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The Polarization Paradox:
Why More Connections Can Divide Us∗

Arthur Campbell† C. Matthew Leister‡ Philip Ushchev§ Yves Zenou¶
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Abstract

We develop a simple model of content filtering—the tendency of individuals to selectively

forward information that aligns with their ideological preference—to study how network

structure shapes the distribution of political content. In our framework, individuals and

content are horizontally differentiated into three types (left, middle, right). We show that

content filtering can amplify the middle or the extremes and may result in only centrist content

(full moderation) or only extreme content (full polarization). The outcome depends on the

interaction between two forces: a preference advantage from the relative prevalence of types

in the population, and a pairwise comparison advantage that systematically favors centrist

content. Network density plays a critical role. Sparse networks robustly yield moderation,

even when extreme types dominate the population, while dense networks replicate the population’s

type distribution. Intermediate densities generate non-monotonic comparative statics, including

sharp transitions between moderation and polarization. These findings complement existing

empirical results that emphasize the types of connections individuals have on social media by

highlighting how the number of connections, holding their composition fixed, may fundamentally

shape the information environment in ways that foster/mitigate populism and polarization.
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1 Introduction

The recent rise of populism and political polarization has generated widespread concern about
how political opinions form and evolve, as well as their implications for democratic institutions.
In response, a growing literature has examined the role of social networks and social media
in shaping political beliefs and behaviors through how they affect the information available to
individuals. This literature has focused on how social media shapes the types of relationships that
are formed and how this influences the type(s) of information available to users. One prevalent
view links the lower costs of interacting online through social media to the formation of “echo
chambers”—environments in which individuals are primarily exposed to ideologically aligned
individuals and content.1 A more recent wave of empirical studies questions whether the echo
chamber mechanism is empirically validated and rather finds that social media can, under certain
conditions, expand users’ exposure to more diverse information and opinions beyond immediate
social circles via weak-ties.2 In both perspectives, the central premise is that individuals are
more likely to share information consistent with their ideological preferences. The key distinction
between the two lies in how increased social media use shapes the composition of one’s social
environment—and, consequently, the nature of the information encountered. The echo-chamber
view posits that social media reinforces homophily by encouraging interactions among like-minded
individuals, whereas the weak-ties view argues the opposite, suggesting that social media expands
exposure to diverse viewpoints. The coexistence of these seemingly opposing mechanisms—both
supported by empirical evidence—underscores the need for a more nuanced theoretical framework
linking network structure to information exposure. We propose an alternative mechanism to
explain how social media shapes polarization, focusing on individuals’ selective tendencies in
deciding which information to share. We refer to this process as content filtering.3 The key
insight of our model is that changes in network density can either amplify or dampen polarization,
even when the overall composition of available information remains constant—a dimension largely
overlooked in the existing empirical literature.

To study this, we develop a simple model of content filtering on social media and characterize
the resulting steady-state distribution of shared content in a setting with three types of information:
Left, Middle, and Right. Despite its simplicity, the model generates a rich set of outcomes and
offers an alternative mechanism to reconcile the aforementioned empirical findings. In particular,
more intense use of social media (captured in our model by increased network density) may
moderate or polarize the steady-state distribution of information available to the population.
This non-monotonicity may arise in our model because of the counteracting effects of a pairwise-
comparison advantage of the middle content and a preference advantage of the left/right extreme

1See, e.g., Mutz (2006), Hindman (2009), Pariser (2011), Sustein (2008); Sunstein (2018), El-Bermawy (2016),
Allcott and Gentzkow (2017), Allcott et al. (2020), and Mueller (2025).

2See, e.g., Bakshy et al. (2015), Barberá (2015); Barberá et al. (2015); Boxell et al. (2017); Barberá (2020);
Dubois and Blank (2018); Algan et al. (2025).

3In an experiment, Messing and Westwood (2014) show that Republicans select Fox News at a substantially
higher rate than other sources, while Democrats are more likely to select MSNBC.
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content. Changes in network density affects both the overall and relative strength of each creating
the non-monotonicity. Our mechanism focuses on the number of sources of information on social
media as distinct from the “echo-chamber” and “weak-ties’ views which focus on the types of
sources/connections to explain how social media use affects the availability of information.

Our framework features a horizontally differentiated population of agents and information
content which are one of three ideological types—left, middle, and right—located on a line.4 Our
model of content filtering is dynamic. In each period individuals observe the recommendations/
forwarded content of their friends and choose the content that is closest to their own type to
subsequently recommend/forward in the subsequent period. We characterize the unique stable
steady state of this process as a function of the distributions of types and friendships in the
population.5

Our first set of results establishes the tendency for content filtering to amplify the prevalence of
either the extremes (polarization) or the middle content (moderation) relative to the distribution
of those types amongst the population.6 The strength of this amplification may be such that the
only type of content is the middle (full moderation) or the extremes (full polarization). Whether
the middle or extremes are amplified depends on the balance of two sources of advantage in our
model. One source of advantage (preference advantage) arises from a greater proportion of people
in the population of that type. When the population has a higher fraction of a given type, the
steady state will (weakly) reflect this. Moreover, when a type is more prevalent than another
type this is one source of advantage that may result in the steady state amplifying that type of
content. This first source of advantage may be reinforced or counteracted by a second source of
advantage (pairwise comparison advantage) that always favors the middle content. This arises
because the middle type of content is more likely to be favored over the left or right type in
pairwise comparisons by randomly chosen individuals in the population.

Our second set of results demonstrates how the density of connections between people affects
the steady state. Strikingly, for any distribution of preferences in the population the stable
steady state is full moderation as the network becomes sparse. This occurs in networks where
the preference advantage is arbitrarily high (i.e. as the proportion of extreme types goes to 1)
indicating that the sparsity of the network allows the pairwise comparison advantage to dominate
the preference advantage. In the other extreme, we find that dense networks weaken both sources
of advantage and the steady-state converges to the proportion of each type in the population.
In between, non-trivial comparative statics emerge when the preference advantage and pairwise
comparison advantage counteract one another. Specifically, we find that the transition may (i) be
non-monotonic transitioning through partially and potentially fully polarized steady states; and

4This is a 3 type version of Hotelling line used in models of spatial competition in political economy and
industrial organization

5Our model of information diffusion draws on the theory of diffusion on random graphs (Newman et al., 2001,
2002) and build on its recent application in models of demand in imperfectly competitive markets in industrial
organization (Campbell, 2013, 2015, 2019) and (Campbell et al., 2024)

6We use the term amplification of a type(s) to refer to steady states where there is a greater fraction of content
of that type than there are types in the population.
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(ii) exhibit a rapid transition between a fully moderate steady state and fully polarized steady
state when there are few centrist/middle types and the network is relatively sparse.

2 Related literature

This paper contributes to the growing literature on echo chambers, political polarization, and
the role of network structure in shaping collective behavior. We build on and connect several
strands of work—both theoretical and empirical—that explore how individual exposure to content,
preferences, and network connectivity interact to determine ideological outcomes.

2.1 Related empirical literature

As stated above, there are different views on how social networks affect polarization. Some argue
that the changing environment—in which exposure to news is increasingly mediated through online
social networks—has fostered the creation of “echo chambers,” where individuals are exposed
only to like-minded information and shielded from attitude-challenging content. Others take
the opposite view, emphasizing that cross-cutting interactions are more frequent than commonly
believed, so that social networking sites increase exposure to information shared by weak ties,
including ideologically diverse news (Bakshy et al., 2015; Barberá et al., 2015). The empirical
evidence, however, paints a more nuanced picture (Barberá et al., 2015; Arora et al., 2022).
Deactivation experiments show that turning off Facebook or Instagram for several weeks slightly
reduces affective polarization and political engagement (Allcott et al., 2020). Similarly, feed and
intervention experiments—such as reducing like-minded content on Facebook during the 2020
U.S. election—altered information diets but produced only limited effects on polarization (Bakshy
et al., 2015). At the macro level, observational evidence suggests that increasing internet and
social-media penetration across U.S. demographic groups is not associated with a faster rise in
polarization, pointing instead to weak or mixed links (Nyhan et al., 2023). Complementing these
findings, Gentzkow and Shapiro (2011) assess the extent to which online news consumption is
ideologically segregated and compare it with segregation in both traditional media and face-to-face
interactions. They find that a substantial share of consumers access news from multiple outlets;
for instance, visitors to extreme conservative sites such as rushlimbaugh.com and glennbeck.com
are more likely than typical online readers to also visit nytimes.com, while visitors to extreme
liberal sites such as thinkprogress.org and moveon.org are more likely than typical readers to visit
foxnews.com. Similar patterns are documented by Messing and Westwood (2014).

Our contribution. We propose a new mechanism based on the intensity of content filtering
to explain how the information available to individuals can evolve in ways that either foster
or mitigate polarization. Proposition 1 shows that both full-polarization and full-moderation
equilibria may arise, depending on the underlying parameter values. Furthermore, we demonstrate
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that greater social media use—represented in the model by a denser network—can give rise to a
non-monotonic evolution of polarization: beginning with full moderation, progressing to partial
moderation, then shifting to full polarization, and ultimately stabilizing in a partial-polarization
equilibrium (Proposition 3 and Figure 2).

2.2 Related theoretical literature

Our paper also contributes to the theoretical literature on political polarization and opinion
dynamics in networked settings.

Levy and Razin (2019) review foundational mechanisms behind echo chambers, emphasizing
how cognitive frictions—such as correlation neglect—can produce polarization even in the absence
of extreme preferences. Their work motivates our dynamic approach, which emphasizes how
behavioral responses to social exposure evolve over time. Callander and Carbajal (2022) develop
a dynamic model where polarization emerges endogenously through feedback loops between media
content and voter behavior. While their focus is on strategic media-voter interactions, our model
centers on peer-to-peer content diffusion and its dependence on network structure.

Della Lena et al. (2023) examine affective polarization in a repeated setting where individuals
interact through media and social channels. Our model differs in focusing on ideological (rather
than emotional) alignment and on how content preferences shape the flow of information. Finally,
Bolletta and Pin (2025) study dynamic opinion formation with evolution of the endogenous
network. Although they show how homophily and clustering can endogenously produce polarization,
we consider an exogenous network and vary its degree distribution parametrically. This allows us
to isolate how the structural properties of the network, potentially driven by increased reliance on
social media, may affect the equilibrium distribution of ideological information.

Our contribution. Our paper is the first to introduce a model of content filtering on social
media. We show how changes in the network that describe the interactions of the population
through social media can result in a distribution of information that can foster or inhibit polarized
views. In focusing on the information available to the population as a whole, it offers a complementary
mechanism to those considered in the previous literature.

The rest of the paper is organized as follows. Section 3 introduces our baseline model and
some notations. Section 4.1 characterizes the steady-state equilibria while Section 4.2 presents the
comparative statics with respect to the degree distribution. Sections 4.2.1, 4.3, and 4.4 establish
our main result: denser networks have a non-linear effect on polarization. In Section 5, we explore
two extensions of the baseline model. In the first (Section 5.1), agents are allowed to abstain from
forwarding content. In the second (Section 5.2), we introduce asymmetry in the distribution of
extremists on the left and right. Section 6 concludes. All proofs are provided in the Appendix,
with additional results available in the Online Appendix.
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3 The baseline model

In this section, we describe and study our baseline model of content filtering on social media which
we use to study the impact of network structure and preference distribution on the information
available to the population. We characterize the conditions under which content filtering amplifies
moderate versus extreme content and vice-versa.

3.1 Notation, definitions, and preferences

Consider a model of ideological content along a one-dimensional discrete spectrum consisting of
three content types: L (“left”), M (“middle”), and R (“right”). These correspond to political
ideologies, with the centrist type M having a relative advantage in pairwise comparisons against
the extremes. The population has unit mass, initially we assume that it is symmetrically composed
of a measure ρ of individuals of type M , and a measure (1 − ρ)/2 each of types L and R, with
0 < ρ < 1.

We consider a dynamic model of content filtering with discrete time periods t = 1, 2, . . . . In
each period, all individuals are connected to k friends from the previous period, where k is drawn
from a degree distribution {pk} with expectation µ = E[k] satisfying pk > 0 for some k ≥ 2. In
each period, an individual receives one content recommendation from each of their k friends from
the previous period. They observe all recommended content and subsequently recommend the one
that best aligns with their own ideological type to their friends in the next period. This dynamic
process is what we term content filtering.

