 𝑊𝑖 = 0, unlike in the case of a fully effective antidote, the treatment and 

spillover effects do not drop to zero but instead remains at (1 − 𝜏)𝛽𝑇 and (1 − 𝜏)𝛿, which is a 

fraction of the original effect 𝛽𝑇 and 𝛿. 
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Before addressing identification, we revisit potential outcomes and assess their observability. 

Consider the three potential outcomes defined in (1a), (1b), and (1c). The first corresponds to 

receiving treatment, denoted as 1. The second applies when untreated but exposed to treatment 

spillover, denoted as 1𝑆. The third occurs when neither treatment nor spillover is received, denoted 

as 0. Thus, 𝑌𝑖(1) represents the potential outcome when individual 𝑖  is treated, 𝑌𝑖(1𝑆) applies 

when untreated but exposed to spillover, and 𝑌𝑖(0) applies when neither treatment nor spillover 

occurs.  

Thus, in the case of a perfect antidote (𝜏 = 1), we express the definition of the effects of interest 

as follows: 

𝛽𝑇 = 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] (𝐷. 3𝑎) 

𝛿 = 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0,   𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] (𝐷. 3𝑏) 

𝜃 = 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] (𝐷. 3𝑐) 

 

Here, 𝛽𝑇 denotes the Average Treatment Effect on the Treated (ATT) or the Average Treatment 

Effect (ATE) in the absence of essential heterogeneity, 𝛿 represents the Average Spillover Effect 

on the Untreated (ASEU), and 𝜃 captures the Average Selectivity Bias (SELB). Here, an 

identification issue arises because 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1], 

𝐸[𝑌𝑖(0)|𝐷𝑖 = 0,   𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] are not observed. However, Appendix B (with a fully 

effective antidote, i.e.,  𝜏 = 1) shows that 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] =

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1] and  [𝑌𝑖(0)|𝐷𝑖 = 0,   𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] =

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0,   𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 = 1], where 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1] and 

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0,   𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 = 1] are observed, i.e., the average outcomes of the 

subsample 𝑛3 and 𝑛4. Thus, as per Propositions 1a-3, the effects are identified as 

𝛽𝑇 = 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] − 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1,   𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1]            (𝐷. 4𝑎) 
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𝛿 = 𝐸[𝑌𝑖((1𝑆))|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] − 𝐸[𝑌𝑖((1𝑆))|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 = 1]   (𝐷. 4𝑏) 

𝜃 = 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1] − 𝐸[𝑌𝑖((1𝑆))|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 = 1]         (𝐷. 4𝑐) 

 

The identification issue with an imperfect antidote (𝜏 < 1) arises because the two subsamples 

(𝑛3 and 𝑛4)  with a perfect antidote are unobserved. Even if 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] = 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 < 1] 

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] = 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 < 1] 

the other averages are not equal, i.e.,  

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1] ≠ 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 < 1]  

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 = 1] ≠ 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 < 1]  

 

This means, unlike the perfect antidote case, 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1] and 

𝐸[𝑌𝑖((1𝑆))|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 = 1] are no longer observed. As such, this means 

𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] ≠ 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 < 1] (𝐷. 5𝑎) 

𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] ≠ 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 < 1] (𝐷. 5𝑏) 

 

With just the observed means of these four groups (𝑛1, 𝑛2, 𝑛3, 𝑛4), one cannot identify the ATT or 

ATE , ASEU and SELB. 

 

To enhance clarity, Table D1 outlines the observed and unobserved group averages in the context 

of an imperfect antidote. 

 

Group averages with imperfect antidote 
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 Observed  Unobserved 

W=1 𝑛1: 

𝐸[𝑌𝑖(1)|𝐷 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] 

  

W=1 𝑛2: 

𝐸[𝑌𝑖(1𝑆)|𝐷 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] 

  

W=0 𝑛3: 

𝐸[𝑌𝑖(1)|𝐷 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 < 1] 
≠ 

𝑛3: 

𝐸[𝑌𝑖(1)|𝐷 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1] 

W=0 𝑛4: 

𝐸[𝑌𝑖(1𝑆)|𝐷 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 < 1] 
≠ 

𝑛4: 

𝐸[𝑌𝑖(1𝑆)|𝐷 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1] 

 

Bounds: A Summary of Identification Strategy 

Consider Propositions 1a to 3. In Proposition 1a, 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] is 

observed but 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1,   𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1] is not observed. Hence, 𝛽𝑇 is not identified. 

However, the upper bound and lower bounds of 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1,   𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1] would 

yield the lower bound and upper bound of 𝛽𝑇. 

 

Similarly, in Proposition 2, 𝐸[𝑌𝑖((1𝑆))|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] is observed but 

𝐸[𝑌𝑖((1𝑆))|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 = 1] is not observed. Hence, 𝛿 is not identified. However, 

the upper bound and lower bounds of 𝐸[𝑌𝑖((1𝑆))|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 = 1] would yield the 

lower bound and upper bound of 𝛿. 

 

In case of Proposition 3, neither  𝐸[𝑌𝑖(1)|𝐷𝑖 = 1,   𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1] nor 

𝐸[𝑌𝑖((1𝑆))|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 = 1] is observed. Hence, 𝜃 is not identified. However, the 

upper bound of 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1,   𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1]  and lower bound of 
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[𝑌𝑖((1𝑆))|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 = 1] yield the upper bound estimate of 𝜃. In the same way, 

the lower bound of 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1,   𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1]  and upper bound of 

[𝑌𝑖((1𝑆))|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 = 1] yield the lower bound estimate of 𝜃. 

