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Abstract
This paper reviews the theoretical and empirical foundations of peer and net-

work effects, aiming to bridge insights from both literatures. We first examine

the main identification challenges in linear-in-means models—reflection, corre-

lated effects, and sorting—and show how introducing explicit network structures

can help address them. We also review reduced-form strategies based on within-

school cohort composition, exposure to peers’ shocks, random assignment, and ex-

ogenous variation in network links. The analysis then develops the microfounda-

tions of peer effects through linear–quadratic network games, linking equilibrium

behavior to network centrality and highlighting the role of key players. Using this

framework, we discuss how structural models of network formation and individual

effort choices can resolve endogeneity concerns. The paper concludes with recent

advances on non-linear and multiplex interactions, where individuals respond to

specific peers and operate across multiple, interdependent layers.
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1 Introduction

Understanding social interactions has been a central pursuit across the social and
natural sciences for decades, engaging researchers in disciplines as diverse as graph
theory and applied mathematics (Newman, 2010; Bollobás, 2011), game theory and
economics (Jackson, 2008; Jackson and Zenou, 2015; Jackson et al., 2017), sociology
(Coleman, 1988; Granovetter, 1973; Christakis and Fowler, 2009), and psychology
(Cialdini, 2007). The enduring fascination stems from a simple but powerful insight:
individuals do not make decisions in isolation. Their behaviors, beliefs, and oppor-
tunities are shaped by the actions and expectations of those around them. Ignoring
these interdependencies can lead to fundamentally flawed predictions and misguided
policies. For instance, education programs that neglect peer effects may underesti-
mate how classroom spillovers amplify or dampen treatment effects (Sacerdote, 2011,
2014); vaccination or deworming campaigns that ignore social diffusion achieve low
coverage (Miguel and Kremer, 2004); health campaigns that treat individuals as in-
dependent may fail to achieve herd immunity thresholds or even backfire (Acemoglu
et al., 2021; Lazić et al., 2021); and financial regulations that ignore network expo-
sures can severely misjudge systemic risk (Degryse and Nguyen, 2007; Elliott et al.,
2014).

Conversely, a growing body of research shows that harnessing social networks can
dramatically increase the effectiveness of public policies. Targeting the most central
or influential individuals—the key players—can magnify the reach of interventions
at a fraction of the cost, whether the goal is to accelerate technology diffusion or
the adoption of a microfinance program (Banerjee et al., 2013), increase R&D invest-
ments (König et al., 2019), curb the spread of epidemics (Bassolas et al., 2022), reduce
criminality (Ballester et al., 2006; Lee et al., 2021; Giulietti et al., 2025) or prevent
contagion in financial systems (Denbee et al., 2021). By explicitly modeling and mea-
suring real social ties, rather than assuming anonymous interactions, network eco-
nomics provides a framework for designing interventions that leverage rather than
fight against the structure of social influence.

These advances highlight the importance of understanding precisely how influ-
ence operates within groups and networks. To do so, the literature draws a key dis-
tinction between peer and network effects, which formalize different ways in which
individuals’ behaviors are shaped by others. Traditional models, such as the linear-
in-means (LIM) specification, describe how an individual’s outcome depends on the
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average behavior of a reference group—for example, the average classroom perfor-
mance, neighborhood crime rate, or grade-level achievement. In these frameworks,
all individuals within a group are exposed to a common peer environment, implying
that group boundaries are exogenously and often arbitrarily defined, and that behav-
ioral effects are homogeneous across members. This aggregate approach captures a
uniform intra-group externality that acts equally on everyone in the group.

By contrast, models of social networks allow the structure of interactions to matter.
Agents are connected through specific and potentially asymmetric links, formalized
by an adjacency matrix that captures who interacts with whom. Each individual’s be-
havior depends not on a group average but on the weighted actions and characteristics
of directly connected peers. Network models therefore generalize peer-effect models
by recognizing that social influence operates at the dyadic level—through specific in-
terpersonal ties—and can propagate across multiple degrees of separation. Building
on this micro-founded perspective, games on networks provide a natural framework
for studying how equilibrium behavior depends on the pattern of social connections
and, ultimately, for interpreting estimated peer effects as equilibrium outcomes of
strategic interactions.

This paper provides a comprehensive overview of the theoretical and empirical
foundations of peer and network effects, aiming to unify insights from both litera-
tures. It proceeds in four steps.

First, we review the econometric identification challenges in the LIM framework—
including the reflection problem, correlated effects, and sorting—and show how em-
bedding an explicit network structure helps mitigate these issues. We then discuss
reduced-form identification strategies based on within-school cohort composition, ex-
posure to peers’ shocks, random assignment, and exogenous variation in network
links.

Second, we develop the microfoundations of peer effects (LIM model) using lin-
ear–quadratic network games under an exogenous network structure.1 This frame-
work links equilibrium behavior to network centrality, illustrating how an individ-
ual’s position within a graph shapes both influence and welfare. It introduces the

1The game-theoretic foundation of the LIM model is a network framework in which each agent’s
best-reply function is linear in the mean action of their peers; see Patacchini and Zenou (2012), Blume
et al. (2015), Boucher (2016), Ushchev and Zenou (2020), and Boucher et al. (2024). For comprehensive
overviews of identification in social interaction models, see Blume et al. (2011) and Kline and Tamer
(2020).
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concepts of intercentrality and the key-player policy, and it connects local-average
models to behavioral foundations for the linear-in-means specification.2 Building on
these theoretical results, we then outline four complementary approaches to struc-
tural network formation: (i) a model jointly determining effort choices and link for-
mation through anonymous meetings; (ii) a sequential model of link formation first
and then effort choices in which agents take as given the expected effort of others
when investing in their social connections; (iii) a control-function approach correct-
ing for endogenous network formation; and (iv) a dynamic model that abstracts from
effort choices but captures time-dependent interactions.3

Third, we move beyond the standard linear framework by reviewing recent ad-
vances on nonlinear peer effects, where individuals respond selectively to particular
peers—for example, to high achievers or low performers—rather than to the group
mean. These models help rationalize heterogeneous social responses and motivate
targeted network interventions.

Finally, we extend the analysis to multiplex networks, in which individuals in-
teract across several interdependent layers (e.g., social, advice, and financial ties).
We show how cross-layer complementarities or crowding-out effects can arise when
agents allocate effort across activities subject to a common resource constraint, and
we discuss empirical strategies to identify such interdependencies using multilayer
data.

This paper is deliberately methodological. Its main goal is to synthesize and for-
malize the conceptual and econometric distinctions between peer and network ef-
fects, and to highlight how recent theoretical advances provide the structural founda-
tions necessary for credible identification and policy analysis. Rather than present-
ing new empirical results, the contribution lies in bridging reduced-form approaches
with structural network models, showing how the latter generate testable implica-
tions and counterfactual predictions. In this sense, the paper complements rather
than competes with empirical studies, offering a unifying analytical framework and
a roadmap for how theory and structure can inform empirical work.

Building on this perspective, the paper also distinguishes itself from existing sur-
veys, such as Bramoullé et al. (2020), by placing greater emphasis on the network-

2For an overview of the games-on-network literature, see Jackson and Zenou (2015), Bramoullé and
Kranton (2016), and Zenou (2026).

3There are many overviews on network formation. See, in particular, Graham (2015), Chan-
drasekhar (2016), and De Paula (2020).
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theoretic microfoundations of peer effects, by bridging reduced-form and structural
approaches, and by covering recent developments on nonlinear and multiplex inter-
actions. It thus provides not only an analytical synthesis but also a forward-looking
framework for future research on how social influence operates through complex net-
work structures.

What this survey adds. Relative to existing reviews of peer effects and networks,
this article develops a microfounded bridge between reduced-form peer-effect speci-
fications and games on networks, showing how standard linear-in-means estimands
map to equilibrium outcomes in linear–quadratic network games and under what
conditions those estimands admit a structural interpretation. It further integrates
identification with structure: network-based instrumental-variable strategies are an-
alyzed alongside the equilibrium system, clarifying which quasi-experimental designs
recover which primitives. Finally, the survey moves beyond linear averages to non-
linear social norms and multiplex environments with cross-layer complementarities
and crowding-out, offering a unified framework that connects theory, estimation, and
policy design—from key-player targeting to norm-sensitive interventions.

2 Peer versus network effects: Empirical perspec-
tives

In this section, we clarify the distinction between peer effects—average group-level
influences—and network effects that depend on the pattern of bilateral ties among
individuals. We begin with the linear-in-means (LIM) framework and discuss identi-
fication challenges such as the reflection problem, correlated and contextual effects,
and sorting. We then show how embedding an explicit social network structure re-
solves some identification difficulties and connects the econometrics of peer effects to
the graph-theoretic measurement of exposure to others’ outcomes and characteristics.
We also provide some reduced-form solutions to the identification issues mentioned
above.

2.1 The Linear-in-Means (LIM) model

In the standard LIM specification, individuals are partitioned into groups r (e.g.,
classrooms, schools, neighborhoods), and each individual’s outcome is affected by the
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average outcome and characteristics of the group. For individual i in group r, the LIM
model is given by

yi,r = α+ ϕE(yr) + δ E(xr) + γ xi,r + εi,r, (1)

where yi,r is the outcome of interest of individual i belonging to group r (e.g., a mea-
sure of educational achievement, crime, or mental health); xi,r are individual covari-
ates (e.g., parental education, gender, race); E(yr) denotes the average outcome in
group r; and E(xr) the average of group characteristics (“contextual effects”). In the
conventional interpretation, ϕ > 0 indicates endogenous peer effects—the impact of
peers’ outcomes on one’s own outcome—while δ > 0 captures exogenous/contextual
effects—the impact of peers’ characteristics on one’s outcome.