An individual’s ranking of content types depends on their own ideological type, as summarized
below:

Type Ranking
L L ≻M ≻ R

M M ≻ L ∼ R

R R ≻M ≻ L

Each agent strictly prefers content that matches their own type. In addition, a type-L or type-
R individual prefers centrist (M) content to content from the opposing extreme. A type-M
individual, by contrast, is indifferent between L and R content. An agent will forward content
of their own type if they receive at least one such recommendation from their k friends. If they
receive no content of their own type, they follow their preference ranking as given above to select
among the recommended contents. In the case of a type-M individual receiving only L and R

content (and thus being indifferent), they choose between the two with equal probability, i.e.,
50–50.7 We see that under these preferences type M content has a relative advantage in pairwise

7In the baseline model, we assume that agents are required to recommend some content, even if it does not
align with their preferences. In Section 5.1, we relax this assumption and allow agents—particularly those who are
ideologically distant from all received content (e.g., left-wing individuals receiving only right-wing content)—the
option to remain silent and refrain from forwarding any political content. We also allow M -type individuals to
remain silent if none of their friends made a recommendation in the previous period.
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comparisons against either of the extremes.

3.2 Content Filtering

We are interested in the steady-state distribution of political content recommendations across
types as t → ∞. We first develop a dynamic equation to describe the evolution of recommended
content. In each period t, every individual of any type connects to k friends uniformly at random
from the population in the previous period t−1. Let yt ∈ [0, 1] denote the share of middle-oriented
(centrist type M) individuals at time t. Accordingly, the population—normalized to have total
mass one—comprises a fraction yt of centrists, and equal fractions 1−yt

2
of left-wing and right-wing

individuals, respectively.8 This implies that the share of centrists yt evolves according to

yt =
∑
k

pk

(
ρ
[
1− (1− yt−1)

k
]
+ (1− ρ)

[(
1 + yt−1

2

)k

−
(
1− yt−1

2

)k
])

, (1)

where {pk} is the degree distribution of the social network, with k ∈ N and ρ is the fraction of
centrist-type individuals.

The first term, ρ
[
1− (1− yt−1)

k
]
, represents the probability that an individual is of type

M and receives at least one recommendation of their most preferred content type (M) from
k friends drawn uniformly at random from the population at time t − 1.9 The second term,
(1−ρ)

[(
1+yt−1

2

)k − (1−yt−1

2

)k]
, is the probability that an individual is of type L or R and ends up

recommending content of type M . This occurs when the individual hears neither: (i) content of
their own (most preferred) type, nor (ii) exclusively content of their least preferred type (i.e., type
R for a type-L individual, and type L for a type-R individual) from their k randomly selected
friends.

It is convenient to rewrite this dynamic equation in terms of generating functions (Newman
et al., 2001; Vega-Redondo, 2007; Newman, 2010; Campbell, 2013; Campbell et al., 2024). Specifically,
equation (1) can be expressed as

yt = f(yt−1, ρ), (2)

where the function f : [0, 1]× [0, 1] → [0, 1] is defined by

f(y, ρ) := ρ [1−G(1− y)] + (1− ρ)

[
G

(
1 + y

2

)
−G

(
1− y

2

)]
, (3)

8This symmetry greatly simplifies the analysis. In Section 5.2, we relax this assumption and consider asymmetric
cases in which the fractions of left- and right-wing individuals may differ.

9In our model, we assume that a single recommendation from a same-type individual is sufficient for someone
to recommend the same content. A natural extension would be to increase the threshold from one to two—that
is, requiring at least two friends to recommend the same type of content before an individual follows suit. This
modification would introduce the possibility of multiple stable steady states, thereby necessitating a different
analytical approach. For instance, the analysis may need to shift toward comparing the relative sizes of the basins
of attraction associated with different equilibria, a consideration that the current framework does not require.
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and G : [0, 1] → [0, 1] is the generating function of the degree distribution {pk}:

G(x) :=
∑
k∈N

pkx
k. (4)

4 Analysis

Our analysis focuses on stable steady-states y∗ ∈ [0, 1] of the dynamical system (2). A state y∗ is
a steady state if and only if it satisfies the fixed-point equation

y∗ = f (y∗, ρ) . (5)

Equation (5) represents the steady-state condition derived from the dynamic equation (2) by
omitting the time index t.

Definition 1. A steady state y∗ of the dynamical system (2) is stable if and only if any trajectory
{yt} of the dynamical system (2) whose initial state is sufficiently close to y∗, asymptotically
converges to y∗, that is, limt→∞ yt = y∗. The stability criterion is given by:

|fy(y∗, ρ)| < 1,

where fy(y∗, ρ) is the partial derivative of f(y, ρ) with respect to y evaluated at y = y∗.

Definition 1 corresponds to the standard notion of local stability in discrete-time dynamical
systems. As we will show below, the dynamical system (2) admits a unique stable steady state,
which is in fact globally stable. Thus, the “sufficiently close” condition in the definition can be
omitted.

4.1 Steady-state characterization

Define the following two threshold values:10

ρ0 :=
1− ψ

µ− ψ
, (6)

ρ1 :=
µ+ p1 − 2

µ− p1
, (7)

where
ψ := G′

(
1

2

)
. (8)

The following proposition characterizes the stable steady-state fraction of content y∗ that is
forwarded by the population depending on the proportion of middle types ρ relative to extreme
types 1−ρ. It separates cases into steady-states where either the middle or extremes are amplified

10In Online Appendix A, we show that ρ0 ≤ ρ1, with “<” if pk > 0, for some k ≥ 3.
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relative to their composition of the population. We described steady-states where the middle is
(extremes are) overrepresented y∗ > ρ (y∗ < ρ) as full or partial moderation (full or partial
polarization) and the threshold case where the steady-state reflects the population (y∗ = ρ) as
balanced.

Proposition 1. There exists a ρ̃ < 1
3

where y∗(ρ̃) = ρ̃ such that the unique stable steady-state
defined by (5) is characterized as follows:

(i) If ρ ≤ ρ0, there is full polarization of content, that is, y∗ = 0.

(ii) If ρ0 < ρ < ρ̃, there is partial polarization of content, that is, 0 < y∗ < ρ.

(iii) If ρ = ρ̃ content is balanced, that is, y∗(ρ) = ρ.

(iv) If ρ̃ < ρ < ρ1 there is partial moderation of content, that is, y∗ > ρ.

(v) If ρ ≥ ρ1, there is full moderation of content, that is, y∗ = 1.

Moreover, y∗ is strictly increasing in ρ for ρ0 < ρ < ρ1, i.e., ∂y∗

∂ρ
:= y∗ρ > 0.

We find that content filtering via forwarding behavior will tend to amplify one or other of the
middle (moderation y∗ > ρ) or the extreme (polarization y∗ < ρ) types of content. Moreover,
the strength of this amplification may result in either the middle/extremes fully crowding out the
other, resulting in either full moderation (y∗ = 1) or full polarization (y∗ = 0) in populations that
have a sufficiently high fraction of middle or extreme types respectively.

There are two sources of advantage at work in our model of content filtering that determine
whether the middle type of content is amplified (moderation) or the extreme type of content
is amplified (polarization). The first, preference advantage, is that individuals of each type
recommend content that is similar to their own type when they observe it. Hence, when there is
a greater fraction of individuals of that type in the population that content it is more likely to be
recommended. The second, pairwise comparison advantage, arises when an individual does not
observe content aligned with its own type. In that case the middle type of content has an advantage
in pairwise comparisons against either of the extremes.11 The combination of these two forces
determines whether content filtering results in moderation or polarization. These may work in the
same direction to favor the middle type (ρ > 1

3
) or in opposite directions (ρ < 1

3
). Indeed when

the population contains an even fraction of all types ρ = 1
3
, there is no preference advantage across

the types, so the pairwise advantage force leads the middle content to be amplified. Moreover,
the threshold composition of the population where content filtering is balanced must be at a point
where the two forces are working in opposite directions to offset each other, hence it is at a point
where there are relatively more extreme types (ρ̃ < 1

3
).

11Either extreme type of individual will choose to recommend the middle type of content over the alternative
extreme type of content. However a middle type individual is equally likely to recommend either extreme type of
content.
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Figure 1 illustrates how the distribution of preferences maps into the distribution of behavior,
where behavior reflects content recommendation patterns.12 The blue bars in Figure 1 represent
preference distributions, while the red bars correspond to content distributions. As shown in
the figure, the central position of the middle-type content in the product space leads to its
amplification when preferences are either concentrated or uniformly distributed. In contrast, when
the preference distribution is sufficiently dispersed—such that extreme preferences dominate—the
extreme content types may be amplified at the expense of the middle type.

Full polarization: Partial polarization:

L M R L M R

Balanced content:

L M R
Partial moderation: Full moderation:

L M R L M R

Figure 1: Preference distribution (blue bars) vs content distribution (red bars).

12Figure 1 is based on simulations using an exponential degree distribution (see equation (14) below) with
density parameter θ = 0.6. The values of the preference distribution parameter ρ corresponding to the five cases
are: ρ = 0.1 for full polarization; ρ = 0.12 for partial polarization; ρ = ρ̃ ≈ 0.147 for balanced content; ρ = 1/3 for
partial moderation; and ρ = 1/2 for full moderation.
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4.2 Comparative statics with respect to the degree distribution

Our broader goal is to understand how structural features of the social network affect whether
content filtering results in moderation or polarization. In particular,

• we analyze how increased network density affects the steady-state in general networks before
deriving sharper results by focusing on the exponential distribution;

• we investigate how a mean-preserving spread in the degree distribution affects polarization,
comparing the outcomes in more regular versus more dispersed (irregular) networks.

4.2.1 The impact of a denser network: General results

We define a denser network as one in which the degree distribution shifts in a way that the post-
shock distribution dominates the pre-shock distribution according to the MLR ordering. Formally,
consider a parametric family of degree distributions {pk(θ)}k∈N, indexed by a scalar parameter
θ ∈ [0, θ], where θ may be finite or infinite. We impose the following assumptions on the parametric
family {pk(θ)}:

Assumption 1. The family {pk(θ)} is ordered by the monotone likelihood ratio (MLR). That is,
for any k, the ratio pk(θ

′)
pk(θ)

is increasing in k whenever θ′ > θ.

We refer to θ as the network density parameter whereby higher values of θ correspond to
stochastically denser networks in the MLR sense.

The next two assumptions impose mild regularity conditions on the behavior of the distribution
{pk(θ)} as the density parameter θ approaches its extreme values: either a minimally connected
network as θ → 0, or a maximally connected network as θ → θ.

Assumption 2. As θ → 0, the degree distribution converges to that of a regular network in which
each individual has exactly one connection:

lim
θ→0

pk(θ) =

1, k = 1;

0, k ≥ 2.
(9)

As θ → θ, the network becomes infinitely dense in the sense that, for all n ∈ N,

lim
θ→θ

P[k̃ < n] = 0, (10)

where k̃ denotes the random degree of an individual drawn from the population.

Assumption 2 provides meaningful benchmarks at the two extremes of network density. As
θ → 0, the network becomes minimally connected, converging to a regular network where every
individual has only one connection. As the network becomes infinitely dense, θ → θ, everyone’s
number of connections diverges.
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Assumption 3. As θ → 0, the degree distribution admits the following local approximation:

p1(θ) = 1− λθ + o(θ), (11)

p2(θ) = λθ + o(θ), (12)

P[k̃ ≥ 3] = o(θ), (13)

for some constant λ > 0.

Assumption 3 offers a second-order approximation of the degree distribution in sparse networks,
capturing its local behavior as θ → 0. In this regime, the distribution is concentrated on degrees 1
and 2: most individuals have a single connection, while the probability of higher degrees vanishes
more rapidly. The parameter λ governs the initial rate at which the network begins to densify.
This assumption facilitates tractability of limit cases and helps characterize how small increases
in connectivity near θ = 0 influence aggregate behavior.

Proposition 2 characterizes the conditions on network density that result in full moderation
(part(i)) and full polarization (part(ii)). Finally, in part (iii), it establishes that content becomes
balanced as the network becomes dense.

Proposition 2. Consider a parametric family of degree distributions {pk(θ)} satisfying Assumptions
1-3. Then:

(i) For each distribution of preferences ρ ∈ (0, 1), there exists a threshold θ̂(ρ) such that in
sufficiently sparse networks there is full moderation:

θ < θ̂(ρ) ⇐⇒ y∗(θ) = 1 (full moderation).

Moreover, as preferences become extreme, the threshold approaches a sparse network, i.e.,
limρ→0 θ̂(ρ) = 0.

(ii) There is a threshold distribution of preferences ρ̂ < 1
3

such that, for all more extreme
preferences ρ < ρ̂, there exists a non-degenerate interval of network densities (θ1(ρ), θ2(ρ))

with 0 < θ1(ρ) < θ2(ρ) < θ such that there is full polarization:

θ ∈ (θ1(ρ), θ2(ρ)) =⇒ y∗(θ) = 0 (full polarization).

Moreover, as preferences become extreme, the lower bound for full polarization approaches
a sparse network, i.e., limρ→0 θ1(ρ) = 0, and the upper bound approaches a dense network,
i.e., limρ→0 θ2(ρ) = θ.