 

Below, we derive bounds on these unobserved terms under various assumptions, allowing us to 

establish bounds on the 𝛽𝑇, 𝛿 and 𝜃. 

 

Additional Assumptions: 

As mentioned earlier, when 𝜏 < 1, the effects can no longer be point-identified. However, with 

appropriate additional assumptions, we can construct bounds around the effect. In doing so, we 

maintain all previous assumptions, except Assumption 3, which implies the perfect antidote case. 

In addition, we adopt a few other assumptions commonly used in studies that construct bounds. 

Specifically, we introduce three additional sets of assumptions. 

 

Assumption Set 1: More 𝑌 is preferred than less 𝑌; and 𝑌𝑖 ≥ 0. 

Assumption Set 2: Positive monotone treatment response (MTR), which states that for any 𝑖,   

𝑌𝑖(1) ≥ 𝑌𝑖(0)  

Assumption Set 3: Optimal treatment selection (OTS) and monotone treatment selection (MTS).  

OTS assumption: The treatment group (𝐷 = 1)  prefers treatment over no treatment, while the 

control group (𝐷 = 0) prefers no treatment over treatment. 

Member of treatment group: 𝑌𝑖(1) ≥ 𝑌𝑖(0) 

Member of control group:      𝑌𝑖(1) ≤ 𝑌𝑖(0) 

 Hence, OTS Assumption implies 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] ≥ 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] (𝐷. 6𝑎) 
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𝐸[𝑌𝑖(1)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] ≤ 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] (𝐷. 6𝑏) 

 

MTS Assumption: The average outcome of the treatment group is always greater than or equal to 

the average outcome of the control group, both with and without treatment. 

This means 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] ≥ 𝐸[𝑌𝑖(1)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] (𝐷. 7𝑎) 

𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] ≥ 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] (𝐷. 7𝑏) 

 

Theorems and lemmas 

Lemma D.1: When the antidote is perfect, the average outcome of the treatment group without 

treatment is equal to that of the treatment group with treatment and a perfect antidote. Similarly, 

the average outcome of the control group without the treatment spillover is equal to that of the 

control group with treatment spillover and a perfect antidote, implying 

𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] = 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1] 

𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] = 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 = 1] 

Proof:  

For the treatment group, when treatment is combined with a perfect antidote, the treatment 

becomes ineffective. Consequently, the outcome with treatment and a perfect antidote is equal to 

the outcome without treatment. Hence, for the treatment group, the average outcome with a perfect 

antidote and no treatment (irrespective of the antidote) will be the same, i.e.,  

 

𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] = 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1] (𝐷. 8𝑎) 
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Similarly, for the control group, when treatment spillovers occur but are accompanied by a perfect 

antidote, the spillover effect disappears, as it is inherently the same as the treatment. In other words, 

the spillover becomes ineffective, making the average outcomes equal to those without the 

spillover (irrespective of the antidote), i.e.,   

 

𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] = 𝐸[𝑌𝑖((1𝑆))|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 = 1] (𝐷8𝑏) 

Q.E.D 

 

Theorem D.1:  If Assumption set 1 and 2 are true, the following inequalities hold.  

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 < 1] ≥  𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1]  

𝐸[𝑌𝑖((1𝑆))|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 < 1] ≥  𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1]  

 

Proof: 

The key point is that the MTR, combined with Assumption Set 1, implies that the treatment always 

increases the outcome. Consequently, treatment with an imperfect antidote, which retains some of 

the treatment's effect, results in higher outcomes than those with the treatment or its spillover and 

a perfect antidote, regardless of whether the treatment is received directly or through a spillover. 

Based on this, one can write: 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 < 1] ≥  𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1] (𝐷. 9𝑎) 

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 < 1] ≥  𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 = 1] (𝐷. 9𝑏) 

 

Since a perfect antidote nullifies the effects of a treatment and spillover, one can write: 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1] = 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] (𝐷. 10𝑎) 

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 = 1] = 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] (𝐷. 10𝑏) 
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Substituting (D.10a) and (D.10b) into (D.9a) and (D.9b), respectively, gives: 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 < 1] ≥ 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] (𝐷11𝑎) 

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 < 1] ≥ 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] (𝐷11𝑏) 

Q.E.D. 

 

Theorem D.2a: Under Assumption Sets 1 and 3 (i.e., OTS and MTS), the average outcome for the 

treatment group with a perfect antidote is always greater than or equal to the average outcome 

for the control group with the treatment spillover and an imperfect antidote, i.e., 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1] ≥ 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 < 1] 

 

Proof: As per Lemma D1,  

𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] = 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1] (𝐷. 12𝑎) 

𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] = 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 = 1] (𝐷. 12𝑏) 

The OTS assumption along with random assignment of 𝑊𝑖 state that treatment improves the 

outcomes for the treatment group. Since an imperfect antidote retains some of the treatment effect, 

the average outcome with an imperfect antidote is higher than the average outcome with a perfect 

antidote for the treatment group.  