Applications highlight how (1) is implemented in practice. In education, yi,r may
be test-scores or study effort for a student i in classroom r, with E(yr) the classroom
mean grade and E(xr) the mean background characteristics. In crime, yi,r could be an
index of criminal activity for a resident in neighborhood r, with E(yr) the local crime
rate and E(xr) the neighborhood socioeconomic profile. In mental health, yi,r could be
depression (binary or continuous) among adolescents in schools or grades, and E(yr)
the share of depressed peers.4

The Reflection Problem A central challenge in LIM models is Manski’s reflection
problem (Manski, 1993). Taking group means in (1) and assuming E(εi,r | yr, xr) = 0

yields
E(yr) = α + ϕE(yr) + (δ + γ)E(xr). (2)

Solving gives

E(yr) =
α

1− ϕ
+

δ + γ

1− ϕ
E(xr). (3)

Substituting back into (1) produces

yi,r =
α

1− ϕ
+

[
γϕ+ δ

1− ϕ

]
E(xr) + γxi,r + εi,r, (4)

which makes clear that endogenous (ϕ) and contextual (δ) effects are not separately
identified: three reduced-form coefficients map to four structural parameters. Iden-
tification fails because in the linear-in-means model (1), individuals simultaneously

4In the LIM model, it is difficult to disentangle the underlying mechanisms driving the observed
relationships. An exception is Bursztyn et al. (2014), who separately identify two channels of peer
effects in financial decisions: social learning and social utility, the latter of which can be interpreted as
a network effect.
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determine their behavior in response to that of their peers. This simultaneity gen-
erates perfect collinearity between the group’s mean outcome and its mean charac-
teristics, making it difficult to disentangle endogenous effects—the influence of peers’
behavior—from contextual effects—the influence of peers’ exogenous attributes (Man-
ski, 1993), as shown in equation (4). Consequently, observed correlations in behavior
may reflect either mutual influence or shared characteristics.

2.2 From peer to network effects

The peer-effect formulation treats all group members symmetrically. A network ap-
proach, by contrast, models who influences whom. Let g denote a (possibly directed)
graph on n nodes with adjacency matrix G = [gij], and let di =

∑
j gij be the degree of

i. Row-normalization by degrees, Ĝ = [ĝij] such that ĝij := gij/di if di > 0 and ĝij := 0

otherwise, implements the local-average operator. Thus, a network version of (1) is5

yi = α+ ϕ
∑
j

ĝij yj + δ
∑
j

ĝij xj + γxi + εi. (5)

where εi’s are i.i.d. innovations with zero mean and variance σ2 for all i. Now, the size
of the reference group of i corresponds to their degree di. This local-average model
replaces group means with averages over i’s neighbors. Directed networks encode
asymmetric influence, while undirected networks impose gij = gji.

2.3 Identification issues in network models

Empirically identifying peer effects within social networks poses three well-documented
challenges. The first issue is the reflection problem (Section 2.1). In network models,
however, this problem can be mitigated because each individual’s reference group
is determined by their specific network neighborhood rather than by a group-wide
mean. This structure naturally generates exclusion restrictions—for instance, through
intransitive triads—that help resolve the reflection problem. Therefore, unless the

5For the sake of the exposition, we assume that each agent i has one characteristic xi, which is
clearly not true in the empirical applications. It is straightforward to include several characteristics
of i by replacing δxi by xT

i δ, where xT
i is a (1 × k) vector of k observable characteristics (xT

i is the
transpose of xi) and δ is a (k × 1) vector of parameters. Denote x̄−i =

∑
j ĝijxj and the corresponding

(1 × k) vector by x̄−i, which is the vector of k average exogenous peer characteristics of i’s neighbors
(contextual variables), such as the average age and the share of girls within peers. Then, for the
contextual effect term, we can replace δ

∑
j ĝijxj by x̄T

−iδ.
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network is complete or highly regular, instrumenting peers’ outcomes with the char-
acteristics of friends-of-friends breaks the perfect collinearity between peers’ mean
outcomes and their characteristics.

A second challenge arises from correlated effects. Even if simultaneity is ad-
dressed, estimation may still be confounded by unobserved factors that jointly affect
all members of a peer group. Local shocks, environmental factors, or shared insti-
tutional contexts may influence both an individual’s outcome and those of her peers.
One way to address this problem is to exploit the architecture of network connections
to construct valid instrumental variables (IVs) for the endogenous peer effect. Be-
cause peer groups are individual-specific, characteristics of indirect friends—for ex-
ample, the attributes of one’s friends-of-friends—can serve as natural instruments,
provided they are correlated with peers’ behavior but uncorrelated with one’s own
unobservables. This would work assuming that indirect friends are not subjected to
the same unobserved shock (e.g., the same school but not the same classroom).

To illustrate, consider equation (5). Stacking observations within each network
yields the matrix form:

y = α1+ ϕ Ĝy + δ Ĝx+ γ x+ ε, (6)

with E
[
ε | Ĝ,x

]
= 0. Equation (6) resembles a spatial autoregressive (SAR) model,

which is identified if and only if E
[
Ĝy | x

]
is not perfectly collinear with the regressors

(x, Ĝx), allowing instruments to be constructed for the endogenous term Ĝy.
As shown by Bramoullé et al. (2009), a sufficient condition for identification is that

In, Ĝ, and Ĝ2 be linearly independent, which holds generically in partially overlap-
ping networks—those in which some agents are not linked to their friends’ friends.6

Allowing network structure to vary across individuals thus breaks the symmetry
underlying the reflection problem and enables separate identification of endogenous
and contextual effects. Identification proceeds by instrumenting Ĝy with exogenous
network-based functions such as x and Ĝx. Natural exclusion restrictions implied by
the network structure (e.g., the existence of intransitive triads) ensure identification.

A third challenge concerns sorting. Because individuals often choose their peers,
unobserved traits correlated with both link formation and outcomes can generate
endogeneity. For instance, individuals with similar unobserved preferences or abil-

6See also Lee (2007)’s approach to identification in group-based interactions, where variation in
group size solves the reflection problem.
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ities may sort into the same networks, biasing estimates of peer effects. Introduc-
ing network fixed effects, as in Bramoullé et al. (2009), helps control for such unob-
served heterogeneity by absorbing factors common to a given network or subnetwork,
thereby mitigating selection bias due to assortative matching on unobservables. A
sufficient condition for identification is that In, Ĝ, Ĝ2, and Ĝ3 be linearly indepen-
dent (Bramoullé et al., 2009).7

Finally, these identification issues become even more pronounced once network
formation is explicitly modeled. The standard Local Average Model with network
fixed effects η, that is, adding η in equation (6), typically assumes that the network Ĝ

is conditionally exogenous, i.e., exogenous given observable individual characteristics.
This assumption is often untenable in practice. For example, in observational data on
farmers’ adoption of a new, risky technology, we might observe that more connected
farmers are more likely to adopt, but this pattern need not imply causality. It may
simply reflect that more risk-loving individuals—who are inherently more likely to
adopt—also tend to be more sociable and, hence, more connected. In such cases, the
exogeneity condition

E
[
ε | Ĝ,x

]
= 0, ∀i, (7)

is violated, and causal interpretation requires either exogenous variation in the net-
work or structural modeling of the link-formation process.

We now present a series of reduced-form solutions to address the endogeneity of
networks.8 These approaches are not based on explicit theoretical models of network
formation; such structural solutions are discussed in Section 5.

7A fourth source of bias is exclusion bias, which arises when individuals are randomly grouped
within selection pools (e.g., classrooms, tournaments) and pool fixed effects are included. It stems
from the mechanical exclusion of an individual from their own peer average. Traditional estima-
tors—whether based on peers-of-peers’ instruments (Bramoullé et al., 2009) or variation in group size
(Lee, 2007; Graham, 2008)—fail with fixed, non-overlapping groups, where no valid instruments or
sufficient size variation exist. Spatial ML approaches (Anselin, 1988; Drukker et al., 2013) estimate
peer effects from outcome covariances but remain biased in this case. Caeyers and Fafchamps (2025)
develop a new estimator that corrects for exclusion bias, allowing consistent estimation even with
fixed, non-overlapping peer groups.

8A recent contribution by De Paula et al. (2025) addresses identification in the LIM model without
observing the network. They show how social networks can be identified from observational panel data
that contain no explicit information on social ties between agents.
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3 Reduced-form solutions to identification issues

In this section, we present four complementary reduced-form strategies for identify-
ing peer effects when network structure, treatment assignment, or exogenous shocks
provide quasi-experimental variation.

3.1 Instrumental variable approach (cohorts)

A common empirical approach to solve the identification issues of network forma-
tion for which the exogeneity condition (7) does not hold is the cohort instrumental-
variables strategy (e.g., Hoxby, 2000; Bifulco et al., 2011; Lavy and Schlosser, 2011;
Patacchini and Zenou, 2016; Olivetti et al., 2020; Giulietti et al., 2022; Merlino et al.,
2019, 2024), which estimates contextual (composition) effects by exploiting quasi-
random variation in peers’ pre-determined traits across cohorts within the same school.