(iii) As the network becomes infinitely dense, the stable distribution of content converges to the
distribution of preferences in the population:

lim
θ→θ

y∗(θ) = ρ (balanced).
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Proposition 2 reveals the rich comparative statics that emerge in our model. These comparative
statics arise because network density affects both the absolute and relative strength of the preference
advantage and pairwise comparison advantage. When the distribution of preferences is sufficiently
extreme, these sources of advantage counteract one another. In sparse networks (θ < θ̂(ρ)), the
dominant force in our model is the pairwise-comparison advantage of the middle resulting in the
full moderation outcome (part (i)). Remarkably, this is true for all distributions of preferences
(ρ ∈ (0, 1)) indicating that network sparsity is sufficient to overcome any amount of preference
advantage. As the network becomes denser, the preference advantage becomes stronger relative
to the pairwise-comparison advantage resulting in a transition of the steady state from full
moderation to full polarization over the range of densities θ ∈

(
θ̂(ρ), θ1(ρ)

)
(through partial

moderation, balanced, and partial polarization steady states). For a range of densities θ ∈ (θ̂, θ1),
the preference advantage is sufficiently strong in both an absolute and relative sense to sustain
the full polarization outcome (part (ii)). Finally, as the network becomes sufficiently dense both
sources of advantage become weaker in an absolute sense and the steady state converges to the
balanced steady-state limθ→θ y

∗(θ) = ρ (part(iii)).
When the distribution of preferences in the population features a larger proportion of the

middle type (ρ > 1
3
), both sources of advantage favor moderation. In sufficiently sparse networks,

this leads to full moderation. However, as the network becomes denser, both advantages are
weakened, resulting in only partial moderation, with the steady state approaching a balanced
configuration.

When the preference advantage favors the extremes but is not strong enough to induce full
polarization (ρ̂ < ρ < 1

3
), the transition from full moderation in sparse networks to a balanced

outcome in dense networks may be non-monotonic, passing through steady states of partial
polarization. While we cannot provide general results for arbitrary network structures, the
next section offers a sharper characterization of the comparative statics under the exponential
distribution.

Finally, as preferences become increasingly extreme (ρ→ 0), both the right and left thresholds
for full moderation and full polarization — θ̂ and θ1, respectively — converge to zero: limρ→0 θ̂(ρ) =

limρ→0 θ1(ρ) = 0. This implies that the transition between full moderation and full polarization
occurs over an increasingly narrow range of network densities, highlighting that in sparse networks
with extreme preferences, the steady state can be highly sensitive to small changes in density.

Collectively, these results demonstrate that increases in network density can have non-monotonic
and sometimes dramatic effects on the information environment.13 In this way, our model reconciles
the conflicting empirical evidence discussed in the introduction: the echo-chamber view, which
suggests that social media drives individuals toward more homogeneous interactions, and the

13In the Online Appendix C, we provide a further illustration of the nonmonotone nature of the steady state
with respect to network density. We show how the change of three different degree distributions p0k, p

1
k, and p2k,

such that
{
p0k
}
≺FOSD

{
p1k
}
≺FOSD

{
p2k
}
, leads to partial moderation under

{
p0k
}
, full moderation under

{
p1k
}
,

and partial moderation again under
{
p2k
}
.
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weak-ties view, which argues that it instead exposes them to more diverse perspectives.

4.3 The impact of a denser network: Exponential distribution

The findings of Proposition 2 are robust in that they do not depend on a particular parametric
form of the degree distribution {pk(θ)}. However, to obtain sharper and more transparent results,
it is useful to consider specific parametric families. One such example is the exponential degree
distribution, given by

pk = (1− θ)θk−1, k ∈ N, (14)

where θ ∈ (0, 1) governs the network density.
This family satisfies Assumptions 1–3: As θ increases, the network becomes denser in the

monotone likelihood ratio (MLR) sense, and the limiting behavior is well-defined at both endpoints.
Thus, θ serves as a valid and analytically convenient network density parameter. The next
proposition provides a complete characterization of how polarization responds to network density
under exponential degree distributions.

Proposition 3. Assume that the degree distribution is exponential. Then:

(i) If ρ < 1
9
, there exists four thresholds 0 < θ̂(ρ) < θ̃(ρ) < θ1(ρ) < θ2(ρ) < 1 such that the

stable steady-state y∗(θ, ρ) satisfies:

θ ≤ θ̂(ρ) =⇒ y∗(θ, ρ) = 1 (full moderation),

θ̂(ρ) < θ < θ̃(ρ) =⇒ ρ < y∗(θ, ρ) < 1 (partial moderation),

θ = θ̃(ρ) =⇒ y∗(θ, ρ) = ρ (balanced),

θ̃(ρ) < θ < θ1(ρ) =⇒ 0 < y∗(θ, ρ) < ρ (partial polarization),

θ1(ρ) ≤ θ ≤ θ2(ρ) =⇒ y∗(θ, ρ) = 0 (full polarization),

θ > θ2(ρ) =⇒ 0 < y∗(θ, ρ) < ρ (partial polarization),

θ → 1 =⇒ y∗(θ, ρ) → ρ (balanced).

(ii) If 1
9
≤ ρ <

√
5 − 2 ≈ 0.236, then there exists thresholds θ̂(ρ) and θ̃(ρ) such that the stable

steady-state y∗(θ, ρ) satisfies:

θ ≤ θ̂(ρ) =⇒ y∗(θ, ρ) = 1 (full moderation),

θ̂(ρ) < θ < θ̃(ρ) =⇒ ρ < y∗(θ, ρ) < 1 (partial moderation),

θ = θ̃(ρ) =⇒ y∗(θ, ρ) = ρ (balanced),

θ > θ̃(ρ) =⇒ 0 < y∗(θ, ρ) < ρ (partial polarization),

θ → 1 =⇒ y∗(θ, ρ) → ρ (balanced).
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(iii) If ρ ≥
√
5−2, then there exists a threshold θ̂(ρ) such that the stable steady state corresponds to

full moderation, that is, y∗(θ, ρ) = 1 for all θ ≤ θ̂(ρ); decreases thereafter for θ > θ̂(ρ) (partial
moderation); and converges to the balanced steady-state ρ as the network gets infinitely dense,
that is, limθ→1 y

∗(θ) = ρ.

Proposition 3 provides a rich bifurcation structure of the stable steady-state behavior as a
function of the network density parameter θ. We see that in all cases sparse networks result
in full moderation and dense networks result in balanced steady-states. When the preference
advantage is not sufficiently in favor of the extremes (part (iii)), then, increasing network density
weakens the absolute strength of each source of advantage and there is a monotonic transition to
a balanced steady-state as the network becomes dense. When preference advantage is sufficiently
strong (parts (i) and (ii)), then, the transition is non-monotonic and includes a range of densities
where partial polarization arises. Finally, when the preference advantage is sufficiently large (part
(i)), there will also be a range of densities where full polarization arises.

Figure 2 illustrates these three cases and the threshold case ρ = 1
9
. Together, the panels in

Figure 2 underscore the non-monotonic relationship between connectivity and content that arises
when the preferences in the population are sufficiently extreme.

4.4 Impact of a mean-preserving spread

We now examine how a mean-preserving spread of the degree distribution affects the thresholds
for full moderation ρ0 and full polarization ρ1 in Proposition 1.

Proposition 4. There exists some ϵ > 0, a mean-preserving spread {p′k} of the degree distribution
{pk} in which p1 = p′1, and a mean preserving spread {p′′k} of {p′k} where p′′1 < p′1 + ϵ, such that:

(i) ρ0 decreases under both {p′k} and {p′′k}; and

(ii) ρ1 is unchanged under {p′k} and increases under {p′′k}.

Note that both p′k and p′′k are mean-preserving spreads of the original distribution pk. The
results in Proposition 4 show that increasing the dispersion of the degree distribution—via mean-
preserving spreads (subject to not increasing the probability of just one connection by too much)—will
expand the intermediate region of the parameter space that supports partial moderation and
polarization.

Mean-preserving spreads generate a more heterogeneous social environment, characterized by
a larger number of highly connected individuals (potential influencers) and marginally connected
individuals. This increased heterogeneity dampens the tendency of content filtering to converge
toward the extreme outcomes of full moderation or full polarization.
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(a) ρ = 0.1 (b) ρ = ρ̂ = 1/9

(c) ρ = 0.2 (d) ρ = 0.25

Figure 2: Equilibrium behavior y∗(θ) as a function of network density θ under exponential degree
distribution

5 Extensions

In this section, we present two extensions of our baseline model to demonstrate the robustness
of our main results. In Subsection 5.1, we allow agents to refrain from recommending their least
preferred content. In Subsection 5.2, we consider asymmetric distributions of preferences, and
consequently, asymmetric behavioral patterns.
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5.1 Allowing for no recommendation

Consider an extension of the baseline model in which agents have the option of remaining silent—that
is, making no recommendation. An M -type individual chooses silence at period t if and only if
none of their friends made a recommendation at period t−1; in other words, all their friends were
silent. An extreme-type agent (either L or R) chooses silence at period t if all of their friends at
t− 1 were either silent or recommended content that is two steps away from the agent’s preferred
type. This reflects the assumption that agents remain silent when faced with a non-empty set
of recommendations only if all such recommendations are two steps removed from their preferred
content. This situation never arises for M -types, since any recommendation—whether L or R—is
always only one step away from their ideal content.

Let yt denote the probability that a randomly chosen agent recommends M at period t, and let
st denote the probability that an agent chooses to remain silent (i.e., makes no recommendation)
at period t. By symmetry, the probability of recommending each type of extreme content is then
given by 1−yt−st

2
.

The state of society at period t is thus fully described by the vector (yt, st), which satisfies the
following constraints:

yt ≥ 0, st ≥ 0, yt + st ≤ 1.

The dynamical system is now given by

yt = ρ (1−G(1− yt−1)) + (1− ρ)

(
G

(
1 + yt−1 + st−1

2

)
−G

(
1− yt−1 + st−1

2

))
, (15)

st = ρG(st−1) + (1− ρ)G

(
1− yt−1 + st−1

2

)
. (16)

Compared to the benchmark model, where the dynamics are governed by equations (2) and (3),
the key difference is the introduction of the option to remain silent. This additional behavioral
choice results in a new equation, (16), that governs the evolution of silence in the population.

Let (y∗, s∗) be a steady-state equilibrium of the dynamical system defined by (15)–(16). A no-
silence equilibrium is a steady state in which all agents make a recommendation, that is, s∗ = 0. By
inspecting the system (15)–(16), it is straightforward to verify that the only no-silence equilibrium
is given by (y∗, s∗) = (1, 0), that is, we obtain no polarization since each agent recommends a type-
M content. Indeed, any other value of y∗ < 1 combined with s∗ = 0 would violate equation (16),
since the right-hand side would be strictly positive, contradicting the assumption that s∗ = 0.

A polarized steady-state equilibrium is an outcome in which no agent recommends the M -type
content, yet a strictly positive share of the population remains active. Formally, this corresponds
to y∗ = 0 and 1− s∗ > 0.

Proposition D1 in Online Appendix D.1 supports the robustness of our earlier findings: namely,
that polarization does not arise under high ρ, while full polarization emerges under low ρ. It shows
that, with the option of remaining silent, polarization becomes less likely to emerge than in the
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baseline model.
Proposition D2 in Online Appendix D.1, which can be viewed as a counterpart to Proposition 2,

characterizes how network density affects the degree of polarization. This proposition shows that
allowing for silence preserves the key non-monotonic relationship between network density and
polarization established in the baseline model.

Proposition D3 in Online Appendix D.1 refines Proposition D2 by fully characterizing the
unique stable equilibrium under an exponential degree distribution. Figure D4 in the Online
Appendix D.1 illustrates this characterization for θ = 0.8. The proposition reveals a key structural
insight: silence functions as a behavioral filter. Instead of compelling agents to recommend
misaligned content, it provides an exit option, thereby dampening polarization. More generally,
Proposition D3 and Figure D4 jointly demonstrate that introducing the option of silence narrows
the parameter space in which polarization can occur. Compared to the baseline model (Proposition 3),
the critical threshold ρ̂silent ≈ 0.0685 is lower than its baseline counterpart ρ̂ = 1/9 ≈ 0.1111.
This means that silence acts as a moderating force: it reduces the likelihood of individuals
recommending extreme content when no moderate content is available.

5.2 Allowing for asymmetry

Our second robustness check relaxes the assumption of symmetry in the distribution of extreme
agents. Specifically, let ϵ ∈

(
−1−ρ

2
, 1−ρ

2

)
denote the asymmetry parameter, where a positive

(negative) value of ϵ captures skewness toward right- (left-) oriented individuals. The resulting
distribution of agent types is given by:

Type L M R

Fraction 1−ρ
2

− ϵ ρ 1−ρ
2

+ ϵ

As a result, the fractions of L-type and R-type agents are no longer symmetric around the centrist
share ρ. When ϵ = 0, we recover the benchmark model with a symmetric distribution.