 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 < 1] ≥ 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1] (𝐷. 13𝑎) 

 

The OTS Assumption along with random assignment of 𝑊𝑖  also state that treatment lowers the 

outcomes for the control group. Since an imperfect antidote retains some of the treatment effect, 
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the average outcome with an imperfect antidote is lower than the average outcome with a perfect 

antidote for the control group, i.e.,  

 

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 < 1] ≤ 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 = 1] (𝐷. 13𝑏) 

 

The MTS Assumption, on the other hand, implies that, in the absence of treatment, the average 

outcome of the treatment group is higher than that of the control group. 

 

𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] ≥ 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] (𝐷. 14) 

 

By combining Lemma D.1 and (D.14) one can write  

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1] ≥ 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1]  (𝐷15) 

Further combining (D13b) with (D15) suggests 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1] ≥ 𝐸[𝑌𝑖(1𝑠)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 < 1] (𝐷16) 

Q.E.D. 

 

Theorem D.2b: Under the OTS assumption, the average 𝑌 for the treatment group with an 

imperfect antidote is always greater than or equal to the average 𝑌 for the treatment group with 

treatment and a perfect antidote, i.e.,  

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 < 1] ≥ 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1] 

 

Proof: 

Assumption 1 and the OTS along with random assignment of 𝑊𝑖 indicate that treatment results in 

a higher average outcome for the treatment group compared to no treatment. 
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𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] ≥ 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] (𝐷. 17) 

 

Because with a perfect antidote 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] =

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1], one can rewrite (D17) as  

 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] ≥ 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1] (𝐷. 18) 

 

Because an imperfect antidote retains some of the treatment effect, which is always greater than 

no treatment under these assumptions, one can write  

[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 < 1] ≥ 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 = 1] (𝐷. 19) 

 

Q.E.D. 

 

 

Theorem D.3a: Under the OTS assumption, the average outcome for the control group with a 

treatment spillover and an imperfect antidote is always less than or equal to the average outcome 

for the control group with a treatment spillover and a perfect antidote, i.e., 

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 < 1] ≤ 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 = 1] 

 

Proof: 

Assumption 1 and the OTS along with random assignment of 𝑊𝑖, imply that the treatment would 

result in a lower average outcome for the control group compared to no treatment.  

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 < 1] ≤ 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] (𝐷. 20) 
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because with a perfect antidote 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 = 1] =

𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1], one can rewrite the above equation as  

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 < 1] ≤ 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 = 1] (𝐷. 21) 

 

In this case, treatment spillover, being somewhat similar to the treatment, would cause the control 

group’s average outcome to decline compared to what it would be without the treatment. Hence, 

under these assumptions, one can write:  

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 < 1] ≤ 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 = 1] (𝐷. 22) 

Q.E.D. 

 

Theorem D.3b: Under Assumptions 1 and 3, the average outcome for the treatment group with 

the treatment and an imperfect antidote is always greater than or equal to the average outcome 

for the control group with the  treatment spillover and a perfect antidote, i.e.,  

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1] ≥ 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 = 1] 

Proof: 

By the MTS assumption again, 

𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑊𝑖 = 1, 𝑆𝑖 = 0, 𝜏 = 1] ≥ 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑊𝑖 = 1, 𝑆𝑖 = 1, 𝜏 = 1] (𝐷. 23) 

 

However, since the outcome for the treatment group in the absence of the treatment is equal to the 

outcome with treatment and a perfect antidote, i.e., 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] =

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1] , one can write 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1] ≥ 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 = 1] (𝐷. 24) 
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Similarly, if an imperfect antidote is administered to the treatment group with treatment, some 

effect of the treatment would persist. Based on the same OTS assumption, now one can write 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 < 1] ≥ 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 = 1] (𝐷. 25) 

 

Combining (D.24) and (D.25) and since 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 = 1] =

𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 = 1], one can write 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 < 1] ≥ 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 = 1] (𝐷. 26) 

Q.E.D. 
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Bounding Average treatment effect (𝛽𝑇) 

 

As per Proposition 1a and 1b in the main text 𝐴𝑇𝐸 (i.e., 𝛽𝑇) can be written as  

𝛽𝑇 = 𝐸[𝑌(1)𝑖|𝐷𝑖 = 1, 𝑊𝑖 = 1, 𝑆𝑖 = 0, 𝜏 = 1] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 = 1]  

The known component in this expression is 𝐸[𝑌(1)𝑖|𝐷𝑖 = 1, 𝑊𝑖 = 1, 𝑆𝑖 = 0, 𝜏 = 1, and the 

unknown component is 𝐸[𝑌(1)𝑖|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 = 1. Instead, 𝐸[𝑌(1)𝑖|𝐷𝑖 = 1, 𝑊𝑖 =

1, 𝑆𝑖 = 0, 𝜏 < 1 is observed when the antidote is imperfect. Bounding the ATE requires 

determining the bounds for the latter term, 𝐸[𝑌(1)𝑖|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 = 1]. 

 

We provide two possible bounds for 𝛽𝑇 with different sets of assumptions. The first one uses 

Assumptions 1 and 2. The second one uses Assumptions 1 and 3. We explain these one by one. 