Let i index individuals in school s, grade g, and cohort/year t. Let xi be individual
covariates measured pre-treatment and let zj be a peer trait measured pre-treatment
(e.g., language proficiency at entry). Define the pre-treatment, leave-one-out peer
composition for individual i as (assuming g

(0)
ii = 0)

mit =
∑
j

ĝ
(0)
ij zj. (8)

One can estimate the contextual effect of peer composition via

yit = α + βmit + γ′xi + ηsg + ηt + εigt, (9)

where ηsg are school-by-grade fixed effects and ηt are cohort fixed effects.
Identification requires that, conditional on ηsg and ηt, the within-school cohort com-

position is as-good-as-random—i.e., residual differences in mit across cohorts reflect
quasi-random cohort mix rather than sorting on unobservables. Under this assump-
tion, β captures the causal effect of exposure to peers’ traits. This estimand is a
contextual effect, it does not by itself identify the endogenous peer effect in the linear-
in-means model. The key assumption is that parents and students sort across schools
based on average school traits, not on the precise demographic mix of an entering
cohort, which is typically unknown at choice time; thus, within-school differences in
cohort shares (e.g., gender, race, ability) shift peers’ characteristics exogenously.

If the object of interest is the endogenous peer effect—the impact of peers’ out-
comes—then cohort-mix measures constructed from pre-treatment variables can in-
strument the contemporaneous peer mean outcome. In practice, the cohort-share

10



measure can be used as an instrument for the contemporaneous peer mean mit in a
two-stage least squares specification with school×grade and year fixed effects.

3.2 Random assignments

In this section, we first discuss research in which network formation itself is random-
ized. In the second part, we examine field experiments based on random assignments
(such as RCTs) where the network is fixed, but omitted-variable bias may still arise
and require appropriate correction.

3.2.1 Randomization that affects network formation

A way to address the issue of endogenous network formation (or sorting) is through
field experiments based on random assignments. For example, Mas and Moretti
(2009) exploit the quasi-random exposure of cashiers to highly productive co-workers
arising from shift-based register placement. They show that individual productiv-
ity increases when workers are observed by top performers. Similarly, Carrell et al.
(2009) estimate peer effects in college achievement using a data set from the U.S.
Air Force Academy in which individuals are exogenously assigned to peer groups of
about 30 students with whom they are required to spend the majority of their time
interacting. They find long lasting peer effects on academic achievement.9

Following Algan et al. (2026), let yij denote the absolute pairwise difference in
an outcome (e.g., grades or political opinions) between individuals i and j, and let
gij ∈ {0, 1} indicate (undirected) friendship. A baseline dyadic regression

yij = α1 + ϕ1gij + δ1xij + εij,

with xij capturing common and differential predetermined traits (e.g., same gender,
parental education/income, residential proximity), targets the average causal effect of
friendship on outcome convergence, ϕ1 ≡ E[yij | gij = 1, xij] − E[yij | gij = 0, xij]. How-
ever, homophily renders gij endogenous, risking attribution of similarity to influence
rather than selection.

To address endogeneity, we can instrument friendship with exogenous treatment
or random assignment. Specifically, let Tij = 1 if i and j are assigned to the same

9Numerous experiments explicitly manipulate the network structure to assess its impact on indi-
vidual and collective behavior. See, for instance, Rand et al. (2011) on inducing cooperation, Rand et al.
(2014) on inducing public goods production, and Shirado et al. (2019) on affecting collective welfare.
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treatment. In Algan et al. (2026), the treatment is that students i and j are randomly
allocated (based on alphabetical order) to the same integration group (IGij) during a
pre-term “integration week” before starting university (Sciences Po). The first stage,

gij = α2 + ϕ2Tij + δ2xij + ϵij,

exploits that Tij shifts the probability of becoming friends but—by design—does not
directly affect later outcomes, satisfying the exclusion restriction. Empirically, we
implement a dyadic parametric specification

yij = α+ ϕ IGij + δ xij + εij,

where IGij indicates same-IG membership and xij includes rich pre-treatment con-
trols (baseline opinions, common gender, nationality, admission type, high-school hon-
ors/district, parents’ profession, residence ZIP, and tuition-fee differences). This de-
sign isolates the causal effect of friendship on convergence (negative ϕ) or divergence
(positive ϕ) in outcomes, without relying on potentially endogenous realized networks
alone.

3.2.2 Exposure to peers’ shocks when the network is fixed

In the previous section, we considered a treatment that affected network formation:
students assigned to the same integration group were 17% more likely to form friend-
ship links than those not assigned to the same group (Algan et al., 2026). In this
section, we instead study a randomized treatment across individuals within a fixed
social network. This provides a natural way to estimate spillovers, as it compares
individuals whose peers happened to receive the treatment with those whose peers
did not. The framework of Borusyak and Hull (2023) formalizes this intuition and
shows how to construct valid instruments from treatment assignments that respect
the experimental design.

The setting. Consider a fixed, pre-existing network with weights ĝij representing
connections between individuals (e.g., co-workers, friends, classmates, or neighbors),
where ĝii = 0 and weights are row-normalized, i.e.,

∑
j ĝij = 1. Treatment Ti ∈ {0, 1} is

randomized at the individual level, with design probabilities πi = E[Ti] that may vary
across individuals (e.g., by risk stratum or geography). Unlike designs that randomize
network formation itself (Section 3.2.1), here the network is fixed and only treatment
varies.
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Why naive instruments fail. For contextual effects of peer treatment (e.g., neigh-
borhood spillovers in early-childhood programs as in List et al., 2023), define i’s expo-
sure as

Ei =
∑
j

ĝijTj.

Treating Ei as exogenous because Tj is randomized can be misleading under stratified
designs. If high-risk peers have πj = 0.7 and low-risk peers πj = 0.4, then

E[Ei | ĝ,π] =
∑
j

ĝijπj,

which varies mechanically with peer composition. Individuals linked to higher-π
peers have larger expected exposure even before treatment realization; if peer compo-
sition correlates with unobservables (e.g., family background or neighborhood qual-
ity), Ei violates the exclusion restriction.10

The recentering solution. Recentering each peer’s realized assignment by its de-
sign mean yields

Ẽi =
∑
j

ĝij (Tj − πj), (10)

so that E[Ẽi | ĝ,π] = 0 by construction. This removes mechanical correlation with peer
composition and isolates idiosyncratic variation in treatment assignments around
their design expectations.

Implementation and extension. To estimate the effect of peer treatment exposure
Ei on outcomes yi, one can instrument Ei with Ẽi, controlling for own treatment Ti and
design strata, and including appropriate fixed effects with clustered standard errors.
The same instrument also identifies endogenous peer effects when instrumenting mi =∑

j ĝijyj, provided that Tj affects yj and peer outcomes influence yi.

Application. Let us illustrate the framework of Borusyak and Hull (2023) and clar-
ify the role of each variable using the deworming experiment of Miguel and Kremer

10The failure of instrumental variables in this framework was already recognized in earlier work; for
instance, Aronow (2012) note that “randomization of treatment to individuals does not imply simple
randomization of proximity to treated units.” In other words, random assignment does not guarantee
econometric exogeneity.
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(2004), where Ti ∈ {0, 1} indicates whether student i received the intervention. In
Miguel and Kremer (2004), the estimated equation is

yi = ϕ
∑
j

ĝijTj + εi,

where yi denotes educational outcomes and ĝij = 1 if students i and j are connected.
Even under random assignment, students with more neighbors (e.g., in densely con-
nected areas) tend to have higher expected exposure, E[Ei | ĝ,π] =

∑
j ĝijπj, which

may induce omitted-variable bias if neighborhood characteristics also influence out-
comes. A simple way to solve this problem would have been to recenter exposure,
Ẽi, as defined in (10), and use it as an instrument for Ei. By doing so, one would
have effectively purged the omitted-variable bias by comparing students whose peers
were dewormed more than expected (given the network) to those whose peers were
dewormed less than expected. This correction would have remained valid under more
complex randomization schemes (e.g., stratified or two-tier designs), with the appro-
priate adjustment of πj as detailed in Borusyak and Hull (2023).

3.3 Exogeneous changes in the network structure

A complementary approach to address endogeneity in networks exploits exogenous
variation in network structure arising from node or edge “failures.” When particular
nodes or links are removed for reasons orthogonal to agents’ choices, the resulting
shocks can serve as natural experiments for identification. Examples include inter-
locking directorates in India where links between firms are severed by the death of
a shared board member, plausibly an unpredictable event at hiring time (Helmers
et al., 2017), and the forced removal of academics from German universities during
the Nazi regime, which generated abrupt, externally imposed changes in departmen-
tal networks (Waldinger, 2010, 2012). In both settings, the research strategy is to
compare outcomes before and after the network shock, tracing out how the disap-
pearance of a node (or its incident edges) propagates through immediate neighbors
and, potentially, through neighbors-of-neighbors.