In what follows, we focus, without loss of generality, on the case ϵ > 0, which corresponds to a
right-skewed preference distribution in which R-type agents are more prevalent than L-types. The
case ϵ < 0 (left-skewed) is entirely analogous, as it constitutes the mirror image of the right-skewed
scenario. Let ℓt and rt denote the probabilities that a randomly selected agent recommends L-type
and R-type content, respectively, at time t. These two state variables fully characterize the state
of society at period t. The evolution of the system is governed by the following law of motion:

ℓt =

(
1− ρ

2
− ϵ

)
(1−G(1− ℓt−1)) + ρ

ℓt−1

ℓt−1 + rt−1

G(ℓt−1 + rt−1) +

(
1− ρ

2
+ ϵ

)
G(ℓt−1), (17)

18



rt =

(
1− ρ

2
+ ϵ

)
(1−G(1− rt−1)) + ρ

rt−1

ℓt−1 + rt−1

G(ℓt−1 + rt−1) +

(
1− ρ

2
− ϵ

)
G(rt−1). (18)

The second terms of the right-hand side of equations (17) and (18), given respectively by

ρ
ℓt−1

ℓt−1 + rt−1

G(ℓt−1 + rt−1) and ρ
rt−1

ℓt−1 + rt−1

G(ℓt−1 + rt−1),

reflect the following behavioral convention: if each friend of an M -type agent recommends either
L- or R-type content (and none recommend M -type), then the agent is indifferent and randomizes
uniformly across the observed recommendations. Specifically, if anM -type agent has k friends, j ≤
k of whom recommend L-type content while the remaining k−j recommend R-type, then the agent
adopts the L-type recommendation with probability j/k. The expression ℓt−1

ℓt−1+rt−1
G(ℓt−1 + rt−1)

thus represents the conditional probability that an M -type agent recommends L-type content.

As in Section 3, we define a non-polarized equilibrium as a steady state in which no agent
recommends extreme content (i.e., ℓ∗ = r∗ = 0), and a polarized equilibrium as one in which
no agent recommends M -type content.

Proposition D4 in Online Appendix D.2 characterizes how the steady-state equilibrium of
the system depends on ρ, the share of type M -agents, and the degree of asymmetry ϵ in the
population’s ideological distribution. It shows that even a small departure from symmetry in the
distribution of extreme agents significantly alters the long-run behavior of the system. When
the population becomes slightly more skewed toward R-type individuals (i.e., ϵ > 0), both the
range of parameters sustaining the non-polarized equilibrium and those sustaining the polarized
equilibrium become narrower.

Overall, Proposition D4 demonstrates that the range of ρ that supports full polarization or
full moderation shrinks under asymmetry, and that a larger interior region emerges. That is, as
the distribution becomes ideologically unbalanced (e.g., more R-types than L-types), the system
is less likely to settle in a non-polarized equilibrium or total polarization.

6 Concluding remarks

We have developed a simple model of content filtering on social media that illustrates how the
structure of social networks influences the diffusion of different types of ideological content. The
model yields rich behavior and offers insights into how connectivity fosters moderate versus
extreme content. We highlight the influence of a preference advantage and pairwise comparison
advantage in our model.

Our results show that the density of connections among individuals significantly influences the
steady state of the system. Remarkably, regardless of the population’s preference distribution, the
pairwise comparison advantage dominates in sparse networks resulting in full moderation. At the
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opposite extreme, dense networks dampen both sources of advantage, and the steady state aligns
with the population’s proportion of each type. Between these extremes, more complex effects arise
when preference and pairwise comparison advantage counterbalance each other. In particular, we
observe that the transition can (i) be non-monotonic, passing through partially and potentially
fully polarized steady states, and (ii) exhibit rapid shifts between a fully moderate and a fully
polarized steady state when type M -agents are scarce and the network remains relatively sparse.

Our findings compliment the existing empirical research on social media’s influence on recent
trends of populism and polarization. In contrast to this literature we show that even when the
composition of these connections is held constant in a population, but the frequency increases then
the process of content filtering may fundamentally shape the information environment, influencing
the emergence of moderate versus extreme content.

We also explore two robustness extensions. In the first, agents are allowed to abstain from
forwarding ideologically distant content, which acts as a moderating force but does not eliminate
polarization. In the second, we introduce asymmetry in the distribution of ideological types and
find that both full- and no-polarization outcomes become less robust, making partial polarization
more likely.

A promising direction for future research is to endogenize the network formation process.
Agents could strategically form connections based on ideological proximity or content alignment,
giving rise to endogenous echo chambers or ideological segregation. While such an extension would
offer deeper insights into the co-evolution of social fragmentation and polarization, it would also
entail greater analytical complexity.

Another potential extension is to incorporate homophily into the model. Specifically, with
probability α, agents would receive a recommendation from someone of the same type,14 and with
probability 1− α, from a randomly selected individual in the population. This framework would
allow us to examine how varying the degree of homophily (α) influences equilibrium outcomes.15

We leave these exciting avenues for future research.

14This could be generated by a social media algorithm, which analyzes user behavior and interactions to determine
which content is most relevant and engaging for each individual user.

15For instance, Enikolopov et al. (2024) find that homophilic connections leads to increased social media usage,
which increases polarization, as individuals became less connected across income strata and less likely to share the
same political opinions with others.
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Appendix: Proofs of all results in the main text

Proof of Proposition 1. Let us start with the following lemma, which will be useful later in
proving the uniqueness of a stable equilibrium.
Lemma 1.

(i) The function f (y, ρ) defined by (3) is strictly increasing for all y ∈ [0, 1].

(ii) Only one of the three mutually exclusive statements holds:

(iia) fyy > 0 ∀y ∈ (0, 1),

(iib) ∃!ŷ ∈ (0, 1), such that fyy ⋚ 0 ⇐⇒ y ⋚ ŷ,

(iic) fyy < 0 ∀y ∈ (0, 1).

Proof of Lemma 1. (i) By differentiating (3) with respect to y, we obtain:

fy (y, ρ) = ρG′ (1− y) + (1− ρ)

[
1

2
G′
(
1 + y

2

)
+

1

2
G′
(
1− y

2

)]
. (19)

Given that G′ is positive, fy (y, ρ) is also positive, which proves (i).

(ii) Equation (19) implies that fy (y, ρ) is convex with respect to y, since it is a convex
combination of three convex functions of y, that is, G′ (1− y), G′ (1+y

2

)
, and G′ (1−y

2

)
. Hence,

fyyy (y, ρ) > 0, ∀y ∈ (0, 1). Thus, we have:

fyy (0, ρ) ≥ 0 =⇒ alternative (ii.a);
fyy (0, ρ) < 0 < fyy (1, ρ) =⇒ alternative (ii.b);

fyy (1, ρ) ≤ 0 =⇒ alternative (ii.c).

This proves (ii) and completes the proof. □

We first prove that the stable steady state is unique. From the definition (3) of the f -function,
one can see that both y = 0 and y = 1 are solutions to the steady state condition (5); hence, they
are both steady states.

If the alternative (ii.a) from Lemma 1 prevails, the f -function lies below the 45◦-degree line
for all y ∈ (0, 1). Hence, no interior solutions exist. In this case, fy (0, ρ) < 1 < fy (1, ρ), and the
unique stable steady state is the full polarization solution y∗ = 0.

Similarly, if the alternative (ii.c) from Lemma 1 takes place, the f -function lies above the 45◦-
degree line for all y ∈ (0, 1). Again, no interior solutions exist. In this case, fy (0, ρ) > 1 > fy (1, ρ),
and the unique stable steady state is the no polarization solution, y∗ = 1.

If the alternative (ii.b) from Lemma 1 prevails, and fy (0, ρ, {pk}) < 1, then the full polarization
steady state is stable, that is,

fyy (1, ρ) > 0 =⇒ fy (1, ρ) > 1.
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Finally, if the alternative (ii.b) from Lemma 1 takes place, and fy (0, ρ) > 1, then the full
polarization steady state is unstable and so is the no-polarization state, since

fyy (1, ρ) > 0 =⇒ fy (1, ρ) > 1.

Hence, f (y, ρ)− y > 0 in the vicinity of y = 0, and f (y, ρ)− y < 0 in the vicinity of y = 1. By
the intermediate value theorem, there must be y∗ ∈ (0, 1) which solves the steady state condition
(5). Furthermore, as f (y, ρ) only has one inflection point, the interior solution y∗ is unique.
Finally, we have:

fy (0, ρ, {pk}) > 1 ⇐⇒ ∂

∂y
[f (y, ρ, {pk})− y]

∣∣∣∣
y=0

> 0;

fy (1, ρ, {pk}) > 1 ⇐⇒ ∂

∂y
[f (y, ρ, {pk})− y]

∣∣∣∣
y=1

> 0.

Hence, it must be that

∂

∂y
[f (y, ρ, {pk})− y]

∣∣∣∣
y=y∗

< 0 =⇒ fy (y
∗, ρ, {pk}) < 1.

Thus, the interior solution y∗ is the unique stable solution.
Next, we prove that y∗ρ > 0 when ρ0 < ρ < ρ1. Differentiating both sides of the steady state

condition (5) with respect to ρ, we obtain:

y∗ρ =
fρ (y, ρ)

1− fy (y, ρ)

∣∣∣∣
y=y∗

.

Since fy (y∗, ρ) < 1, due to the stability of the interior steady state, we have:

sign
{
y∗ρ
}
= sign {fρ (y, ρ)}|y=y∗ .

From (3), and from G (1) = 1,

fρ (y, ρ) =

[
G (1)−G

(
1 + y

2

)]
−
[
G (1− y)−G

(
1− y

2

)]
.

Since 1− 1+y
2

= (1− y)− 1−y
2

= 1−y
2

, we have G (1)− G
(
1+y
2

)
> G (1− y)− G

(
1−y
2

)
, due to

convexity of G(·). Hence, fρ (y, ρ) > 0 =⇒ dy∗(ρ)
dρ

> 0.

It remains to prove that equation y∗(ρ) = ρ has a unique interior solution ρ̃ ∈ (ρ0, ρ1), such
that ρ̃ < 1

3
and y∗(ρ) ⋚ ρ⇐⇒ ρ ⋚ ρ̃. From dy∗(ρ)

dρ
> 0 for every ρ ∈ (ρ0, ρ1), and from

lim
ρ→ρ0

y∗(ρ) = 0, lim
ρ→ρ1

y∗(ρ) = 1.

we infer that ρ → y∗(ρ) is a bijective mapping which maps (ρ0, ρ1) onto (0, 1). Hence, it has a
single-valued inverse mapping y → ϱ(y), which maps (0, 1) onto (ρ0, ρ1). This inverse mapping
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can be written explicitly by solving (5) w.r.t. ρ:

ρ = ϱ(y) :=
y −

[
G
(
1+y
2

)
−G

(
1−y
2

)]
1−G(1− y)−

[
G
(
1+y
2

)
−G

(
1−y
2

)] . (20)

Using the l’Hospital’s rule, it is readily verified that ϱ(y) satisfies

lim
y→0

ϱ(y) = ρ0, lim
y→1

ϱ(y) = ρ1.

Also, from ϱ(·) = y∗−1(·) and y∗′(·) > 0, it follows that ϱ′(·) > 0. Thus, the unique stable
steady state y∗(ρ) can be written as follows:

y∗(ρ) =


0, ρ ≤ ρ0;

ϱ−1(ρ), ρ0 < ρ < ρ1;

1, ρ > ρ1.

In geometric terms, existence and uniqueness of ρ̃ means that the curve y = ϱ−1(ρ) intersects
only once the 45◦-line on the (ρ, y)-plane. Or, equivalently, that the curve given by ρ = ϱ(y)

intersects only once the 45-degree line on the (y, ρ)-plane, i.e., that the equation y = ϱ(y) has a
unique solution. Using the definition (20) of ϱ(y), one can simplify the equation y = ϱ(y) to:

G(1− y)

1− y
=
G
(
1+y
2

)
−G

(
1−y
2

)
y

. (21)

Because G(·) is a convex function, the LHS of (21), G(1−y)
1−y

, increases w.r.t. 1 − y, hence
decreases w.r.t. y. Similarly, because numerator of the RHS of (21) is convex in y, the RHS
increases w.r.t. y. Therefore, (21) has a unique solution =⇒ y = ϱ(y) has a unique solution =⇒
y∗(ρ) = ρ has a unique interior solution ρ̃ ∈ (ρ0, ρ1). That y∗(ρ) ⋚ ρ ⇐⇒ ρ ⋚ ρ̃ follows from
combining the uniqueness of ρ̃ with the following inequalities:

0 = y∗(ρ0) < ρ0 < ρ̃ < ρ1 < y∗(ρ1) = 1.