 

(1) Constructing bounds on 𝛽𝑇 under Assumptions 1 & 2 when the antidote is imperfect and there 

is no essential heterogeneity 

Result 1a: The lower bound of the ATE is  

𝛽𝑇 ≥ 𝐸[𝑌(1)𝑖|𝐷𝑖 = 1, 𝑊𝑖 = 1, 𝑆𝑖 = 0, 𝜏 = 1] − 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1] 

 

 This directly follows from Theorem D.2b which states  

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1] ≥ 𝐸[𝑌(1)𝑖|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 = 1] (27) 

 

Substituting this maximum value of this unobserved entity 𝐸[𝑌(1)𝑖|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 =

1] yields the lower bound of 𝛽𝑇, i.e.,  

As per Theorem D.1, and equation (𝐷. 3), one can now construct the lower bound of the 𝐴𝑇𝐸 

𝛽𝑇 ≥ 𝐸[𝑌(1)𝑖|𝐷𝑖 = 1, 𝑊𝑖 = 1, 𝑆𝑖 = 0, 𝜏 = 1] − 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1] 
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Result 1b: The upper bound of 𝛽𝑇 

𝛽𝑇 ≤ 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 1, 𝑆𝑖 = 0, 𝜏 = 1] 

The assumption 𝑌𝑖 ≥ 0  implies that 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 = 1] ≥ 0, providing a 

lower bound estimate for 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 = 1]. Consequently, the upper bound 

estimate of the ATE is: 

𝛽𝑇 ≤ 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 1, 𝑆𝑖 = 0, 𝜏 = 1] (𝐷28) 

 

Thus, Results 1a and 1b suggest that bounds for 𝛽𝑇 under Assumption 1 and 2 are 

 

 

 

 

By the consistency assumption, the equation above can be rewritten as: 

 

 

 

 

 

(2) Constructing bounds on 𝛽𝑇 under Assumptions 1 & 3 when the antidote is imperfect and there 

is no essential heterogeneity 

Result 2a: The lower bound of 𝛽𝑇 is  

𝛽𝑇 ≥ 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 1, 𝑆𝑖 = 0, 𝜏 = 1] − 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1] 

 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 1, 𝑆𝑖 = 0, 𝜏 = 1] − 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1] 

≤ 𝛽𝑇 ≤ 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 1, 𝑆𝑖 = 0, 𝜏 = 1]  
 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 1, 𝑆𝑖 = 0, 𝜏 = 1] (𝐷29) 

𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 < 1] 

≤ 𝛽𝑇 ≤ 

𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] (𝐷29) 
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As per Theorem D.2b,  

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1] ≥ 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 = 1] 

Given this inequality one can substitute 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 = 1] by its upper 

bound, which is observed, and obtain the lower bound of  𝛽𝑇, i.e.,  

𝛽𝑇 ≤ 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 1, 𝑆𝑖 = 0, 𝜏 = 1] − 𝐸[𝑌𝑖(1)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1] (𝐷30) 

 

Result 2b: The upper bound of 𝛽𝑇 is 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 1, 𝑆𝑖 = 0, 𝜏 = 1] − 𝐸[𝑌𝑖(1)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1] 

As per Theorem D.2a,  

𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 = 1] ≥ 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1] 

Substituting 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 = 1] with its lower bound of constitutes the upper 

bound of 𝛽𝑇 , that is,  

𝛽𝑇 ≤ 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 1, 𝑆𝑖 = 0, 𝜏 = 1] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 = 1] . (𝐷31) 

Thus, the bounds for 𝛽𝑇 under Assumption 1 and 3 are 

 

 

 

 

By the consistency assumption, the equation above can be rewritten as: 

 

 

 

Bounding the Average Spillover Effect (𝜹) 

 

[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 1, 𝑆𝑖 = 0, 𝜏 = 1] − 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1] 

≤ 𝛽𝑇 ≤ 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 1, 𝑆𝑖 = 0, 𝜏 = 1] − 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1]  (𝐷32) 

[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 < 1] 

≤ 𝛽𝑇 ≤ 

𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1, 𝜏 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 < 1]  (𝐷32) 
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Proposition 2 states that one can show that the 𝐴𝑆𝐸𝑈 (i.e., 𝛽𝑇) is 

𝛿 = 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 1, 𝑆𝑖 = 1, 𝜏 = 1] − 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 = 1]  

 

Due to the imperfect antidote, 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 = 1] is no longer observed. 

Instead, 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 < 1] is observed, such that 

𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 = 1] ≠ 𝐸[𝑌𝑖(1𝑠)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 < 1]. 

Consequently, the ASEU is not point-identified. 

 

Constructing bounds on 𝛿 

Here we provide two possible bounds for 𝛿 with two different set of assumptions. The first one 

uses Assumptions 1 and 2. The second one uses Assumptions 1 and 3. We explain these one by 

one. 

 

(1) Constructing bounds on 𝛿 under Assumptions 1 & 2 when the antidote is imperfect and there 

is no essential heterogeneity 

 

Result 3a: The Lower bound of 𝛿 

The lower bound of 𝛿 follows from Theorem D.1, which shows that  

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 < 1] ≥  𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 = 1] (𝐷33) 

Substituting 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 = 1] by its upper bound 

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 < 1] yields the lower bound of 𝛿, i.e.,  

𝛿 ≥ 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 1, 𝑆𝑖 = 1, 𝜏 = 1] − 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 < 1] 
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Result 3b: The Upper bound of 𝛿 

The assumption that 𝑌𝑖 ≥ 0 also implies that 𝐸[𝑌𝑖(1𝑠)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 = 1] ≥ 0. 