Lindquist et al. (2024) apply this logic to Swedish co-offender networks constructed
from the Suspects Register (2010–2012), covering 29,369 networks and 108,018 indi-
viduals, and documenting 679 exogenous co-offender deaths over the period. Treating
a death as a node removal in the co-offending graph, they study how outcomes for
surviving offenders change with the graph-theoretic distance to the deceased (one-,
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two-, and three-step neighbors). Conceptually, if peer spillovers operate primarily
along direct ties, effects should be strongest for one-step neighbors and attenuate
with distance; non-trivial responses at two or three steps would indicate broader dif-
fusion mechanisms (e.g., displacement of opportunities, reputation, or enforcement
spillovers). As with all node-failure designs, validity hinges on agents not anticipat-
ing or systematically responding to the failure in ways that violate exogeneity (e.g.,
recruiting replacements based on observables correlated with outcomes) and on ac-
curate measurement of the network itself; misclassifying a missing node due to data
error rather than true exit would bias estimates toward zero.

4 Network games as a foundation for linear peer ef-
fects

We have seen that the standard peer effects (LIM) model, defined by equation (1),
studies the impact of the average behavior of peers on own behavior. The correspond-
ing network model, defined by (5), proposes a more detailed view of peer effects in
which the structure of interactions matters: agents are connected through specific
and potentially asymmetric links, formalized by an adjacency matrix G = (gij). Each
individual’s behavior depends not on a group average but on the weighted actions and
characteristics of directly connected peers.

What is the microfoundation of (5)? Games on networks provide a natural frame-
work for studying how equilibrium behavior depends on the structure of social con-
nections. Individuals interact strategically with their neighbors, choosing actions that
depend on the choices of those to whom they are linked. These interactions can ex-
hibit either strategic complementarities—where one’s incentives to increase effort rise
when peers increase theirs—or strategic substitutes, where the opposite holds. Ex-
amples of complementarities include education, crime, or drug use, where imitation
or reinforcement amplifies behaviors within a network; substitutes arise in contexts
such as public good provision or technology adoption, where others’ actions reduce
one’s incentive to contribute or adopt.

Given that our focus is on peer effects, we will concentrate on games with strategic
complementarities.11

11In games with strategic substitutabilities, peers exert a negative effect on the marginal utility
of one’s own action (Jackson and Zenou, 2015). Classic examples include public-good provision or
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4.1 Linear–quadratic network games: Local aggregate

Consider a game with n agents, each choosing an effort level yi ∈ R+ in some activity.
Let y = (y1, . . . , yn)

T denote the column vector of individual efforts. Agents are em-
bedded in a network g, represented by its n × n adjacency matrix G, whose element
gij indicates whether i and j are connected (and possibly the strength of their link).
The utility of agent i is

ui(y,g) = αiyi −
1

2
y2i + ϕ

n∑
j=1

gijyiyj, (11)

where ϕ > 0. Agents differ in observable characteristics αi > 0 and in their network
positions. The first two terms, αiyi− 1

2
y2i , represent private benefits and costs of effort,

independent of others. The last term, ϕ
∑

j gijyiyj, captures strategic complementar-
ities between connected agents. If gij = 1, actions are strategic complements since
∂2ui/(∂yi∂yj) = ϕ > 0; if gij = 0, the cross-effect vanishes. We impose gii = 0.

Katz–Bonacich Centrality The Katz–Bonacich centrality, introduced by Katz (1953)
and extended by Bonacich (1987), measures a node’s influence through the number
and strength of walks emanating from it. Let Gk denote the k-th power of G, where
g
[k]
ij counts the number of walks of length k between i and j. Thus, Gk captures indirect

connections of order k, with G0 = I.
The weighted Katz–Bonacich centrality of agent i is defined as the ith component

of

bα(G, ϕ) = M(G, ϕ)α = (I− ϕG)−1α =
∞∑
k=0

ϕkGkα, (12)

which converges when ϕ is sufficiently small.

Nash Equilibrium Each agent i chooses yi ≥ 0 to maximize ui(y,g). The first-order
condition is

yi = αi + ϕ
n∑

j=1

gijyj. (13)

Let µ1(G) denote the largest eigenvalue of G. Ballester et al. (2006) show that if
ϕµ1(G) < 1, the game admits a unique interior Nash equilibrium,

y∗ = bα(G, ϕ). (14)

information acquisition: for instance, when an individual considers gathering information about a
new product (e.g., a new iPhone), the more their peers have already done so, the weaker the incentive
for that individual to search further.
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This equilibrium embodies social multiplier effects, where network interactions
amplify individual efforts. Consider two symmetric agents, 1 and 2, with α1 = α2 = α.
If g12 = g21 = 0, equilibrium efforts are y∗1 = y∗2 = α. When they are linked (g12 = g21 =

1) and ϕ < 1, equilibrium becomes

y∗1 = y∗2 =
α

1− ϕ
. (15)

Strategic complementarities thus raise effort above the autarky level. The factor
(1 − ϕ)−1 > 1 quantifies this amplification—the social multiplier. Estimating ϕ em-
pirically is central to measuring peer effects (see Section 2). For instance, if ϕ = 0.5,
the multiplier equals 2. In a crime context, an individual who would commit α crimes
alone will commit 2α when paired with another offender, solely due to mutual influ-
ence rather than personal traits.12

Eigenvector Centrality A related and widely used measure is eigenvector central-
ity, which assigns higher influence to agents connected to highly connected peers.
Golub and Lever (2010) (Theorem 3) show that eigenvector centrality emerges as the
limiting case of Katz–Bonacich centrality. Let ϕ̄ = 1/µ1(G). As ϕ → ϕ̄−,

lim
ϕ→ϕ̄−

b(G, ϕ)

B(G, ϕ)
= e(G),

where B(G, ϕ) is the sum of all entries of b(G, ϕ) and e(G) is the nonnegative right
eigenvector of G. Hence, for any i, j,

lim
ϕ→ϕ̄−

yi(α;ϕ)

yj(α;ϕ)
=

ei(G)

ej(G)
. (16)

Welfare The Nash equilibrium in network games with strategic complementarities
is generally inefficient because individuals neglect the positive externalities that their
efforts exert on others. As a result, equilibrium effort levels are below the social
optimum. Assume for simplicity that αi = α for all i. Following Helsley and Zenou
(2014), the equilibrium welfare is

W(x∗,g) = 1
2
b⊤
1 (g, ϕ)b1(g, ϕ) , b1(g, ϕ) = (I− ϕg)−11, (17)

while the social planner chooses x to maximize aggregate welfare, leading to the op-
timal effort profile

xO = α(I− 2ϕg)−11 = αb1(g, 2ϕ). (18)
12See Glaeser et al. (1996, 2003) for theoretical and empirical analyses of the social multiplier in

crime.
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Since xO > x∗, each individual exerts too little effort at equilibrium. A Pigouvian
subsidy can restore efficiency. If each individual receives a per-effort subsidy

si = ϕ
∑
j

gijx
O
j , (19)

then xO becomes a Nash equilibrium. The optimal subsidy is increasing in network
centrality, implying that more central agents should be subsidized more, as their
actions generate stronger positive spillovers throughout the network.

Targeting and key players An important policy question in networked environ-
ments with strategic complementarities is how to optimally target individuals whose
removal or intervention most effectively reduces overall activity. Assuming a fixed
network g, the key player policy aims to identify the individual whose elimination
leads to the largest decrease in total equilibrium activity, defined as Y ∗(g) =

∑n
i=1 y

∗
i ,

where y∗i denotes the Nash equilibrium effort defined in (14). Under the condition
ϕµ1(G) < 1, the intercentrality or key-player centrality of individual i is defined as13

di(G, ϕ) =
bαi

(G, ϕ) b1i(G, ϕ)

mii

, (20)

where M(G, ϕ) = (I− ϕG)−1 and mii denotes its ith diagonal element. Ballester et al.
(2006) show that the key player is the individual with the highest intercentrality, that
is, i∗ = argmaxi di(G, ϕ).

Intercentrality measures both an individual’s own centrality and her contribution
to the centrality of others. Hence, the key player is not necessarily the most central
node but rather the one whose position amplifies activity throughout the network.
In empirical applications, such as criminal networks, removing or rehabilitating the
key player can substantially reduce aggregate delinquent behavior (Lee et al., 2021;
Lindquist et al., 2024; Giulietti et al., 2025). When the interaction strength ϕ is low,
the most central agent (by Bonacich centrality) often coincides with the key player,
but as ϕ increases, the two may diverge—highlighting the nonlinear relation between
structural position and systemic impact. This framework provides a microfounded
rationale for targeted network interventions in settings such as crime prevention,
education, or epidemic control.14

13For an overview on key player policies, see Zenou (2016).
14For a theoretical analysis on targeting based on welfare and subsidies, see Galeotti et al. (2020).
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4.2 Linear-quadratic network games: Local average

We now show that the game-theoretic foundation of the linear-in-means (LIM) model
corresponds to a network setting in which each agent’s best-response function is lin-
ear and depends on the average action of their peers. In particular, a variation of the
first-order condition in the Ballester et al. (2006) (BCZ) model leads naturally to a
LIM formulation.