It remains to prove that ρ̃ < 1
3
, or, equivalently, that y∗ (ρ̃) < 1

3
. Because G(·) is convex, the

inequality

G (c)−G(a)

c− a
<
G (c)−G (b)

c− b
,

holds for any a, b, c satisfying 0 ≤ a < b < c ≤ 1. By setting a = 0, b = 1
3
, and c = 2

3
, we get:

G
(
2
3

)
−G(0)

2
3
− 0

<
G
(
2
3

)
−G

(
1
3

)
2
3
− 1

3

,

which can be equivalently rewritten as
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G
(
1− 1

3

)
1− 1

3

<
G
(

1+ 1
3

2

)
−G

(
1− 1

3

2

)
1
3

. (22)

Observe that the LHS/RHS of (22)) is the LHS/RHS of (21) evaluated at y = 1
3
. Since

y∗ (ρ̃) is the unique solution to (21), and the LHS/RHS of (21) decreases/increases, it follows that
y∗ (ρ̃) < 1

3
, hence ρ̃ < 1

3
. This completes the proof. □

Proof of Proposition 2

We will need the following Lemma.

Lemma 2. Under Assumptions 1-3, ρ1(θ) increases with θ, and

lim
θ→0

ρ1(θ) = 0 (23)

lim
θ→θ

ρ1(θ) = 1. (24)

Proof of Lemma 2. From Assumption 2, limθ→θ µ(θ) → ∞, hence (24) follows immediately
from (7). Next, from Assumption 3, we get, under θ → 0

µ(θ) = 1 + λθ + o(θ) =⇒ ρ1(θ) =
o(θ)

θ
,

which implies (23).

To prove that ρ′1(θ) > 0, let us first rewrite (7) as follows:

ρ1(θ) =

µ(θ)−1
1−p1(θ)

− 1

µ(θ)−1
1−p1(θ)

+ 1
,

where the RHS is a monotone transformation of µ(θ)−1
1−p1(θ)

, hence

ρ′1(θ) > 0 ⇐⇒ d

dθ

[
µ(θ)− 1

1− p1(θ)

]
> 0 ⇐⇒ µ′(θ)

µ(θ)− 1
+

p′1(θ)

1− p1(θ)
> 0.

Let us rewrite the expression µ′(θ)
µ(θ)−1

+
p′1(θ)

1−p1(θ)
, which we need to sign, as follows:

µ′(θ)

µ(θ)− 1
+

p′1(θ)

1− p1(θ)
=

∞∑
k=1

p′k(θ)

pk(θ)
ak(θ), (25)

where the coefficinets ak(θ) are defined by

ak(θ) :=

0, k = 1;(
k−1

µ(θ)−1
− 1

1−p1(θ)

)
pk(θ), k ≥ 2.

(26)
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Representation (25) – (26) is readily verified using the following identities:

µ′(θ)

µ(θ)− 1
=

∑∞
k=1(k − 1)p′k(θ)∑∞
k=1(k − 1)pk(θ)

,

p′1(θ)

1− p1(θ)
= −

∑∞
k=1(1− δ1k)p

′
k(θ)∑∞

k=1(1− δ1k)pk(θ)
,

where δ1k is the Kronecker’s delta. The sequence {ak(θ)} defined by (26) satisfies the following
two properties. First,

∞∑
k=1

ak(θ) = 0.

Second, as k increases, ak(θ) changes sign only once, from "−" to "+":

∃!k0 > 2 : ak(θ) > 0 ⇐⇒ k > k0.

Let us define:
A := −

∑
k≤k0

ak(θ) =
∑
ℓ>k0

aℓ(θ) > 0

and restate (25) as follows:

µ′(θ)

µ(θ)− 1
+

p′1(θ)

1− p1(θ)
=

∑
ℓ>k0

p′ℓ(θ)

pℓ(θ)
aℓ(θ)−

∑
k≤k0

p′k(θ)

pk(θ)
(−ak(θ))

= A

[∑
ℓ>k0

p′ℓ(θ)

pℓ(θ)

aℓ(θ)

A
−
∑
k≤k0

p′k(θ)

pk(θ)

(
−ak(θ)

A

)]

> A

[
inf
ℓ>k0

{
p′ℓ(θ)

pℓ(θ)

}
− sup

k≤k0

{
p′k(θ)

pk(θ)

}]
> 0,

where the last inequality follows from Assumption 1. Indeed, as θ respects the MLR ordering,

ℓ > k =⇒ p′ℓ(θ)

pℓ(θ)
>
p′k(θ)

pk(θ)
=⇒ inf

ℓ>k0

{
p′ℓ(θ)

pℓ(θ)

}
> sup

k≤k0

{
p′k(θ)

pk(θ)

}
.

This proves that ρ′(θ) > 0, and completes the proof. □

We now proceed with the proof of Proposition 2.

(i) From Lemma 2, ρ1(θ) increases from 0 to 1 as θ increases from 0 to θ. Hence, the equation
ρ1(θ) = ρ has the unique solution θ̂(ρ) w.r.t. θ for each ρ ∈ (0, 1), and

ρ ⋛ ρ1(θ) ⇐⇒ θ ⋚ θ̂(ρ).

Also,
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lim
θ→0

ρ1(θ) = 0 =⇒ lim
ρ→0

θ̂(ρ) = 0.

This proves (i).

(ii) From Lemma B1 in the Online Appendix B, ρ0(θ) < ρ1(θ); hence, limθ→0 ρ0(θ) = 0. Also,
from (6), limθ→θ ρ0(θ) = 0 since limθ→θ µ(θ) = ∞. Define16

ρ̂ := max
θ∈[0,θ]

ρ0(θ) ∈ (0, 1) .

If ρ < ρ̂, the equation ρ0(θ) = ρ has at least two distinct roots. Let θ1(ρ) and θ2(ρ) > θ1(ρ) be,
respectively, the least and the second least of these roots. Clearly, θ1(ρ) > θ̂(ρ), as ρ1(θ) > ρ0(θ).
Furthermore, ρ < ρ0(θ)∀ θ ∈ (θ1(ρ), θ2(ρ)). Combinig this with Proposition 1(i), we get:

θ ∈ (θ1(ρ), θ2(ρ)) =⇒ y∗(θ) = 0,

which means full polarization. Also,

lim
θ→0

ρ0(θ) = 0 =⇒ lim
ρ→0

θ1(ρ) = 0;

lim
θ→θ

ρ0(θ) = 0 =⇒ lim
ρ→0

θ2(ρ) = θ.

It remains to prove that ρ̂ < 1/3. By Proposition 1, there is a threshold ρ̃(θ) separating
polarization and moderation, such that 1/3 > ρ̃(θ) > ρ0(θ) ∀ θ ∈ (0, θ). Hence, ρ̂ < 1/3. This
proves (ii).17

(iii) The result follows immediately if we set θ → θ and notice that, from Assumption 2,
limθ→θG(x, θ) = 0 ∀x ∈ (0, 1). Hence the RHS in (5) goes to ρ ∀y ∈ (0, 1). This proves (iii) and
completes the proof. □

Proof of Proposition 3

The generating function of the exponential distribution (14) is given by:

G(x) =
(1− θ)x

1− θx
,

where θ ∈ (0, 1) is the density parameter. Plugging this generating function into (3) and solving
the steady-state condition (5), it is readily verified that the closed form for the stable steady-state

16Strictly speaking, this definition of ρ̂ only makes sense if θ < ∞. If θ = ∞, one should define ρ̂ as the maximum
of ρ0(θ) over a sufficiently large compact interval Θ ⊂ R+, such that ρ0(θ) is sufficiently small beyond that interval.
Such an interval always exists since limθ→0 ρ0(θ) = limθ→θ ρ0(θ) = 0.

17If the equation ρ0(θ) = ρ has more than two roots, there will be multiple switches between partial polarization
and full polarization as θ grows. We have ruled out this opportunity for the special case of the exponential
distribution (see Proposition 3) but not in general.
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equilibrium y∗(θ, ρ) is given by

y∗(θ, ρ) = max {0,min {1, ỹ(θ, ρ)}} ,

where

ỹ(θ, ρ) :=

√
(1− ρ− 2θ)2 + 16ρ (1− θ)− (1− ρ)

2θ
. (27)

The function ỹ(θ, ρ) defined by (27) is quasiconvex w.r.t. θ over (0, 1). To see this, observe
that the equation ỹ(θ, ρ) = y cannot have more than two solutions in (0, 1) for any y ∈ R. Indeed,
using (27), the equation ỹ(θ, ρ) = y can be equivalently restated as

(1− ρ− 2θ)2 + 16ρ (1− θ)− (2yθ + 1− ρ)2 = 0,

which is a quadratic equation w.r.t. θ, hence it has at most two real solutions. Furthermore, by
setting θ → 0 and θ → 1 in the RHS of (27), we get:

lim
θ→0

ỹ(θ, ρ) = +∞, lim
θ→1

ỹ(θ, ρ) = ρ < +∞.

Hence, ỹ(θ, ρ) is U-shaped w.r.t. θ over (0, 1) if and only if limθ→1 ỹθ(θ, ρ) > 0, and is decreasing
otherwise.

We now prove statements (i)-(iii).
(i) Assume ρ < 1

9
. Then, from (27), equation ỹ(θ, ρ) = 0 has two distinct roots, 0 < θ1(ρ) <

θ2(ρ) < 1, which can be expressed in closed form as

θ1,2(ρ) =
1

2
+

3

2

[
ρ∓

√
(1− ρ)

(
1

9
− ρ

)]
.

It then follows from the quasi-convexity of ỹ(θ, ρ) that

y∗(θ, ρ) = 0 ⇐⇒ θ1(ρ) ≤ θ ≤ θ2(ρ).

Furthermore, one can show that equation ỹ(θ, ρ) = ρ has two solutions w.r.t. θ. One of those
is θ = 1, which implies limθ→1 y

∗(θ, ρ) = ρ, while the other solution is interior and is given by

θ̃(ρ) :=
4ρ

1− ρ2
∈ (0, 1)︸ ︷︷ ︸

because ρ< 1
9

. (28)

Thus, from the quasi-convexity of ỹ(θ, ρ), we have:

y∗(θ, ρ) ⋛ ρ ⇐⇒ θ ⋚ θ̃(ρ).
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Finally, let us define θ̂(ρ) as the unique solution of the equation ỹ(θ, ρ) = 1 w.r.t. θ:

θ̂(ρ) :=
2ρ

1 + ρ
. (29)

From the quasi-concavity of ỹ(θ, ρ), it follows that

y∗(θ, ρ) = 1 ⇐⇒ θ ≤ θ̂(ρ).

Collecting the results obtained above and using quasi-convexity of ỹ(θ, ρ) proves (i).

(ii) Assume now that 1
9
< ρ <

√
5− 2. Then, ỹ(θ, ρ) > 0 ∀ θ(0, 1). Also, we have:

lim
θ→0

ỹθ(θ, ρ) = +∞, lim
θ→1

ỹθ(θ, ρ) = 1− ρ− 4ρ

1 + ρ
> 0.

Thus, ỹ(θ, ρ) has an interior minimizer w.r.t. θ, hence it varies non-monotonically.18 The
thresholds θ̃(ρ) and θ̂(ρ) are given by (28) – (29). Note that, from (28),

θ̃(ρ) < 1 ⇐⇒ ρ <
√
5− 2.

This proves (ii).
(iii) Finally, assume that ρ ≥

√
5− 2. In this case, ỹ(θ, ρ) > 0 ∀θ(0, 1). Also, we have:

lim
θ→1

ỹθ(θ, ρ) = 1− ρ− 4ρ

1 + ρ
≤ 0.

Thus, ỹ(θ, ρ) monotonically decreases from 1 to ρ, as θ varies from θ̂(ρ) to θ = 1. The threshold
θ̂(ρ) is given by (29). This proves (iii) and completes the proof. □

Proof of Proposition 4

First, from (6) one can immediately observe that ρ0 is decreasing in ψ = E[k(1/2)k−1]. The
expression k(1/2)k−1 is convex for k ≥ 2, hence, the mean-preserving spread {p′k} (where p′1 = p1)
leads to an increase in ψ, hence to a decrease in ρ0. By continuity, one can also construct a mean-
preserving spread {p′′k} of {p′k} that has the same effects provided p′′1 does not increase by too
much (< ϵ). Second, one can readily observe from (7) that ρ1 is increasing in p1 and is otherwise
unaffected by a mean-preserving spread. Hence, any mean-preserving spread that increases the
value of p1 will increase ρ1. This completes the proof. □

18When ρ = 1
9 , ỹ(θ, ρ) = 0 at θ = 2

3 , which is the minimizer of ỹ(θ, ρ) and its tangency point with the horizontal
axis. Thus, as ρ ↗ 1

9 , the interval of full polarization shrinks to a single point.
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Online Appendix: Additional results and formal propositions

for the extensions

A Verifying ρ0 ≤ ρ1

It is readily verified that µ+ p1 = E
[
max

{
k̃, 2
}]

≥ 2, with ">" if pk > 0 for some k ≥ 3. Hence
µ − 1 ≥ 1 − p1. Furthermore, from Lemma B1, µ + p1 − 2 ≥ 2 (1− ψ) . Hence, the following
inequality holds:

(µ+ p1 − 2) (µ− 1) ≥ 2 (1− ψ) (1− p1) .