Substituting 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 = 1] by its lower bound zero yields the upper 

bound estimate of 𝛿, i.e.,  

𝛿 ≤ 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 1, 𝑆𝑖 = 1, 𝜏 < 1] (𝐷34) 

Thus, the bounds for 𝛿 are  

 

 

Bounds on 𝜽 

By the consistency assumption, the equation above can be rewritten as: 

 

(2) Constructing bounds on 𝛿 under Assumptions 1 & 3 when antidote is imperfect and there is no 

essential heterogeneity 

Result 4a: The Lower bound of 𝛿 

Theorem D.3b states that  

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1] ≥ 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 = 1] 

This provides an upper bound for 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 = 1]. Thus, the lower bound 

of the ASE can be expressed as  

𝛿 ≥ 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 1, 𝑆𝑖 = 1, 𝜏 = 1] − 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1] (𝐷36) 

 

Result 4b: The Upper bound of 𝛿 

Theorem D.3a shows that  

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 < 1] ≤ 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 = 1] 

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 1, 𝑆𝑖 = 1, 𝜏 = 1] − 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 < 1]

≤ 𝛿 ≤
𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 1, 𝑆𝑖 = 1, 𝜏 < 1] (𝐷35)

 

 

𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] − 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 < 1]

≤ 𝛿 ≤
𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 < 1] (𝐷35)
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This provides a lower bound estimate of 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 = 1]. Hence, the 

upper bound estimate of ASEU  

𝛿 ≤ 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 1, 𝑆𝑖 = 1, 𝜏 = 1] − 𝐸[𝑌𝑖(1𝑆 )|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 < 1] (𝐷37) 

 

As such, the bounds under these assumptions are 

 

 

 

 

By the consistency assumption, the equation above can be rewritten as: 

 

 

 

 

 

 

 

 

 

Bounding the average selectivity bias (𝜽) 

 

With a perfect antidote, the following difference in averages captures the selectivity bias. 

𝜃 = 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 = 1] − 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 = 1] 

When the antidote is imperfect, neither 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 = 1], nor  

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 = 1] are observed. Hence, this difference does not identify the 

ASB. 

 

(1) Constructing bounds on 𝜃 under Assumptions 1 & 2 when the antidote is imperfect and 

there is no essential heterogeneity 

Theorem D.2a implies  

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 1, 𝑆𝑖 = 1, 𝜏 = 1] − 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1] 

≤ 𝛿 ≤ 

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 1, 𝑆𝑖 = 1, 𝜏 = 1] − 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 < 1] (𝐷38) 

𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 < 1] 

≤ 𝛿 ≤ 

𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1, 𝜏 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 < 1] (𝐷38) 
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𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1] ≥ 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 = 1] 

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1] ≥ 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 = 1] 

Because as per Assumption 1, i.e., 𝑌 ≥ 0, the following two conditions can be constructed. 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 = 1] ≥ 0 

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 = 1] ≥ 0 

These two sets of equations represent the lower and upper bounds of each unobserved term. 

Result 5a: The lower bound of 𝜃: 

Substituting 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 = 1] and 𝐸[𝑌𝑖(1𝑠)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 = 1] 

by their lower bound 0 and upper bound 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 < 1] yield the lower 

bound estimates of ASB, i.e.,  

𝜃 ≥ 0 − 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1] (𝐷39) 

 

Result 5b: The upper bound of 𝜃 

By the same logic, substituting 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 = 1] and 

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 = 1] by their upper bound 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1] and lower bound 0 yield the upper bound estimates of 

ASB, i.e., 

𝜃 ≤ 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1] − 0 (𝐷40) 

 

Thus, the bounds for 𝜃 is  

 

 

 

 

−𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 < 1] 

≤ 𝜃 ≤ 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1]  
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By the consistency assumption, the equation above can be rewritten as: 

 

 

 

 

 

(2) Constructing bounds on 𝜃 under Assumptions 1 & 3 when the antidote is imperfect and there 

is no essential heterogeneity 

Result 6a: The Lower bound of 𝜃 

By Assumption 1 and 3, the lower bound of 𝐸[𝑌𝑖(1)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 = 1] is zero and the 

upper bound of  𝐸[𝑌𝑖(1𝑠)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 = 1] is 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1]. Hence the lower bound of 𝜃 is  

 

𝜃 ≥ −𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1] (𝐷42) 

Result 6b: The Upper bound of 𝜃 

Under Assumption1 and 3 (especially the OTS), 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1] ≥ 𝐸[𝑌𝑖(1)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 = 1] 

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 = 1] ≥ 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 < 1] 

 

This gives an upper bound of 𝐸[𝑌𝑖(1)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 = 1] and a lower bound of 

𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 = 1], identifying upper bound of 𝜃. Hence,  

𝜃 ≤ 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1] − 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 < 1] (𝐷43) 

 

Thus, the bounds for  

 

 

 

−𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1] 

≤ 𝜃 ≤ 

𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑊𝑖 = 0, 𝑆𝑖 = 0, 𝜏 < 1] − 𝐸[𝑌𝑖(1𝑆)|𝐷𝑖 = 0, 𝑊𝑖 = 0, 𝑆𝑖 = 1, 𝜏 < 1] (𝐷44) 

−𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 < 1] 

≤ 𝜃 ≤ 

𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 < 1] (𝐷41) 
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By the consistency assumption, the equation above can be rewritten as: 

 

 
  

−𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 < 1] 

≤ 𝜃 ≤ 

𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0, 𝜏 < 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0, 𝜏 < 1] (𝐷44) 
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Appendix E: Nonrandom Antidote Take Up 

 

As of now, we assume that 𝑊𝑖 is independent of 𝜂𝑖, 𝑣𝑖, 𝜙𝑖, and 𝜔𝑖
0. However, our estimators may 

be biased and inconsistent if these assumptions are violated. We examine the implications of 

relaxing these four assumptions in the following sections. 