Recall that the first-order condition of the BCZ model is given in equation (13).
This formulation is often referred to as the local aggregate model (Liu et al., 2014), as
each agent responds to the sum of efforts of their direct neighbors. The LIM model
can be written as:

yi = αi + ϕ

n∑
j=1

ĝijyj, (21)

where, as above, ĝij := gij/di and αi = xT
i δ + εi > 0, with xi being a (k × 1) vector

of observable characteristics, δ a (k × 1) coefficient vector, and εi an unobservable
individual-specific component. The term

∑n
j=1 ĝijyj represents the average effort of

individual i’s neighbors leaving out i.
Comparing equations (13) and (21), we see that the key distinction lies in the

peer component: the BCZ model uses the aggregate peer effort
∑n

j=1 gijyj, while the
LIM model uses the average peer effort

∑n
j=1 ĝijyj. This distinction reflects different

assumptions about how individuals process information from their social environ-
ment—either by summing or averaging the actions of their peers.

4.2.1 Microfoundations of the LIM model

Boucher et al. (2024) demonstrate that two distinct models can serve as microfoun-
dations for the linear-in-means (LIM) model.15 The first is the spillover model, which
closely resembles the BCZ framework but replaces the aggregate peer effort with the
average. The utility function in this case is given by:

ui(y,g) = αi yi −
1

2
y2i + ϕ

n∑
j=1

ĝijyiyj. (22)

The second is the conformist model, originally introduced by Akerlof (1997) and
later developed in network settings by Patacchini and Zenou (2012), Boucher (2016),

15See also Blume et al. (2015) and Boucher and Fortin (2016) for an earlier treatment.

19



and Ushchev and Zenou (2020). In this model, individuals derive disutility from de-
viating from the average behavior of their peers. The utility function takes the form:

ui(y,g) = αiyi −
1

2
y2i −

ϕ

2

(
yi −

n∑
j=1

ĝijyj

)2

. (23)

It is straightforward to verify that, under suitable normalization or variable trans-
formations, the first-order conditions derived from both models yield the LIM model
as defined in equation (21). These microfoundations help ground the LIM specifica-
tion in behavioral principles—either as the result of strategic complementarities in
average peer effort (spillover) or from a preference for conformity (conformist).

We can embed the two models together to obtain the following utility function:

ui(y,g) = αiyi + ϕ1yi

n∑
j=1

ĝijyj −
1

2

y2i + ϕ2

(
yi −

n∑
j=1

ĝijyj

)2
 . (24)

Let λ1 :=
ϕ1

1+ϕ2
and λ2 :=

ϕ2

1+ϕ2
. The best-reply function of individual i is then given by:

yi = (1− λ2)αi + (λ1 + λ2)
n∑

j=1

ĝijyj. (25)

This is the more general microfoundation for the LIM model.

5 Structural models of network formation

Four distinct approaches have been developed to structurally estimate the process of
network formation directly. The first introduces a theoretical framework that jointly
models agents’ effort choices and network formation, treating meetings within the
network as anonymous interactions. The second adopts a sequential structure in
which agents form links in the first stage and play an effort game in the second, under
the assumption that individuals take as given the expected actions of others when
forming social connections. The third constructs an econometric specification based
on a control-function approach to address potential endogeneity in link formation.
The fourth develops a dynamic network formation model that abstracts from effort
choices but allows for time-dependent interactions among individuals. Across all four
approaches, a key advantage of structural estimation is its ability to facilitate policy
evaluation through counterfactual analyses grounded in the underlying theoretical
framework.
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5.1 Anonymous network formation

We follow Boucher et al. (2021), who extend the utility function in equation (22) to
endogenize the process of link formation. Building on Cabrales et al. (2011), they
argue that a framework inspired by random networks provides a useful perspective
on network formation—one in which links emerge endogenously rather than through
a predetermined socialization process. In this setting, socializing does not correspond
to drawing up a nominal list of intended relationships, as in Jackson and Wolinsky
(1996).16 This modeling choice, which treats network formation as the outcome of
random meetings without earmarked socialization, greatly enhances the tractability
of the analysis. Unlike richer models of link formation, it allows for standard Nash
equilibrium analysis without the severe (combinatorial) multiplicity problems that
often plague more structural approaches.17

In this model, the utility of each agent i is still given by equation (22), but yi is
now interpreted as a socialization effort. The corresponding first-order condition is

yi = αi + ϕ
n∑

j=1

ĝijyj. (26)

The key innovation lies in the specification of the link-formation probability. The
probability that agent i befriends agent j is defined as

ĝij =
γijyiyj∑

k 1{k ∈ Ci(j)}
, (27)

where γij denotes the preference bias of i toward j, and Ci(j) captures congestion
effects. Specifically, Ci(j) is the set of agents (excluding i but including j) that are
comparable with j from i’s perspective—for example, individuals of the same ethnicity
or gender as j. The indicator function 1{k ∈ Ci(j)} equals 1 if agent k belongs to
Ci(j) and 0 otherwise. Equation (27) implies that the probability of a link between
i and j increases with i’s socialization effort yi, reflecting the fact that more sociable
individuals are more likely to form connections. The probability also depends on the

16See Sheng (2020) who provides a partial identification solution to the severe multiplicity prob-
lems in network formation using pairwise stability as a solution concept (Jackson and Wolinsky,
1996) and De Paula et al. (2018) who develop a framework for identifying preference parameters in
pairwise-stable network formation models by linking observed local network structures to underlying
preferences, deriving necessary and sufficient conditions for identification under bounded degree, and
proposing a quadratic programming algorithm to characterize the identified set.

17See also Canen et al. (2023) who structurally estimate a similar model in political economy.
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preference bias γij—capturing homophily in link formation—and is inversely related
to congestion, which reduces the likelihood of connection as the number of comparable
individuals increases.

Empirically, Boucher et al. (2021) estimate this system in two stages. Using a
GMM approach, they first estimate equation (26) to recover socialization efforts {yi}
and then substitute these estimated values into equation (27) to obtain estimates of
the link probabilities ĝij.

5.2 Endogenous social interactions under a network competi-
tive equilibrium

Battaglini et al. (2022) develop a model of endogenous network formation using a
new equilibrium concept: the Network Competitive Equilibrium (NCE). The model
unfolds in two stages. In the first stage, agents endogenously form links (network
formation); in the second, they engage in a network game of efforts following the local
aggregate specification introduced in Section 4.1. Each agent’s effectiveness, denoted
by Ei ∈ [0, 1), is defined as:

Ei = ρ

(∑
j

gijEj

)α

(yi)
1−α + εi, (28)

where ρ captures the intensity of spillover effects, and εi represents an idiosyncratic
component that affects agent i’s efficacy independently of her connections or effort.

5.2.1 Second stage: Effort choices

Each agent i chooses effort yi to maximize her utility:

ui(y,g) = Ei − cyi = ρ

(∑
j

gijEj

)α

(yi)
1−α + εi − cyi. (29)

Solving for yi and substituting into (28) yields:

Ei(ε,g) = εi + ϕ
n∑

j=1

gijEj(ε,g), (30)

where ϕ := ρ
(

(1−α)ρ
c

) 1−α
α . This expression is equivalent to (13), with Ei and εi replac-

ing yi and αi, respectively.
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5.2.2 First stage: Link formation

By substituting the equilibrium expression for Ei from (30) into (29), the equilibrium
utility becomes:

ui(y,g) = αϕ
∑
j

gijEj(ε,g) + εi −
∑
j

λ

1 + λ

(
gij
xij

) 1+λ
λ

, (31)

where the cost of establishing a link of intensity gij is given by:

C(gij, xij) =
λ

1 + λ

(
gij
xij

)1+ 1
λ

.

Here, xij captures homophily, i.e., the degree of compatibility between agents i and
j: the more similar they are, the lower the cost of forming a link. Each agent i then
chooses gi = (gi1, . . . , gin) to maximize ui(y,g). Since any link proposal gij > 0 is
always reciprocated, we have gji > 0. Solving this maximization problem, Battaglini
et al. (2022) obtain the following result.

Proposition 1. Consider an interior solution for g∗ij. A Network Competitive Equilib-
rium (NCE)18 exists and is characterized by a vector E∗ and a matrix G∗ that jointly
solve:  E∗

i = ϕ
∑

j g
∗
ijE

∗
j + εi,

g∗ij = (xij)
1+λ(αϕ)λ(E∗

j )
λ,

for all i, j ∈ N .

In this framework, agents’ effectivenesses cannot be represented by a linear sys-
tem of equations, unlike the familiar Katz–Bonacich formulation in (14). When gij

is endogenous, agent i optimally chooses gij to be proportional to (Ej)
λ. As λ → 0,

endogenous links become completely inelastic with respect to effectiveness, and g∗ij →
(xij)

1+λ. In that case, we recover the standard Katz–Bonacich representation of effec-
tiveness: if ϕµ1(G) < 1, then E = (I− ϕG)−1ε.19

Modeling both network formation and actions is inherently difficult due to the
combinatorial nature of link formation. As discussed in Section 5.1, Boucher et al.

18A NCE (y∗,E∗,G∗) satisfies: (i) network connections are optimal for each agent i at t = 1 given
E; (ii) effort levels are optimal for each agent i at t = 2 given E and G; (iii) the vector of effectiveness
levels satisfies the production function (28) given y and G.