Or, after equivalent transformations and using (6) – (7):

ρ0 =
1− ψ

µ− ψ
≤ µ+ p1 − 2

µ− p1
= ρ1.

with "<" if pk > 0 for some k ≥ 3. This completes the proof. □

B A useful Lemma

Lemma B1. For any degree distribution {pk} over N satisfying µ < ∞, the following inequality
holds

µ+ p1 + 2ψ ≥ 4, (B.1)

with “>” if pk > 0 for some k ≥ 3, i.e., if the fraction of individuals having at least three friends
is positive.

Proof of Lemma B1. We have:

µ+ p1 = E
[
max

{
k̃, 2
}]

;

ψ = E

[
k̃

(
1

2

)k̃−1
]
.

Hence, (B.1) will follow if we show that the inequality

max {k, 2}+ k

(
1

2

)k−2

≥ 4 (B.2)

holds for all k ∈ N, with ">" for k ≥ 3. For k ∈ {1, 2}, (B.2) holds with "=". For k = 3, the LHS
of (B.2) equals 9

2
> 4, hence (B.2) holds with ">". Finally, for k ≥ 4, we have:

A1



max {k, 2}+ k

(
1

2

)k−2

= k

(
1 +

(
1

2

)k−2
)
> k ≥ 4.

This completes the proof. □

C Multiple switches between partial polarization and no-

polarization under an FOSD shock

In this section, we show how to develop examples of the following sort: there are three degree
distributions, {p0k}, {p1k}, and {p2k}, satisfying

{
p0k
}
≺FOSD

{
p1k
}
≺FOSD

{
p2k
}
,

and such that there is partial polarization under {p0k}, no polarization under {p1k}, and partial
polarization again under {p2k}. To see this, let us arbitrarily choose {p0k}, with the only restrictions
that p01 > 0, and p0k > 0 for some k ≥ 3. Let ρ be slightly below ρ1 under {p0k}. Let us choose
{p1k} as follows:

p1k =


p0k − ϵ, k = 1;

p0k + ϵ, k = 2;

p0k, k ≥ 3.

It is readily verified that such a shock leads to a reduction of ρ1 = µ+p1−2
µ+p1−2p1

, since µ+p1 does not
change while p1 decreases. Next, let us choose {p2k} by transferring some mass of {p1k} rightwards,
but so that P

[
k̃ = 1

]
remains unchanged, i.e., p11 = p21. Then, one can see that ρ1 increases, since

it is an increasing function of µ. In particular, we can construct these FOSD-respecting shocks so
that:

ρ1
({
p2k
})

= ρ1
({
p0k
})

< ρ < ρ1
({
p1k
})
.

Thus, two consecutive FOSD-respecting changes in the degree distribution can lead, first, to
switching from partial polarization to no polarization, and then back to partial polarization. This
is another illustration of social dynamics being highly non-monotone with respect to the network
density.

D Extensions: Formal results

D.1 Allowing for no recommendation

In this section, we derive a series of formal results when we allow for no recommendation.
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D.1.1 Full silence is never stable

The full silence equilibrium is the one where no one is active:

(y∗, s∗) = (0, 1) .

In this steady state, the Jacobian (D.3) takes the form

 G′(1) 0

−1− ρ

2
G′ (1)

(
ρ +

1− ρ

2

)
G′ (1)

 ,

hence the eigenvalues of the Jacobian are:

λ1 = G′(1), λ2 =

(
ρ +

1− ρ

2

)
G′ (1) .

As λ1 = G′(1) > 1, the full silence equilibrium is never a stable outcome. This completes the
proof. □

D.1.2 Other results

Proposition D1. Assume that extreme-type individuals abstain from making a recommendation
rather than endorsing content two steps away from their preference and that M-type individuals
remain silent at period t if and only if none of their friends made a recommendation at period
t− 1. Then, polarization becomes less likely than in the baseline model, in the following sense:

(i) The non-polarized equilibrium (y∗, s∗) = (1, 0) is stable if and only if ρ > ρsilent1 , where the
threshold ρsilent1 is strictly lower than in the baseline model, that is, 0 ≤ ρsilent1 < ρ1.

(ii) In any polarized equilibrium, a strictly positive fraction of the population abstains from
recommending content, that is, s∗ > 0.

(iii) The polarized equilibrium (y∗ = 0, 1− s∗ > 0) is stable if and only if ρ < ρsilent0 , where the
upper bound ρsilent0 is lower than in the baseline model, that is, ρsilent0 < ρ0.

Proof of Proposition D1

From (15)-(16), the steady-state conditions are:

y = ρ (1−G(1− y)) + (1− ρ)

(
G

(
1 + y + s

2

)
−G

(
1− y + s

2

))
; (D.1)

s = ρG(s) + (1− ρ)G

(
1− y + s

2

)
. (D.2)
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The Jacobian evaluated at a steady state (y∗, s∗) is given by:

J(y∗, s∗) =

(
ρG′(1− y∗) + 1−ρ

2

(
G′ (1+y∗+s∗

2

)
+G′ (1−y∗+s∗

2

))
1−ρ
2

(
G′ (1+y∗+s∗

2

)
−G′ (1−y∗+s∗

2

))
−1−ρ

2
G′ (1−y∗+s∗

2

)
ρG′ (s∗) + 1−ρ

2
G′ (1−y∗+s∗

2

) )
.

(D.3)
(i) The no-polarization case is an equilibrium (y∗, s∗), which satisfies y∗ + s∗ = 1 (everyone

either recommends M -type content or is inactive) and 1−s∗ > 0 (the fraction of active individuals
is positive). Using the steady-state conditions, it is readily verified that there is only one such
equilibrium given by:

(y∗, s∗) = (1, 0) .

Plugging (y∗, s∗) = (1, 0) into the expression (D.3) for the Jacobian evaluated at the steady
state, we get the Jacobian J (1, 0) evaluated at the non-polarized equilibrium:

J (1, 0) =


(
ρ+ 1−ρ

2

)
p1 +

1−ρ
2
µ 1−ρ

2
(µ− p1)

−1−ρ
2
p1

(
ρ+ 1−ρ

2

)
p1

 .

The trace and the determinant of J(1, 0) are given, respectively, by:

tr (J(1, 0)) = ρp1 +
1− ρ

2
µ+ p1;

det (J(1, 0)) =

(
ρp1 +

1− ρ

2
µ

)
p1.

From the Vieta theorem, the eigenvalues of J(1, 0) are given by:

λ1 = ρp1 +
1− ρ

2
µ;

λ2 = p1.

The no-polarization equilibrium is stable iff |λi| < 1 for i = 1, 2, which in turn holds iff the
following condition holds:

ρ > ρsilent1 :=

0, µ ≤ 2;
µ
2
−1

µ
2
−p1

, µ > 2.
(D.4)

It is readily verified that 0 ≤ ρsilent1 < ρ1, where ρ1 is the lower bound from the baseline model
given by (7). This proves (i).

(ii) The steady-state condition obtained from (15) holds for y∗ = 0 and for every s∗ ∈ [0, 1],
hence it can be disregarded. The steady-state condition obtained from (16) becomes under y∗ = 0:

s = ρG(s) + (1− ρ)G

(
1 + s

2

)
. (D.5)
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Because the RHS of (D.5) is an increasing and convex function of s, positive at s = 0 and equal
to one at s = 1, (D.5) has a non-trivial solution s∗ < 1 if and only if the slope of the RHS exceeds
one: (

ρ+
1− ρ

2

)
G′ (1) > 1,

or, equivalently,
µ >

2

1 + ρ
.

As G
(
1
2

)
> 0, it is always true that, whenever s∗ is well defined, it is strictly positive. This

proves (ii).

(iii) Evaluating the Jacobian given by (D.3) at (0, s∗), we get
ρG′(1) + (1− ρ)G′ (1+s∗

2

)
0

−1−ρ
2
G′ (1+s∗

2

)
ρG′(s∗) + 1−ρ

2
G′ (1+s∗

2

)
 ,

its eigenvalues being λ1 = ρG′(1)+ (1− ρ)G′ (1+s∗

2

)
and λ2 = ρG′(s∗)+ 1−ρ

2
G′ (1+s∗

2

)
. It is readily

verified that λ1 > λ2 > 0. Hence, the stability condition for the polarized equilibrium is λ1 < 1.
This holds if ρ is sufficiently small and G′ (1+s∗

2

)
< 1 (which occurs if, for example, the network is

sufficiently dense, hence G′(·) is close to zero almost everywhere). If both these conditions hold,
we get

polarized equilibrium is stable ⇐⇒ ρ < ρsilent
0 :=

1−G′ (1+s∗

2

)
G′(1)−G′

(
1+s∗

2

) .
Observe that the threshold fraction ρsilent

0 of middle-oriented individual for the polarized equilibrium
to be stable is lower in the case where silence is an option than in the baseline case. Indeed, for
the baseline case the threshold ρ0 is given by (6), and we get:

ρsilent
0 =

1−G′ (1+s∗

2

)
G′(1)−G′

(
1+s∗

2

) < 1−G′ (1
2

)
G′(1)−G′

(
1
2

) = ρ0.

This completes the proof. □

Proposition D2. Let {pk(θ)} be a family of degree distributions satisfying Assumptions 1–3.
Then:

(i) For sparse networks (i.e., θ close to zero), the non-polarized equilibrium is stable, and no
non-trivial polarized equilibrium exists.

(ii) There exists a threshold ρ̂ ∈ (0, 1) such that, for all ρ < ρ̂, there exist parameters θ1 and θ2
with 0 < θ1 < θ2 < θ satisfying:

θ1 < θ < θ2 =⇒ y∗(θ) = 0 and 1− s∗(θ) > 0 (full polarization).

A5



(iii) As θ → θ, the equilibrium converges to the non-polarized outcome:

(y∗(ρ, θ), s∗(ρ, θ)) → (ρ, 0).

Proof of Proposition D2

(i) The polarized equilibrium fails to exist if

µ(θ) ≤ 2

1 + ρ
=⇒ θ ≤ µ−1

(
2

1 + ρ

)
.

This proves non-existence of a polarized equilibrium for very sparce networks. The stability of
the non-polarized equilibrium follows from Proposition D1(i) and Lemma 2. This proves (i)

(ii) We proceed in three steps.

Step 1: defining ρ̂. Let us define ρ̂ as follows:

ρ̂ := sup
θ:µ(θ)>2

 1−Gx

(
1+s(θ)

2
, θ
)

µ(θ)−Gx

(
1+s(θ)

2
, θ
)
 ,

where s(θ) ∈ (0, 1) is the interior solution of the following fixed point condition:

s = G

(
1 + s

2
, θ

)
.

It is readily verified that s(θ) is well defined iff µ(θ) = Gx (1, θ) > 2. Furthermore, from
Gx (·, θ) > 0, we have:

G

(
1 + s

2
, θ

)
> G (s, θ) ∀s ∈ (0, 1) ,

hence s∗(ρ, θ) < s(θ,and, from Gxx (·, θ) > 0,

Gx

(
1 + s∗(ρ, θ)

2
, θ

)
< Gx

(
1 + s(θ)

2
, θ

)
.

Step 2: proving that ρ̂ > 0. As the denominator in
1−Gx( 1+s(θ)

2
,θ)

µ(θ)−Gx( 1+s(θ)
2

,θ)
is unambiguously positive

whenever s(θ) is well defined, it suffices to show that 1−Gx

(
1+s(θ)

2
, θ
)
> 0 for a non-degenerate

domain of values of θ. This follows immediately from the following considerations:

limθ→θG (·, θ) = 0 and limθ→θGx (·, θ) = 0

⇓ ⇓
limθ→θ s(θ) = 0 =⇒ limθ→θGx

(
1+s(θ)

2
, θ
)
= 0.

Thus, 1−Gx

(
1+s(θ)

2
, θ
)
> 0 when θ is large enough, hence ρ̂ > 0.
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Step 3: existence of (θ1, θ2). We now prove that, for any ρ < ρ̂, there is a non-degenerate
interval (θ1, θ2) such that

θ1 < θ < θ2 =⇒ y∗(θ) = 0 and 1− s∗(ρ, θ) > 0.