 

(a) Error 𝜔𝑖
0 is not mean independent of 𝑊𝑖 

When 𝜔𝑖
0  is mean dependent on 𝑊𝑖, the antidotal approach cannot identify the treatment effect 

and the bias that is caused by a violation of the SUTVA. However, the selectivity bias can be 

identified. Typically, this situation occurs when cohorts with 𝑊𝑖 = 0 and 𝑊𝑖 = 1 differ for both 

observed and unobserved reasons. In the Boombox example given in the text, such a situation may 

arise if the groups receiving (i.e., 𝑊𝑖 = 0) and not receiving earplugs (i.e., 𝑊𝑖 = 1) differ in their 

pre-treatment averages. Here E[𝜔𝑖
0|𝑊 = 1] ≠ 𝐸[𝜔𝑖

0|𝑊𝑖 = 0] implying 𝐸[𝑢𝑖|𝑊 = 1] ≠

𝐸[𝑢𝑖|𝑊 = 0] even if 𝜂𝑖, 𝜙𝑖, 𝑣𝑖 are independent of 𝑊𝑖. This implies   

 

𝐸[𝑢𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] ≠ 𝐸[𝑢𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0] 

𝐸[𝑢𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1] ≠ 𝐸[𝑢𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0] 

 

Therefore the non-zero term 𝐸[𝑢𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] − 𝐸[𝑢𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0] is 

added to 𝛽𝑇 making it statistically inconsistent. Similarly, the non-zero term 

𝐸[𝑢𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1] − 𝐸[𝑢𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0] is added to 𝛿, making it statistically 

inconsistent. However, the estimator of the selectivity bias remains consistent because the additive 

term that differentiates 𝑊𝑖 = 0 and 𝑊𝑖 = 1 is no longer relevant since both groups 𝑛3 and 𝑛4 are 
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antidotal i.e., for both groups 𝑊𝑖 = 0. Hence, 𝜃 is identified even when 𝑊𝑖  is not independent of 

𝜔𝑖
0. 

 

(b) Treatment effect heterogeneity 𝜂𝑖 is not mean independent of 𝑊𝑖  

One cannot identify the treatment effect when 𝜂𝑖 is mean dependent on 𝑊𝑖. However, it is still 

possible to identify ASEU and SELB. This situation occurs when the treatment effect heterogeneity 

is associated with antidote assignment. Here subjects choose antidotes based on their own 

assessment of the effects of the treatment. In this case the comparison of 𝑛1 and 𝑛3 involves 

components of the error term  𝐸[𝜂𝑖𝑊𝑖𝐷𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] and 

𝐸[𝜂𝑖𝑊𝑖𝐷𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0] that are unequal, implying that   

𝐸[𝜂𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] − 𝐸[𝜂𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0] ≠ 0. As per (B.5) the difference 

between 𝑛1 and 𝑛3 is therefor 𝛽𝑇 + 𝐸[𝜂𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] which is not the treatment effect.  

 

The parameter 𝛿 is identified because in the control group 𝐷𝑖 = 0, so that 𝜂𝑖𝑊𝑖𝐷𝑖 = 0. Thus, 

violating this assumption does not affect identification of the ASEU. Similarly, the selectivity 

parameter 𝜃 is identified because in 𝑛3 and 𝑛4, 𝑊𝑖 = 0, so that 𝜂𝑖𝑊𝑖𝐷𝑖 = 0.  

 

(c) Spillover effect heterogeneity 𝑣𝑖 is not mean independent of 𝑊𝑖 

This situation occurs when members of the control group choose an antidote based on the spillover 

effect heterogeneity. Here, a spillover is tantamount to treating the control group, except the 

treatment does not lead to a further spillover. Based on the same reasoning presented in part (b), it 

is not possible to identify the ASEU. It is, however, still possible to identify the ATT OR ATE and 

the SELB if 𝑣𝑖 is not mean independent of 𝑊𝑖. 
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(d) Selectivity effect heterogeneity 𝜙𝑖 is not mean independent of 𝑊𝑖 

This occurs when one chooses to take the antidote based on heterogeneity in the treatment 

selection. Entities with and without antidotes have different average effects due to selectivity 

heterogeneity, i.e., 𝐸[𝜙𝑖|𝑊𝑖 = 1] ≠ 𝐸[𝜙𝑖|𝑊𝑖 = 0]. If such is the case, then 

𝐸[𝜙𝑖𝐷𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] ≠ 𝐸[𝜙𝑖𝐷𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0]. This means that the ATT or 

ATE is not identified. Similarly, violating mean independence results in 

𝐸[𝜙𝑖𝐷𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0] ≠ 0 = 𝐸[𝜙𝑖𝐷𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0]. As such, the selectivity 

bias is not identified. However, the bias resulting from a violation of SUTVA is identified because 

𝐸[𝜙𝑖𝐷𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1] = 𝐸[𝜙𝑖𝐷𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0] = 0.  
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Appendix F: Testing Whether the Antidote Take Up (𝑾) is Random 

 

One generally cannot identify all three parameters of interest the treatment effect (𝛽𝑇), the 

selectivity bias (𝜃), and the bias arising from a SUTVA violation (𝛿)) from a single cross-section 

when 𝑊𝑖 is mean dependent on 𝑢𝑖. However, the advantage of the antidotal variable method is it 

allows one to test whether 𝑊𝑖 is correlated with 𝑢𝑖.  