19Battaglini et al. (2022) provide conditions for the uniqueness of the interior NCE using the Con-
traction Mapping Theorem.
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(2021) address this by assuming anonymous networks, where agents choose social-
ization efforts rather than targeting specific partners. In contrast, Battaglini et al.
(2022) overcome this challenge by introducing the concept of a Network Compet-
itive Equilibrium (NCE), analogous to general equilibrium analysis in economics.
Agents select their socialization efforts while taking others’ equilibrium effectiveness
as given—akin to “price-taking” behavior in competitive markets. These equilibrium
effectiveness levels must be jointly consistent with individual choices, leading to a
system of nonlinear equations that characterizes the NCE. Thus, when forming links,
agents disregard the indirect effects on others’ effectiveness.

This assumption allows the authors to exploit the analytical characterization of
equilibrium conditions for estimation. Because the structure of the model precludes
an explicit likelihood function, they employ an Approximate Bayesian Computation
approach to estimate parameters. Applying this methodology to data from the 109th–113th
U.S. Congresses, they find strong evidence that social connections significantly affect
legislative effectiveness.

Whereas the two previous approaches are grounded in game-theoretic founda-
tions, the next two models adopt a more econometric perspective.

5.3 Control function approach

Consider the model of Hsieh and Lee (2016), who, as in Section 5.1, add a network
formation model to the outcome equation (5). However, the mechanism of network
formation is very different. Following a control–function strategy in the spirit of
Goldsmith-Pinkham and Imbens (2013), they posit a latent trait zi that affects links
and is correlated with the outcome disturbance εi in the local–average model (5) ac-
cording to a bivariate normal distribution

(zi, ϵi) ∼ N

((
0

0

)
,

(
σ2
z σεz

σεz σ2
ε

))
,

where σ2
z captures the variance of z and σεz the covariance between ε and z.

Each agent i chooses to be friend with j according to a vector of observed and
unobserved characteristics in a standard link formation probabilistic model:

Pr(gij = 1 | xij, zi, zj, γ, υ) = Λ

(
γ0 +

∑
k

|x(k)
i − x

(k)
j | γk + |zi − zj| υ

)
,
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with Λ(·) logistic and υ < 0 (similarly γk < 0) encoding assortative matching. If
σεz ̸= 0 and υ ̸= 0, then gij is endogenous in the outcome equation; joint normality
implies E[εi | zi] = (σεz/σ

2
z) zi, yielding the augmented outcome equation of (5), given

by (assuming α = 0 for simplicity)

yi = ϕ
∑
j

ĝijyj + δ
∑
j

ĝijxj + γxi + η +
σεz

σ2
z

zi + vi,

where vi ∼ N
(
0, σ2

ε −
σ2
εz

σ2
z

)
and η is a network fixed effect. Identification in the baseline

case (with an exogenous network) relies on the exogeneity of x and the intransitivities
in Ĝ, such that Ĝ2x provides a valid exclusion restriction. In the extended model that
jointly considers network formation and outcomes, the dyadic regressors |xi−xj| enter
the link formation equation but are excluded from the outcome equation, thereby gen-
erating additional (nonlinear) exclusion restrictions. Because link decisions are inter-
dependent—reflecting friends-of-friends connections, clustering, and popularity—and
because the network state space grows exponentially with n (2n(n−1) in directed binary
graphs), likelihood-based estimation quickly becomes infeasible for even moderately
sized networks. Consequently, Hsieh and Lee (2016) estimate the joint link–outcome
system using Bayesian methods, where the latent variables zi and the structural pa-
rameters are sampled via a Markov Chain Monte Carlo procedure.20

5.4 Potential function approach

In the previous model, we assumed that the formation of links in a network was inde-
pendent across pairs of individuals, which is generally not true since there are often
be strong correlations across pairs in the presence of relationships. For example, peo-
ple meet each other through friends of friends, agents may benefit from the indirect
connections that others bring, people may wish to have their friends be friends with
each other, etc. Mele (2017), who only focuses on link formation and does not take
into account the outcome equation with efforts yi,21 develops such a model by assum-

20See also König et al. (2019), who estimate the adjacency matrix using a homophily-based net-
work formation model before incorporating it into the outcome equation; Battaglini et al. (2020), who
address network endogeneity through a Heckman correction that controls for individual-level unob-
served heterogeneity; and Hsieh et al. (2020), who develop a unified framework in which individuals
anticipate how the network structure influences the utility of their interactions when forming links.

21See Badev (2021), who models network formation using a potential approach while also incorpo-
rating peer effects in a binary outcome framework.

25



ing that the utility function of an agent i is given by

ui(x,g, θ) =
n∑

j=1

giju (xi, xj; θu) +
n∑

j=1

gijgjim (xi, xj; θm)

+
n∑

j=1

gij

n∑
k=1
k ̸=i,j

gjkv (xi, xk; θv) +
n∑

j=1

gij

n∑
k=1
k ̸=i,j

gkiw (xk, xj; θw) .

The key new terms are the last two terms, which capture the indirect connections
(i.e., when i is deciding whether to create a link to j, she observes j’s connections and
their socioeconomic characteristics) and the popularity of i (if individual i forms a link
to j, she automatically creates an indirect link for all the agents that already have a
link to i), respectively. By imposing mild symmetry restrictions on this utility func-
tion for direct, mutual, and indirect links so that the deterministic incentives admit
a potential function Q(x,g, θ); the sequential meeting process (one active agent per
period; meeting probability ρ(gt−1, xi, xj) > 0 independent of the current gij) induces
a stochastic best–response dynamics. Mele (2017) shows that, with i.i.d. Type I Ex-
treme Value preference shocks, the induced Markov chain on networks converges to
a unique stationary distribution,

π(x,g, θ) =
exp[Q(x,g, θ) ]∑
ω∈G exp[Q(x, ω; θ) ]

,

which belongs to the exponential family; when utilities are linear in parameters,
π(x,g, θ) is an Exponential Random Graph Model with sufficient statistics t(x,g),
thereby providing microfoundations for ERGMs as the stationary equilibrium of a
strategic formation game with myopic stochastic best responses. Empirically, Mele
(2017) is able to estimate this model using a standard Metropolis–Hastings algorithm
to sample from the posterior distribution. Table 1 summarizes the identification is-
sues and how we can address them.

6 Non-linear peer effects

Most empirical models of social interactions discussed above rely on strong simplify-
ing assumptions, typically assuming that each agent’s outcome is a linear function
of the average behavior of her peers. This linear-in-means (LIM) specification conve-
niently summarizes aggregate peer influence but imposes restrictive behavioral and
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Table 1: Identification Challenges and Solutions in Peer/Network Settings

Challenge Problem in brief Representative
solutions (what
they identify)

Model link

Reflection Group mean E(yr)
collinear with group

mean covariates

E(xr); endogenous

vs. contextual not

separable

(i) Network hetero-

geneity: use Ĝx, Ĝ2x

as IV; (ii) experimen-

tal/cohort variation.

LIM ↔ local-average

network game; ϕ

identified when

I, Ĝ, Ĝ2 are linearly

independent

Correlated effects Common shocks or

environments bias

peer coefficients even

without simultaneity

Network fixed ef-

fects; instruments

using friends-of-

friends’ x.

LIM ↔ local-average

network game; ϕ

identified when

I, Ĝ, Ĝ2, Ĝ3 are lin-

early independent

Sorting / endogenous

links

Unobserved traits

drive both links and

outcomes

(i) Within-school co-

hort composition; (ii)

Exposure to peers’

shocks; (iii) Ran-

dom assignment; (iv)

node/edge “failures”

(exogenous exits);

(v) structural link

formation (anony-

mous networks,

network compet-

itive equilibrium,

control-function, po-

tential/ERGM)

Endogenous Ĝ: joint

model for y and g
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structural assumptions. In particular, it rules out heterogeneity in the strength or di-
rection of peer effects and abstracts from the underlying microfoundations that shape
how individuals actually respond to their social environment. A key question, there-
fore, is how to model social interactions when peer influence is neither linear nor
solely driven by mean behavior.

Recent studies have explored alternative mechanisms in which individuals are
affected by specific members of their group rather than by the average. Some high-
light the influence of high achievers or “leaders” (Carrell et al., 2010; Tao and Lee,
2014; Dı́az et al., 2021; Jones and Christakis, 2024), while others emphasize the neg-
ative impact of low performers or “bad apples” (Bietenbeck, 2020), and a few con-
sider both types of effects (Hoxby and Weingarth, 2005; Tatsi, 2015). However, until
Boucher et al. (2024), a general theoretical framework capable of unifying these dif-
ferent cases had been lacking. From a policy perspective, identifying the relevant
social norm—whether it is anchored in high or low performers—is essential for de-
signing interventions that effectively target the most influential or disruptive indi-
viduals within social networks.

Boucher et al. (2024) develop a unified framework that extends the linear-in-
means (LIM) model by incorporating both spillover and conformity motives, while
allowing for flexible definitions of social norms. The utility function, which general-
izes (24) to accommodate an arbitrary social norm, is specified as:

ui(y,g) = αiyi + ϕ1yiỹ−i(β)−
1

2

[
y2i + ϕ2

(
yi − ỹ−i(β)

)2]
, (32)

where 0 ≤ ϕ1 < 1 captures the strength of spillovers, ϕ2 ≥ 0 measures the taste for
conformity, and ỹ−i(β) denotes agent i’s perceived social norm, defined as:

ỹ−i(β) =

(
n∑

j=1

ĝijy
β
j

)1/β

. (33)

This specification nests the LIM model as a special case with β = 1, where ỹ−i(β)

reduces to the average peer effort
∑n

j=1 ĝijyj. By varying β ∈ [−∞,+∞], it accommo-
dates a continuum of social norm definitions, ranging from focus on the lowest to the
highest peer actions.