Let us fix some θ0 ∈
(
0, θ
)
, such that

ρ <
1−Gx

(
1+s(θ0)

2
, θ0

)
µ(θ0)−Gx

(
1+s(θ0)

2
, θ0

) .
Such θ0 exists because

1−Gx( 1+s(θ)
2

,θ)
µ(θ)−Gx( 1+s(θ)

2
,θ)

is a continuous function which takes on all values in

(0, ρ̂), hence it also takes on all values in (ρ, ρ̂). Furthermore, because the inequality is strict,
there is an open neighborhood (θ1, θ2) of θ0, such that

ρG′
x(1, θ) + (1− ρ)G′

x

(
1 + s (θ)

2
, θ

)
< 1

for all θ ∈ (θ1, θ2).
As shown above, s∗ (ρ, θ) < s (θ) hence

ρG′
x(1, θ) + (1− ρ)G′

x

(
1 + s∗ (ρ, θ)

2
, θ

)
< 1 (D.6)

for all θ ∈ (θ1, θ2). This proves (ii).

(iii) The result follows immediately if we set θ → θ in (15) – (16) and notice that, from
Assumption 2, limθ→θG(x, θ) = 0. This proves (iii) and completes the proof. □

Proposition D2 shows that polarization cannot arise in very sparse or very dense networks.
In sparse networks (part (i)), individuals have few social contacts and are unlikely to encounter
extreme content with enough frequency to adopt or propagate it. As a result, moderate behavior
dominates: individuals tend to recommend centrist content, and the society avoids polarization.
As networks become denser (part (ii)), individuals are more likely to be exposed to content from
like-minded peers, enabling reinforcement dynamics and the formation of echo chambers. This
facilitates behavioral polarization: a large share of the population recommends only extreme
content, while others abstain from engagement. The presence of silence as an option further
amplifies this dynamic, as individuals prefer to withdraw rather than recommend content far from
their preferences. In very dense networks (part (iii)), the diversity of content exposure increases
again, weakening echo chamber effects. Individuals encounter a wider mix of views, including
moderate ones, which restores balance and leads to convergence toward a centrist, non-polarized
equilibrium.

Interior equilibria are generally difficult to characterize analytically under an arbitrary degree
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distribution. To gain sharper insights, in Proposition D3, we restrict attention to the exponential
degree distribution defined in (14), parameterized by the density parameter θ. For this family, we
can derive closed-form threshold values that determine the equilibrium structure.

Proposition D3. Define ρsilent0 (θ) and ρsilent1 (θ) as follows:

ρsilent0 (θ) :=


0, θ ≤ 0.75;

solves ρ
1

1− θ
+ (1− ρ)

16(1− θ)

(2− θ +
√

4ρ− 4ρθ + θ2)2
= 1, θ > 0.75;

(D.7)

ρsilent1 (θ) :=


0, θ ≤ 0.5;

2θ − 1

4θ − (2θ2 + 1)
, θ > 0.5.

(D.8)

Then, under the exponential degree distribution (14) with density parameter θ ∈ (0, 1), the dynamic
system (15)–(16) admits a unique stable steady-state equilibrium (y∗, s∗), with the following properties:

(i) If ρ ≤ ρsilent0 (θ) < ρ0(θ), the unique stable equilibrium exhibits full polarization with a positive
fraction of agents being silent, that is, y∗ = 0 and s∗ ∈ (0, 1).

(ii) If ρsilent0 (θ) < ρ < ρsilent1 (θ), the unique stable equilibrium is interior, that is, y∗ ∈ (0, 1) and
s∗ ∈ (0, 1).

(iii) If ρ ≥ ρsilent1 (θ), the unique stable equilibrium exhibits full moderation with no silence, that
is, y∗ = 1 and s∗ = 0.

(iv) If ρ < ρ̂ silent ≈ 0.0685, then there exist three thresholds 0 < θsilent1 < θsilent2 < θsilent3 < 1, such
that the stable equilibrium (y∗(θ, ρ), s∗(θ, ρ)) satisfies:

θ ≤ θsilent1 =⇒ y∗ = 1, s∗ = 0;

θsilent1 < θ < θsilent2 =⇒ 0 < y∗ < 1, 0 < s∗ < 1;

θsilent2 ≤ θ ≤ θsilent3 =⇒ y∗ = 0, 0 < s∗ < 1;

θ > θsilent3 =⇒ 0 < y∗ < 1, 0 < s∗ < 1;

θ → 1 =⇒ y∗ → ρ, s∗ → 0.

Proof of Proposition D3.

(i) Under the exponential degree distribution, the fraction s∗(θ, ρ) of individuals who abstain from
sharing a recommendation in the population in a polarized equilibrium (i.e., under y = 0) can be
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Figure D1: How m(θ) := minρ∈[0,1] ϕ(ρ, θ) varies with θ.

expressed in closed form as follows:

s∗(θ, ρ) =
2− θ −

√
4ρ− 4ρθ + θ2

2θ
.

Hence, the condition (D.6) for stability of polarized equilibrium becomes

ϕ(ρ, θ) < 1, (D.9)

where ϕ(ρ, θ) is defined by

ϕ(ρ, θ) := ρ
1

1− θ
+ (1− ρ)

16 (1− θ)(
2− θ +

√
4ρ− 4ρθ + θ2

)2 . (D.10)

We need the following Lemma.

Lemma D2. The function ϕ(ρ, θ) has the following properties:
(a) θ ≤ 0.75 =⇒ ϕ(ρ, θ) > 1 for all ρ ∈ (0, 1);
(b) 0.75 < θ < 1 =⇒ ϕ(0, θ) < 1 < ϕ(1, θ) < 1 and ϕρ(ρ, θ) > 0 ∀ρ ∈ (0, 1).

Proof of Lemma D2. (a) By plotting m(θ) = minρ∈[0,1] ϕ(ρ, θ) as a function of θ over (0, 1), one
finds that

min
ρ∈[0,1]

ϕ(ρ, θ) ⋛ 1 ⇐⇒ θ ⋚ 0.75,

as one can see from Figure D1. This proves (a).

(b) Evaluate ϕ(ρ, θ) at ρ ∈ {0, 1}:

ϕ(0, θ) = 4 (1− θ) ⋚ 1 ⇐⇒ θ ⋛ 0.75;
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Figure D2: How ϕ(ρ, 0.75) varies with ρ.

ϕ(1, θ) =
1

1− θ
> 1.

This proves that 0.75 < θ < 1 =⇒ ϕ(0, θ) < 1 < ϕ(1, θ) < 1. To prove that ϕρ(ρ, θ) > 0

∀ρ ∈ (0, 1), it suffices to show that

ϕρ(ρ, 0.75) > 0 and ϕρθ(ρ, θ) > 0.

The inequality ϕρ(ρ, 0.75) > 0 means that ϕ(ρ, 0.75) in increasing with respect to ρ, which one
can establish by plotting ϕ(ρ, 0.75) as a function of ρ over [0, 1], which is increasing in ρ (Figure
D2).

As for the inequality ϕρθ(ρ, θ) > 0, one can verify it by direct calculation. This proves (b) and
completes the proof of Lemma D2. □

We now proceed with the proof of Proposition D3(i). From Lemma D2(a), the stability
condition (D.9) or the polarized equilibrium fails to hold when for θ ≤ 0.75. From Lemma D2(b),
(D.9) has a unique interior solution ρsilent0 (θ) with respect to ρ by the intermediate value theorem.
This proves (i).

(ii) We will now show that an interior equilibrium (y∗, s∗) exists and is unique iff ρsilent0 (θ) <

ρ < ρsilent1 (θ). Observe first that, since the RHS of the dynamic equation (16) is decreasing in yt−1,
we have:

st ⋛ st−1 ⇐⇒ yt−1 ⋚ ỹ (st−1) , (D.11)

where
ỹ(s) := 1 + s− 2s (1− ρ+ ρθ)− 2θs2

(1− ρ) (1− θ) + θ2s− θ2s2
. (D.12)

Similarly, because the RHS of the dynamic equation (15) is increasing with respect to st, we
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have:
yt ⋛ yt−1 ⇐⇒ st−1 ⋛ s̃(yt−1), (D.13)

where

s̃(y) :=
2

θ

1−
√(

1

2
θy

)2

+ (1− ρ) (1− θ)
1− θ + θy

(1− θ + θy)− ρ

− 1. (D.14)

The interior steady state, if it exists, must be an intersection point of two curves on the
(s, y)-plane given by the equations:

y = ỹ(s), s = s̃(y), (D.15)

where the functions ỹ(s) and s̃(y) are defined by, respectively, (D.12) and (D.14). From (D.11) and
(D.13), it is clear that the two curves in (D.15) correspond to the loci of, respectively, yt = yt−1

and st = st−1. Furthermore, one can show that the function ỹ(s) is always concave, while the
function s̃(y) is always decreasing and convex. Hence, the two curves have at most one interior
intersection point. The necessary and sufficient conditions for the two curves to have an interior
intersection point are as follows. First, the s̃(y) curve must be less steep at (y, s) = (0, 1) than
the ỹ(s) curve:

1− 1
2
θ

1
2
θ − (1− θ) ρ

1−ρ

<
1

1− θ

(
1 + θ + 2θ

ρ

1− ρ

)
. (D.16)

Second, the s̃(y) curve must intersect the s-axis closer to the origin than the ỹ(s) curve

s̃(0) < s∗(θ, ρ) =
2− θ −

√
4ρ− 4ρθ + θ2

2θ
, (D.17)

where s∗(θ, ρ) is the polarized equilibrium (see proof of (i) above) which can be determined as the
solution to ỹ(s) = 0.

One can show that (D.16) and (D.17) are equivalent, respectively, to ρ < ρsilent1 (θ) and ρ >

ρsilent0 (θ). The stability of the interior equilibrium can be established qualitatively by means of the
phase diagram which we provide on Figure D4c. The directions of the dynamics are determined
by (D.13) and (D.11). This proves (ii).

(iii) The expression ρsilent1 (θ) = 2θ−1
4θ−2θ2−1

for the exponential degree distribution can be obtained
by plugging p1(θ) = 1 − θ and µ(θ) = 1

1−θ
into (D.8). Thus, (iii) follows immediately from

Proposition D1(i).

(iv) The value ρ̂ silence ≈ 0.0685 can be determined by finding numerically the solution to the
equation

min
θ∈[0,1]

ϕ(ρ, θ) = 1,

both sides of which are plotted in Figure D3.
From Figure D3, one can see that the stability condition (D.9) holds for a non-empty set of
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Figure D3: How minθ ϕ(ρ, θ) varies with ρ.

the network density levels iff ρ < ρ̂ silence. That set is given by {θ : ϕ(ρ, θ) < 1} and is an open
interval

(
θ silent
2 , θ silent

3

)
because ϕ(ρ, θ) has a unique minimizer w.r.t θ, hence it is quasi-convex

with respect to θ. The rest of the proof follows from Propositions D1 and D2. This proves (iv)

and completes the proof. □

Proposition D3 shows that, when ρ is low, the population is dominated by ideologically extreme
agents (L- and R-types). In such societies, centrists are too rare to sustain the diffusion of
M -type content. As a result, the system converges to a polarized equilibrium where y∗ = 0,
and a positive share of agents abstain from communication (s∗ > 0). In this regime, silence
plays a central role: centrist content disappears not because it is rejected, but because there
are too few centrists to generate and propagate it. As the centrist share ρ increases beyond
the lower threshold ρsilent0 (θ), a unique interior equilibrium emerges. Here, all three behavioral
modes coexist: some agents recommend M -type content, others promote extreme views, and a
share remains silent. This interior regime captures the presence of partial polarization. For high
values of ρ, centrists dominate the population, and the system converges to the fully centrist
equilibrium (y∗, s∗) = (1, 0), where all agents recommend moderate content and silence vanishes.
Here, centrism becomes self-sustaining: even in dense networks, the abundance of centrist contents
ensures that agents repeatedly encounter moderate content and continue to spread it.

When θ is large, the threshold ρsilent0 (θ) is a decreasing function of network density θ, indicating
that denser networks reduce the critical mass of centrists needed to avoid polarization. This reflects
the fact that exposure to more neighbors increases the likelihood of receiving centrist content, even
when centrists are not the majority.

Finally, compared to the baseline model without silence, polarization is less likely in the current
extension. This is visible in the lower critical value ρ̂silent ≈ 0.0685 relative to ρ̂ = 1/9 in the
benchmark case. Allowing silence suppresses the reinforcement of extreme views when centrists

A12



are scarce.
Figure D4 below illustrates Proposition D3 for the exponential degree distribution with the

density parameter θ = 0.8. Each of the three panels shows the loci of (st−1, yt−1)-pairs under
which, respectively, yt = yt−1 and st = st−1. The intersection points of the two loci are steady-
state equilibria.1 Panel D4a shows that, when ρ > ρsilent1 (θ) = 15

23
, the unique stable equilibrium

is the non-polarized equilibrium (y∗ = 1). Panel D4b shows that, when ρ < ρsilent0 (θ) ≈ 0.0522,
the unique stable equilibrium is the polarized equilibrium (y∗ = 0). Finally, panel D4c shows
that, when ρsilent0 (θ) < ρ < ρsilent1 (θ), the unique stable equilibrium is the interior equilibrium
(0 < y∗ < 1).