 

Consider two subsamples, 𝑛1 and 𝑛3 when the treatment is not assigned. Since treatment is not 

assigned,  

𝑌̅1 − 𝑌̅3 = 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0]

= (𝜇0  + 𝜃 + 𝐸[𝑢𝑖|𝐷 = 1, 𝑆𝑖 = 0, 𝑊 = 1]) − (𝜇0  + 𝜃 + 𝐸[𝑢|𝐷 = 1, 𝑆𝑖 = 0, 𝑊

= 0]) 

Since 𝐷𝑖 = 1 in both subsamples, the above expression reduces to  

𝑌̅1 − 𝑌̅3 = 𝐸[𝑢𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] − 𝐸[𝑢𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0] 

In this context mean independence of 𝑢𝑖 and 𝑊𝑖 implies that 𝐸[𝑢|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] =

𝐸[𝑢𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0], so that these terms cancel each other. Thus, with mean 

independence of 𝑊𝑖, and with no essential heterogeneity, the identification in the post treatment 

period arises from the following equation 

𝛽𝑇 = 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0] 

When 𝑊𝑖 is not mean independent of 𝑢𝑖, 𝐸[𝑢𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] ≠ 𝐸[𝑢𝑖|𝐷𝑖 = 1, 𝑆𝑖 =

0, 𝑊𝑖 = 0], meaning 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0] = 𝛽𝑇 +

(𝐸[𝑢𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] − 𝐸[𝑢𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0]) ≠ 𝛽𝑇. Since 

𝐸[𝑢𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1]  − 𝐸[𝑢𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0] is unknown, 𝛽𝑇 is not identified.  

With just one cross-section this problem cannot be solved. 
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However, if one has a cross-section when treatment is not assigned (a natural possibility is the data 

from the pre-treatment period), one can test the mean independence assumption of 𝑊𝑖. Consider 

two subsamples who will be treated and not treated (i.e., 𝐷𝑖 = 1 and 𝐷𝑖 = 0) once the treatment 

rolls out. Because it is the pre-treatment period, nothing gets added due to treatment. Thus, the 

difference in mean of 𝑌𝑖 for 𝑊𝑖 = 1 and 𝑊𝑖 = 0 is only due to the difference between 𝐸[𝑢𝑖|𝐷𝑖 =

1, 𝑆𝑖 = 0, 𝑊𝑖 = 1] and 𝐸[𝑢𝑖|𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 0] or 𝐸[𝑢𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 1] and 

𝐸[𝑢𝑖|𝐷𝑖 = 0, 𝑆𝑖 = 1, 𝑊𝑖 = 0]. Thus, whether these means are different, or not, can be tested with 

the simple regressions within the treated/untreated groups  

Treated group: 𝑌𝑖 = 𝛾0 + 𝛾1𝑊𝑖 + 𝜁𝑖  (𝐹. 1) 

Untreated group: 𝑌𝑖 = 𝛾0
′ + 𝛾1

′𝑊𝑖 + 𝜁𝑖
′ (𝐹. 2) 

When 𝛾1 = 0 and 𝛾′1 = 0, one can infer that non-randomness of 𝑊𝑖 does not affect the parameter 

identification, as it should not, given there is no treatment to nullify. If 𝛾1 ≠ 0 and 𝛾′1 = 0, then 

one identifies ASEU (𝛿), but the ATE or ATT and SELB (𝛽𝑇 and 𝜃) cannot be identified. 

Conversely, if 𝛾1 = 0 and 𝛾′1 ≠ 0, then one identifies 𝛽𝑇, but cannot identify ASEU (𝛿) and SELB 

(𝜃). If 𝛾1 ≠ 0 and 𝛾1 ≠ 0, then none of the parameters of interest are identified.3  

 

  

 
3 Typical IV validity cannot be tested in the same way using pre-treatment data because there cannot be any change 

in the IV. Any change in the pre-treatment IV would imply a weak instrument.   
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Appendix G: Simulations 

 

To validate the approach and test for consistency of the estimators, we conduct several simulation 

exercises. First, we simulate data based on a process where 𝑊𝑖 is randomly assigned.  We generate 

the treatment variable 𝐷𝑖 through a uniform distribution. A value of 𝐷𝑖 = 1 indicates the unit 

receives the treatment, and 𝐷𝑖 = 0 indicates no treatment. Similarly, we independently create the 

antidotal variable 𝑊𝑖 through a uniform distribution. The value 𝑊𝑖 = 0 indicates the antidotal 

intervention nullifies the effect of the treatment, and 𝑊𝑖 = 1 indicates no antidotal intervention so 

that the treatment remains effective. This process essentially divides the sample into four 

subsamples: {𝐷𝑖 = 1, 𝑆𝑖 = 0, 𝑊𝑖 = 1}, {𝐷 = 0, 𝑆𝑖 = 1, 𝑊 = 1}, {𝐷 = 1, 𝑆𝑖 = 0, 𝑊 = 0},

and {𝐷 = 0, 𝑆𝑖 = 1, 𝑊 = 0}. Based on these we generate the outcome variable 𝑌𝑖 in the following 

manner:    