To express best responses compactly, define λ1 = ϕ1

1+ϕ2
and λ2 = ϕ2

1+ϕ2
. The individ-

ual best-reply function becomes:

yi = (1− λ2)αi + (λ1 + λ2)

(
n∑

j=1

ĝijy
β
j

)1/β

. (34)
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This expression shows how heterogeneity and social norms jointly shape behav-
ior. Specific parameter restrictions yield familiar models: with λ1 = 0, only confor-
mity matters; with λ2 = 0, only spillovers matter. The framework thus unifies sev-
eral canonical peer-effect formulations and allows for nonlinear behavioral responses
driven by endogenous norms.

Using Generalized Method of Moments (GMM), the authors structurally estimate
this model on U.S. adolescent data (AddHealth). They find that, across various ac-
tivities, students respond not to average but to different peers from least- to top-
performing peers.

In the educational domain (measured by GPA),22 the estimated norm parameter
is β = 372, implying that students benchmark themselves against the best in their
network peers rather than the mean. To explore policy implications of this result,
Boucher et al. (2024) contrast optimal interventions under two regimes: the LIM case
(β = 1) and the general nonlinear norm model. The resulting policy prescriptions
differ sharply. Under LIM, optimal subsidies are nearly uniform, reflecting homoge-
neous marginal externalities. In contrast, with β = 372, many individuals receive no
transfer because they generate negligible spillovers, while a small group of influential
students receive substantial subsidies. When social norms are driven by low perform-
ers, targeted support to a few key agents can significantly shift the benchmark and
magnify aggregate welfare effects.

This comparison underscores the importance of accounting for the structure of
peer preferences when designing network-based policies.23 Table 2 summarizes the
policy implications of the non-linear peer model.

7 Multiplex networks: Multiple dimensions of peers

Another important but largely unexplored aspect of peer effects—at least within eco-
nomics24—is that individuals are simultaneously embedded in multiple networks and
engage in multiple types of interactions. In many real-world contexts, people par-
ticipate in multiplex networks, where the same set of actors are connected through

22To the extent that GPA can be directly mapped into effort choices.
23See also Houndetoungan (2025), who proposes a flexible structural framework to estimate nonlin-

ear peer effects across different quantiles of the peer outcome distribution.
24A notable exception is Chandrasekhar et al. (2024).
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Table 2: Nonlinear Social Norms: Which Peers Matter?

Norm parame-
ter

Behavioral meaning Estimation / policy impli-
cation

β = 1 (mean) Respond to average neigh-
bor action

Uniform targeting; LIM-like
subsidies

β → +∞
(max/leaders)

Benchmark top perform-
ers (“shining lights”)

Target few high-influence
nodes; big returns on lim-
ited transfers

β → −∞
(min/bad ap-
ples)

Benchmark worst per-
formers

Remedial targeting to low-
est performers; large wel-
fare gains from correcting
low tail

Mixed / esti-
mated β

Heterogeneous responses
across domains

Design norm-sensitive in-
terventions

several distinct types of relationships. For instance, in a workplace, employees may
be linked through a professional layer (collaboration on tasks), a friendship layer (so-
cializing outside work), and an advice layer (seeking or providing guidance). Behavior
in one layer often spills over to others: a highly productive worker who is also well
liked can simultaneously raise colleagues’ effort through both professional imitation
and social motivation. Similarly, in rural villages, households are connected through
credit, information, and kinship networks. Access to credit in the financial layer
may depend on trust formed in the social layer, while information about new agri-
cultural technologies diffuses more effectively when these layers overlap. In schools,
students are connected through academic, friendship, and extracurricular layers, so
a motivated student may influence peers not only by sharing study habits but also
by shaping social norms about effort and achievement. Across these examples, the
multiplex structure amplifies or dampens peer effects depending on whether the lay-
ers reinforce or counteract one another, thus shaping aggregate outcomes in complex
ways.
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7.1 Multiplex networks: Theory

Zenou and Zhou (2025) were among the first to formalize multiplex interactions within
network games. Specifically, they extend the framework of Ballester et al. (2006)
(hereafter BCZ), whose utility function is given by (11). They introduce a slight mod-
ification to this function to obtain

ui(y,g) = αiyi −
1

2
y2i + ϕ

n∑
j=1

gijyiyj −
c

2
(yi)

2. (35)

The only difference with (11) is the inclusion of an additional effort cost term. The
first-order conditions are then given by

yi =
1

1 + c
αi +

ϕ

1 + c

n∑
j=1

gijyj. (36)

As in the BCZ model, the Nash equilibrium can be solved in closed form. When
ϕλmax(G) < 1 + c, the unique interior equilibrium is

y =

[
In −

ϕ

1 + c
G

]−1
1

1 + c
α. (37)

Let µi := c yi denote the marginal cost of total effort. Then,

µ = cy = c

[
In −

ϕ

1 + c
G

]−1
1

1 + c
α. (38)

We can now extend the BCZ framework to a multiplex setting. For each layer
s ∈ S, let Gs = (gsij)1≤i,j≤n denote the adjacency matrix. The utility function of agent i
is then given by

uM
i (y,g) =

∑
s∈S

vs

(
αs
iy

s
i −

1

2
(ysi )

2 + ϕs
∑
j∈N

gsijy
s
i y

s
j

)
− c

2

(∑
s∈S

ysi

)2

, (39)

where vs > 0 represents the preference weight associated with layer s, ϕs > 0 is
the within-layer spillover parameter, and gsij denotes the social tie between i and
j in layer s. Zenou and Zhou (2025) show that a unique equilibrium exists if 1 −
λmax(G

s)ϕs > 0 holds for each layer s ∈ S. At an interior equilibrium, we have

ysi = αs
i + ϕs

∑
j∈N

gsijy
s
j −

c
∑

s∈S y
s
i

vs
. (40)

Let µi := c
∑

s∈S y
s
i denote the marginal cost of total effort. Then,

ys = [In − ϕsGs]−1

(
αs − 1

vs
µ∗
)

= Ms

(
αs − 1

vs
µ∗
)
, (41)

31



where Ms := [In − ϕsGs]−1. However, µ is now endogenous and satisfies the following
linear system of equations:

µ = c
∑
s∈S

y = c
∑
s∈S

Ms

(
αs − 1

vs
µ

)
. (42)

The key new equation is (42), which endogenously links the different layers to one
another through the common marginal cost of total effort, µ. In the monolayer model,
each network (or layer) is analyzed independently, as if the agent operated in a single
environment. Agents in each network respond only to local complementarities within
that layer, and there is no strategic interaction across layers. The cost parameter c

affects total effort, but it is treated separately in each layer, without any cross-layer
interdependence.

By contrast, in the multilayer model, agents choose efforts across all layers simul-
taneously, facing a total cost that depends on their aggregate effort across layers. In
this setting, the cost of effort becomes interdependent across layers: exerting effort in
one layer increases the marginal cost of exerting effort in another. Agents internalize
this interdependence and strategically allocate their efforts across layers, balancing
network complementarities against rising marginal costs of total effort.25

It is straightforward to modify this model to incorporate the local-average specifi-
cation instead of the local-aggregate one. Indeed, note that we can rewrite the utility
function in (39) by redefining the interaction parameter as ϕ′s = ϕs/dsi . All subsequent
derivations remain valid,26 and the equilibrium effort is still given by (40), but now
with ĝij = gij/di instead of gij.

7.2 Multiplex networks: Empirical considerations

The theoretical predictions derived from monolayer and multilayer network models
differ substantially. But what are their empirical implications? In this section, we
show that estimating each model yields fundamentally distinct econometric specifica-
tions, reflecting the structural differences inherent in the monolayer and multilayer
frameworks.

25An extension of this framework to non-linear peer effects in multiplex networks can be derived
using the approach in Section 6; see Zenou and Zhou (2024) for a detailed exposition.