Figure D4 also provides phase diagrams which allow one establish qualitatively the stability
of the non-polarized equilibrium on panel D4a, the polarized equilibrium on panel D4b, and the
interior equilibrium on panel D4c. The directions of the dynamics of st, indicated by horizontal
arrows, and those of the dynamics of yt, indicated by vertical arrows, are determined from,
respectively, equations (D.11) and (D.13) in the Appendix.

D.2 Allowing for asymmetry

First, observe that the expression

ℓt−1

ℓt−1 + rt−1

G(ℓt−1 + rt−1)

can be derived algebraically as follows:

ℓt−1

ℓt−1 + rt−1

∑
k

pk(ℓt−1 + rt−1)
k = ℓt−1

∑
k

pk(ℓt−1 + rt−1)
k−1

= ℓt−1

∑
k

pk

k−1∑
j=0

ℓjt−1r
k−1−j
t−1

(
k − 1

j

)

=
∑
k

pk

k∑
j=1

ℓjt−1r
k−j
t−1

(
k − 1

j − 1

)

=
∑
k

pk

k∑
j=1

ℓjt−1r
k−j
t−1

j

k

(
k

j

)
,

where the last line gives the full expression for the probability that an M -type agent randomly
adopts an L-type recommendation when exposed only to extreme content.

Proposition D4. We obtain the following results for a right-skewed preference distribution (ϵ >
0):

1Technically, there is one more steady state—the “full-silence” steady state, in which s∗ = 1. However, we show
in Online Appendix D.1.1 that this steady state is never stable, therefore we disregard it as uninteresting.
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(a) The case of the non-polarized stable
equilibrium: ρ = 0.75 > ρsilent1 (θ) = 15

23

(b) The case of the polarized stable equilibrium:
ρ = 0.04 < ρsilent0 (θ) ≈ 0.0522

(c) The case of the interior stable equilibrium:
ρ = 0.2 ∈

(
0.0522, 1523

)
Figure D4: Equilibrium characterization under exponential distribution with θ = 0.8.
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(i) The non-polarized equilibrium is stable if and only if

ρ > ρ1(ϵ) :=
µ+ p1 − 2

µ− p1
+ 2ϵ.

The threshold level ρ1(ϵ) is strictly higher than the corresponding threshold ρ1 in the baseline
model, and increases with the degree of asymmetry ϵ. In the limit, we have

lim
ϵ→0

ρ1(ϵ) = ρ1.

(ii) There exists a threshold ρ0(ϵ) < ρ1(ϵ) such that the polarized equilibrium is stable if and only
if

ρ < ρ0(ϵ).

If p2 is not too large, then ρ0(ϵ) < ρ0, where ρ0 is the corresponding threshold in the baseline
model. Moreover, ρ0(ϵ) decreases with the degree of asymmetry ϵ, and

lim
ϵ→0

ρ0(ϵ) = ρ0.

(iii) When ρ ∈ (ρ0(ϵ), ρ1(ϵ)), there exists a unique interior stable equilibrium (ℓ∗(ϵ), r∗(ϵ)).

Proof of Proposition D4.

(i) The steady-state conditions of the two-dimensional dynamical system (17)-(18) are given by:

ℓ =

(
1− ρ

2
− ϵ

)
(1−G(1− ℓ)) + ρ

ℓ

ℓ+ r
G(ℓ+ r) +

(
1− ρ

2
+ ϵ

)
G(ℓ); (D.18)

r =

(
1− ρ

2
+ ϵ

)
(1−G(1− r)) + ρ

r

ℓ+ r
G(ℓ+ r) +

(
1− ρ

2
− ϵ

)
G(r). (D.19)

It is readily verified that the non-polarized equilibrium (ℓ∗, r∗) = (0, 0) satisfies (D.18)-(D.19).
The Jacobian of the dynamical system (17)-(18) evaluated at (ℓ∗, r∗) = (0, 0) is a diagonal matrix
given by ( (

1−ρ
2

− ϵ
)
G′(1) +

(
1+ρ
2

+ ϵ
)
G′(0) 0

0
(
1−ρ
2

+ ϵ
)
G′(1) +

(
1+ρ
2

− ϵ
)
G′(0)

)
.

The eigenvalues of the Jacobian are as follows:

λ1,2 (ρ, ϵ) =

(
1 + ρ

2
± ϵ

)
p1 +

(
1− ρ

2
∓ ϵ

)
µ.

As we focus on the case of right-skewed preference distributions (ϵ > 0), the condition for the
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non-polarized equilibrium to be stable is λ2 (ρ, ϵ) < 1. Or, equivalently:

ρ > ρ1 (ϵ) :=
µ+ p1 − 2

µ− p1
+ 2ϵ.

This proves (i).

(ii) The polarized equilibrium (ℓ∗, r∗) satisfies the following property:

ℓ∗ + r∗ = 1.

Hence, the steady-state conditions (D.18) – (D.19) become:

ℓ =

(
1− ρ

2
− ϵ

)
(1−G(1− ℓ)) + ρℓ+

(
1− ρ

2
+ ϵ

)
G(ℓ);

r =

(
1− ρ

2
+ ϵ

)
(1−G(1− r)) + ρr +

(
1− ρ

2
− ϵ

)
G(r).

If the first steady-state condition holds for some ℓ∗, then the second steady-state condition
holds for r∗ = 1− ℓ∗, and vice versa. The solutiuon ℓ∗ ∈ (0, 1) to the first steady-state condition
exists if and only if (

1− ρ

2
− ϵ

)
G′ (1) + ρ+

(
1− ρ

2
+ ϵ

)
G′(0) > 1,

which, in turn, holds true if and only if

ρ < 1− 2ϵ
µ− p1

µ+ p1 − 2
.

Because we assume ϵ > 0 to be small, this condition is likely to be satisfied.
The Jacobian of the dynamical system (17)-(18) evaluated at the polarized equilibrium is given

by:( [(
1−ρ
2

+ ϵ
)
G′ (ℓ∗) +

(
1−ρ
2

− ϵ
)
G′(r∗) + ρ

]
+ ρℓ∗ (G′(1)− 1) ρℓ∗ (G′(1)− 1)

ρr∗ (G′(1)− 1)
[(

1−ρ
2

+ ϵ
)
G′ (ℓ∗) +

(
1−ρ
2

− ϵ
)
G′(r∗) + ρ

]
+ ρr∗ (G′(1)− 1)

)
.

It is readily verified that the eigenvalues of this Jacobian are

λ1 (ρ, ϵ) =

(
1− ρ

2
+ ϵ

)
G′ (ℓ∗ (ϵ)) +

(
1− ρ

2
− ϵ

)
G′ (r∗ (ϵ)) + ρG′(1);

λ2 (ρ, ϵ) =

(
1− ρ

2
+ ϵ

)
G′ (ℓ∗ (ϵ)) +

(
1− ρ

2
− ϵ

)
G′ (r∗ (ϵ)) + ρ < 1.

The steady state condition in this case is therefore λ1 (ρ, ϵ) < 1. The threshold level ρ0 (ϵ) of
ρ is the solution to
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λ1(ρ, ϵ) = 1. When ϵ = 0, the polarized equilibrium is perfectly symmetric,

(ℓ∗(ϵ), r∗(ϵ)) =

(
1

2
,
1

2

)
,

and one can readily verify that λ1(ρ, ϵ)|ϵ=0 is linear increasing with respect to ρ. By continuity, it
must be that

∂λ1(ρ, ϵ)

∂ρ
> 0

for some open neighborhood of ϵ = 0. Hence, for ϵ not too large, there exists a unique solution
ρ0 (ϵ) to λ1(ρ, ϵ) = 1 with respect to ρ.

It remains to verify that ρ0 (ϵ) < ρ0(0) when p2 is not too large. To see this, let us differentiate
the principal eigenvalue λ1(ρ, ϵ) of the Jacobian with respect to ϵ:

∂λ1(ρ, ϵ)

∂ϵ
= G′ (ℓ∗ (ϵ))−G′ (r∗ (ϵ))+

(
1− ρ

2
+ ϵ

)
G′′ (ℓ∗ (ϵ))

dℓ∗ (ϵ)

dϵ
+

(
1− ρ

2
− ϵ

)
G′′ (r∗ (ϵ))

dr∗ (ϵ)

dϵ
.

Evaluating ∂λ1(ρ,ϵ)
∂ϵ

in the vicinity of perfect symmetry (ϵ = 0), we get:

∂λ1(ρ, ϵ)

∂ϵ

∣∣∣∣
ϵ=0

= 0.

Hence, we need to evaluate the second derivative of λ1(ρ, ϵ) with respect to ϵ:

∂2λ1(ρ, ϵ)

∂ϵ2
= 2

[
G′′ (ℓ∗ (ϵ))

dℓ∗ (ϵ)

dϵ
−G′′ (r∗ (ϵ))

dr∗ (ϵ)

dϵ

]

+

(
1− ρ

2
+ ϵ

)
G′′′ (ℓ∗ (ϵ))

[
dℓ∗ (ϵ)

dϵ

]2
+

(
1− ρ

2
− ϵ

)
G′′′ (r∗ (ϵ))

[
dr∗ (ϵ)

dϵ

]2
+

(
1− ρ

2
+ ϵ

)
G′′ (ℓ∗ (ϵ))

d2ℓ∗ (ϵ)

dϵ2
+

(
1− ρ

2
− ϵ

)
G′′ (r∗ (ϵ))

d2r∗ (ϵ)

dϵ2
.

Evaluating the second derivative in the vicinity of perfect symmetry (ϵ = 0), we get after
simplifications:

[
∂2λ1(ρ, ϵ)

dϵ2

]∣∣∣∣
ϵ=0

= 8G′′
(
1

2

)[
G′′′ (1

2

)
G′′
(
1
2

) 1
2
−G

(
1
2

)
1−G′

(
1
2

) − 1

]
1
2
−G

(
1
2

)
(1− ρ)

[
1−G′

(
1
2

)] .
Hence, [

∂2λ1(ϵ)

∂ϵ2

]∣∣∣∣
ϵ=0

⋛ 0 ⇐⇒
G′′′ (1

2

)
G′′
(
1
2

) 1
2
−G

(
1
2

)
1−G′

(
1
2

) ⋛ 1.
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This inequality holds with ">" when p2 is not too large. To see this, set p2 = 0 first. We get:

G′′′ (1
2

)
G′′
(
1
2

) 1
2
−G

(
1
2

)
1−G′

(
1
2

) =
3p3 +

∑∞
k=4 (k − 2) (k − 1) k

(
1
2

)k−2
pk

3p3 +
∑∞

k=4 (k − 1) k
(
1
2

)k−2
pk︸ ︷︷ ︸

>1

×
3p3 + 4

∞∑
k=4

pk

[
1−

(
1

2

)k−1
]

p3 + 4
∑∞

k=4 pk

[
1− k

(
1
2

)k−1
]

︸ ︷︷ ︸
>1

> 1.

By continuity, the same is true if p2 is positive but not too large. In this case, λ1(ρ, ϵ) increases
with both ρ and ϵ in the vicinity of ϵ = 0, and thus ρ0(ϵ), which solves λ1(ρ, ϵ) = 1, decreases in
response to a bit more asymmetry. This proves (ii) and completes the proof. □

Part (i) of Proposition D4 establishes that a non-polarized equilibrium—where only M -type
content is recommended—is stable if and only if the share of centrist agents exceeds the threshold
ρ1(ϵ). This threshold is increasing in ϵ: when the distribution becomes more skewed (e.g., more
R-type agents than L-types), centrism becomes harder to sustain. Intuitively, the presence of more
extremists on one side distorts exposure and recommendation dynamics in favor of that extreme,
requiring a higher critical mass of centrists to counterbalance this effect. Part (ii) characterizes
the polarized equilibrium—where no M -type content is recommended. It is stable if and only if
the centrist share ρ falls below the threshold ρ0(ϵ). Asymmetry lowers this threshold, meaning
that even fewer centrists are needed to destabilize full polarization. The reason is that in a skewed
society, the dominant extreme becomes more effective in amplifying its own content, even in the
presence of a modest centrist minority. Hence, asymmetry makes polarized equilibria more fragile
with respect to small increases in ρ. Part (iii) shows that when the centrist share lies between
the two thresholds, ρ ∈ (ρ0(ϵ), ρ1(ϵ)), the system converges to an interior equilibrium, where both
types of extreme content coexist and receive positive recommendation shares, but M -type content
also circulates. This reflects partial polarization, with the network fragmenting into ideological
subgroups.
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