𝑌𝑖 = 𝛽0𝑖 + 𝛽𝑇𝑖𝑊𝑖𝐷𝑖 + 𝛿𝑖𝑊𝑖(1 − 𝐷𝑖) + 𝜃𝑖𝐷𝑖 + 𝑢𝑖 

where the parameters 𝛽0𝑖, 𝛽𝑇𝑖, 𝜃𝑖, 𝛿𝑖 and 𝑢𝑖 are as previously defined. To keep the simulation 

simple, we assume these parameters follow normal distributions with different means and standard 

deviations. Thus, each individual receives an assigned value based on random draws. This process 

ensures parameter heterogeneity as well as no essential heterogeneity.  We experiment with 

various parameter values to check the generality of the results. First, we generate data based on 

the following schemes: 𝛽0𝑖 =  N(.3, .1); 𝛽𝑇𝑖 =  N(.7, .2); 𝜃𝑖 =  N(.4, .4); 𝛿𝑖 =  N(.8, .3). Then, we 

replicate the same exercise with 𝛽0𝑖 =  N(.3, .1); 𝛽𝑇𝑖 =  N(.2, .2); 𝜃𝑖 =  N(.15, .4); 𝛿𝑖 =

 N(.35, .3). We then estimate the parameters from the simulated data for different number of 

observations (100, 1000, 10000, 100000, 1000000).  
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Table G.1 reports the results. As can be seen, the estimates are close to the parameter values used 

to create the data, more so when the number of observations is large. All three estimators (the 

treatment effect, the ASEU, and SELB) approach the true parameter values when the sample size 

increases. Thus the simulation exercise confirms the consistency property of the estimators. 

Similar results emerge when we alter the parameter values.  

Table G.1: Estimates from the simulated data (random W) 

  

Actual 

Value  

𝛽𝑇 = 0.7 

Actual 

Value  

θ=0.4 

Actual 

Value  

δ = 0.8   

Actual 

Value 

𝛽𝑇=0.2 

Actual  

Value  

θ = 0.15 

Actual  

Value  

δ = 0.35 

 Estimated values  Estimated values 

No. of 

obs 𝛽𝑇 θ δ   𝛽𝑇 θ δ 

100 0.48 0.62 0.82  -0.02 0.37 0.37 

1000 0.67 0.52 0.80  0.17 0.27 0.35 

10000 0.68 0.40 0.81  0.18 0.15 0.36 

100000 0.69 0.40 0.79  0.19 0.15 0.34 

1000000 0.70 0.40 0.80   0.20 0.15 0.35 
Source: Simulated data and authors’ own computations. 

 

When 𝑾𝒊 and 𝑫𝒊, are dependent 

Identification does not require independence between 𝑊𝑖 and 𝐷𝑖. This is because each parameter 

is identified based on subsamples in which one of either 𝑊𝑖 or 𝐷𝑖 remain fixed, while the other 

varies. To illustrate, the treatment effect is identified by comparing outcomes in  𝑛1 and  𝑛3 . Both 

of these subsamples receive treatment (𝐷𝑖 = 1), so that 𝐷𝑖 remains constant, and therefore is 

uncorrelated with 𝑊𝑖, which varies. Similarly, the ASEU is identified by comparing outcomes in 

 𝑛2 and  𝑛4. Again 𝐷𝑖 is a constant equal to 0, while 𝑊𝑖 varies. Likewise, the antidotal groups ( 𝑛3 

and 𝑛4), in which 𝑊𝑖 = 0, are used to determine the selectivity. In none of these three identification 

subgroups do 𝑊𝑖 and 𝐷𝑖 vary together. Thus, the correlation between treatment and antidote 

assignment is zero so that all the parameters are identified. Simulation results in Table G.2 

illustrate this assertion.  
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The following simulation results demonstrate the consistency of the estimators when Wi and Di are 

dependent. 

 

 

 

 

Table G.2: Estimates from the simulated data (W and D are 

dependent) 

 (1) (2) (3) (4) 

VARIABLES n=100 n=1000 n=10,000 n=100,000 

     

𝛽𝑇  0.235 0.325 0.310 0.318 

𝜃  0.222 0.125 0.149 0.142 

𝛿  0.202 0.227 0.241 0.237 

𝜇0  0.741 0.706 0.700 0.700 

     

No. of simulation 100 1,000 10,000 100,000 

Correlation (𝐷𝑖, 𝑊𝑖) 0.333 0.435 0.452 0.455 

Notes: True parameter values: 𝛽𝑇 = 0.32;  𝜃 = 0.14;  𝛿 = 0.24; 𝜇0 = 0.7. The results are 

similar for other correlations between 𝐷𝑖 , and 𝑊𝑖. 

 

As the number of observations increases, the estimated parameter based on the simulated data 

becomes closer to the true parameter value, indicating statistical consistency. In addition, this 

empirical consistency holds true for other correlations between 𝐷𝑖, and 𝑊𝑖. 

 

 

 

 

 