26In the row-normalized network, λmax = 1, and thus, the spectral condition for existence and
uniqueness is equal to ϕs < 1, for each layer s.
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Consider first the monolayer model from the previous section, but with a row-
normalized network ĝ instead of g and a parameter ϕ̃ in place of ϕ. Then:

yi =
1

1 + c
αi +

ϕ̃

1 + c

n∑
j=1

ĝijyj. (43)

Let c = 1, define ϕ̃
1+c

:= ϕ, and set αi := 2
(
xT
i δi + ϵi

)
, where xi is a (k × 1) vector of

observable characteristics (a vector with superscript T indicates the transpose of this
vecxtor) and δi a (k × 1) coefficient vector. Equation (43) can then be rewritten as:

yi = xT
i δi + ϕ

∑
j

ĝijyj + εi. (44)

In contrast, the multilayer model features endogenous marginal costs that rise
with total effort. Consequently, the econometric specification must capture cross-
layer interactions—such as the total effort across layers (

∑
s y

s
i )—as determinants of

marginal cost or behavior.
Starting from the first-order conditions in equation (40), and assuming vs = 1, a

row-normalized network ĝs instead of gs, and ϕ̃s instead of ϕs, we obtain:

ysi =
αs
i

1 + c
+

ϕ̃s

1 + c

∑
j∈N

ĝsijy
s
j −

c

1 + c

∑
s′ ̸=s

ys
′

i . (45)

Let c = 1, define ϕ̃s

1+c
:= ϕs, set β = −1

2
, and specify αs

i := 2
(
(xs

i )
Tδs

i + ϵsi
)
. We allow the

observable and unobservable characteristics affecting a decision in one layer to differ
from those influencing decisions in another. The resulting econometric equation is:

ysi = (xs
i )

Tδs
i + ϕs

∑
j

ĝsijy
s
j + β

∑
s′ ̸=s

ys
′

i + ϵsi . (46)

We can generalize this specification by assuming that, in the multiplex model, the
cost function takes the form 1

2
(
∑

s c
sysi )

2. Under the same assumptions as above and
with βs′ = − cs

′

2
, the equation to be estimated becomes:

ysi = (xs
i )

Tδs
i + ϕs

∑
j

ĝsijy
s
j +

∑
s′ ̸=s

βs′ys
′

i + ϵsi . (47)

Since the actions ys
′

i in (47) are themselves determined by analogous equations, one
must estimate S equations if there are S layers. Estimating this system provides a
direct test for cross-layer crowding-out effects. A statistically significant coefficient
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βs′ indicates such effects, highlighting the role of multilayer networks in shaping
individual behavior.

Illustration. Consider the dataset on multiplexing patterns in Indian villages from
Chandrasekhar et al. (2024), based on Wave II data from 75 villages (Banerjee et al.,
2013, 2024). Suppose we focus on two layers: the social layer (s = 1)27 and the advice
layer (s′ = 2).28 Let y1i denote whether individual i adopts a microfinance program
(Banerjee et al., 2013), and y2i whether the same individual engages in informal bor-
rowing and risk sharing within the village (Banerjee et al., 2024). Then equation (47)
specializes to:  y1i = (x1

i )
Tδ1

i + ϕ1
∑

j ĝ
1
ijy

1
j + β2y2i + ϵ1i ,

y2i = (x2
i )

Tδ2
i + ϕ2

∑
j ĝ

2
ijy

2
j + β1y1i + ϵ2i .

(48)

Clearly, ĝ1ij need not equal ĝ2ij, since the individuals connected to i in layer 1 (close
relationships involving home visits) may differ from those in layer 2 (individuals from
whom i receives advice).

By jointly estimating the system in (48), we can test whether β1 and β2 are sta-
tistically significant, and thus assess whether the adoption of microfinance is driven
solely by peers’ behavior in the social network (layer 1) or also by informal borrow-
ing and risk-sharing decisions in the advice layer (layer 2). For identification, the
simplest approach is to apply an exclusion restriction. For instance, one may use an
observable characteristic in x1

i that is excluded from x2
i . When contextual effects are

included, such exclusion restrictions arise naturally, as Gsxs
i for layer s is excluded

from layer s′, given that Gs and Gs′ are, by definition, distinct.29

Table 3 summarizes the identification issues arising in multiplex network models
and how they can be (partially) addressed.

27“To whose home does the respondent go and who comes to their home, as well as which close
relatives live outside their household.”

28“To whom does the respondent give information or advice.”
29The identification strategy based on exclusion restrictions is closely related to that of Cohen-Cole

et al. (2018), who test a multi-activity network model (Chen et al., 2018). Their framework can be
viewed as a special case of our multiplexing model with two layers, where β1 = β2 = β and G1 = G2.
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Table 3: Empirical Tests of Multiplex Peer Effects

Specification Empirical Test Interpretation
Equation (44) Within-layer spillovers Baseline monolayer peer

effects
System of equa-
tions (47)

Cross-layer interactions
(crowding or complemen-
tarity)

βs′ < 0: shared-cost
crowding; βs′ > 0:
cross-layer complemen-
tarities

Instruments: Ĝsxs,
(Ĝs)2xs, and layer-
specific excluded
covariates

Exogeneity of peer expo-
sure across layers

Identification strategy
consistent with the
theoretical first-order
conditions

8 Conclusion

The empirical distinction between peer and network effects is more than semantic.
Group-average models are simple and intuitive but face fundamental identification
challenges without additional structural assumptions. Network-based models intro-
duce this structure by exploiting heterogeneity in connection patterns. This overview
shows how formal network frameworks deepen our understanding of social interac-
tions and clarify the conditions under which causal peer effects can be credibly iden-
tified. Embedding empirical strategies in theoretically grounded models not only dis-
entangles social influence from correlated or contextual effects but also provides a
foundation for policy evaluation through counterfactual analysis. By linking behav-
ioral mechanisms to observable network structures, these models guide the design
of targeted interventions—such as identifying key players or influential nodes—that
can magnify policy effectiveness.

By treating peer effects as equilibrium interactions within explicitly modeled net-
works, this survey transforms the traditional divide between reduced-form and struc-
tural approaches into a continuum. Researchers can begin with network-aided identi-
fication to separate endogenous and contextual effects, embed those estimates within
a network-game backbone to interpret magnitudes structurally, and use the same
framework to design targeted interventions. Extending this logic to nonlinear norms
and multiplex environments uncovers new dimensions of social influence: who shapes
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prevailing norms, how incentives propagate across layers, and where policy leverage
is greatest. The resulting synthesis offers a coherent toolbox for analyzing, interpret-
ing, and manipulating social interactions in networks.

Beyond the linear-in-means paradigm, individuals often respond to nonlinear and
context-dependent peer interactions rather than to group averages. Multiplex and
multilayer settings—where individuals engage simultaneously across social, profes-
sional, and financial domains—further expand the notion of “peers” and introduce
new identification challenges. Together, these insights offer a unified analytical frame-
work that connects theory, empirics, and policy, and point to promising directions for
future research on how social influence propagates within and across networks.

9 Future Directions

Nonlinear norms at scale. New administrative and digital-network data allow
for the estimation of which peers anchor norms (leaders versus laggards) and how
salience shifts after interventions. Embedding estimated β into counterfactual net-
work games can alter both policy targeting and welfare evaluations.

Multiplex policy design. When individuals allocate effort across multiple layers
with shared costs, single-layer interventions can backfire through cross-layer crowd-
ing. Designing and empirically testing coordinated, cross-layer policies remain an
open challenge.

Endogenous network responses. Most identification strategies treat the network
as exogenous. Yet policies—information shocks, subsidies, or sanctions—may them-
selves rewire the network. Estimable joint models of outcomes and link dynamics are
essential for credible counterfactuals.

Targeting beyond centrality. Key-player policies should be extended to include
norm-aware targeting, focusing on who most effectively shifts the social reference
norm rather than only on who is most central.
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Ballester, C., Calvó-Armengol, A., and Zenou, Y. (2006). Who’s who in networks.
wanted: The key player. Econometrica, 74(5):1403–1417.

Banerjee, A., Breza, E., Chandrasekhar, A. G., Duflo, E., Jackson, M. O., and Kinnan,
C. (2024). Changes in social network structure in response to exposure to formal
credit markets. Review of Economic Studies, 91(3):1331–1372.

Banerjee, A., Chandrasekhar, A., Duflo, E., and Jackson, M. (2013). The diffusion of
microfinance. Science, 341(6144):363–363.

Bassolas, A., Santoro, A., Sousa, S., Rognone, S., and Nicosia, V. (2022). Optimizing
the mitigation of epidemic spreading through targeted adoption of contact tracing
apps. Physical Review Research, 4(2):023092.

Battaglini, M., Patacchini, E., and Rainone, E. (2022). Endogenous social interactions
with unobserved networks. The Review of Economic Studies, 89(4):1694–1747.

Battaglini, M., Sciabolazza, V. L., and Patacchini, E. (2020). Effectiveness of con-
nected legislators. American Journal of Political Science, 64(4):739–756.

Bietenbeck, J. (2020). The long-term impacts of low-achieving childhood peers: Evi-
dence from project star. Journal of the European Economic Association, 18(1):392–
426.

37



Bifulco, R., Fletcher, J. M., and Ross, S. L. (2011). The effect of classmate charac-
teristics on post-secondary outcomes: Evidence from the add health. American
Economic Journal: Economic Policy, 3(1):25–53.

Blume, L. E., Brock, W. A., Durlauf, S. N., and Ioannides, Y. M. (2011). Identification
of social interactions. In Handbook of Social Economics, volume 1, pages 853–964.
Elsevier.

Blume, L. E., Brock, W. A., Durlauf, S. N., and Jayaraman, R. (2015). Linear social
interactions models. Journal of Political Economy, 123(2):444–496.

Bollobás, B. (2011). Random Graphs. 2nd edition, Cambridge: Cambridge University
Press.

Bonacich, P. (1987). Power and centrality: A family of measures. American Journal
of Sociology, 92(5):1170–1182.

Borusyak, K. and Hull, P. (2023). Nonrandom exposure to exogenous shocks. Econo-
metrica, 91(6):2155–2185.

Boucher, V. (2016). Conformism and self-selection in social networks. Journal of
Public Economics, 136:30–44.

Boucher, V. and Fortin, B. (2016). Some challenges in the empirics of the effects of net-
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De Paula, Á., Rasul, I., and Souza, P. C. (2025). Identifying network ties from panel
data: Theory and an application to tax competition. Review of Economic Studies,
92(4):2691–2729.
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