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Abstract

We study opinion dynamics in a social network consisting of two groups. Agents

update their opinions by conforming to members of their own group while reject-

ing the views of the opposing group (affective polarization), and by listening to a

media outlet that may provide biased information. We characterize the long-run

opinions and identify when affective polarization and media bias lead to ideolog-

ical polarization, persistent disagreement, or failures of learning. We also derive

when information interventions or censorship improve learning and reduce disagree-

ment, and when they backfire: better information helps only under specific media

bias configurations and when directed to the agents we identify as most effective at

propagating it through the network.
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1 Introduction

In 2013, NASA released data showing a clear decline in Arctic sea ice, underscoring the

urgency of climate action. Guilbeault et al. (2018) conducted a laboratory experiment to

study how liberals and conservatives interpreted this objective data. Liberals predicted

a further decline in sea ice, while conservatives saw it as evidence of an increase due

to a rebound in the most recent observations, illustrating polarization. The researchers

then facilitated discussions between both groups in social networks resembling a social

media platform and randomized participants in treatments with different information on

the political affiliation of their neighbors. When displaying political logos (Republican or

Democrat), participants remained entrenched in their original views and polarization per-

sisted. However, when political logos were not shown, cross-party interactions eliminated

belief polarization. By the end, both liberals and conservatives reached 90% accuracy in

their forecasts, with political differences largely disappearing.1 This shows how affective

polarization, i.e., the emotional attachment to the own group and hostility toward the

opposing one,2 shapes opinions and biases views on critical issues such as climate change.

The aim of this paper is to deepen the understanding of these issues by developing an

exogenous-network model of opinion dynamics with two distinct groups (e.g., Democrats

and Republicans). The model examines how affective polarization—in which individu-

als internalize the opinions of their group positively and those of the other group neg-

atively—and media outlets, represented as biased or unbiased sources of information,

impact the long-run opinions.3 We characterize the long-run opinions and establish con-

ditions under which affective polarization and media influence contribute to ideological

polarization or failure of learning, thereby guiding the formulation of effective policies.

Specifically, we investigate the opinion dynamics of individuals embedded in a signed

network, where society is divided into two groups. We model affective polarization by

assuming that individuals, at each time period, align their opinions with those of their

own group members (i.e., they positively average the opinions of their in-group peers);

conversely, they oppose the views of the other group (i.e., they negatively average the

opinions of their out-group peers). Together, these dynamics constitute what we refer to

1Djourelova et al. (2024) also provide evidence that exposure to the same disaster event increases
climate change and environmental concerns among liberals but decreases them among conservatives,
widening the ideological gap by 11–17%.

2Affective polarization refers to the “us vs. them” mentality among people with different political
beliefs, values, or attitudes, where opponents are not just seen as having different views but as morally
wrong or even evil (Iyengar et al., 2012). See Boxell et al. (2024) for cross-country evidence.

3In our model, media outlets include both traditional mass media (e.g., CNN, Fox News) and social
media platforms (e.g., Twitter, Facebook), which may provide biased or unbiased information. We assume
affective polarization exists, the interaction network is fixed, and exposure to media is exogenous. The
idea is that the opinions we focus on are not the reason the network exists so it can be taken as given.
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as in-group identity and out-group antagonism. In addition to peer influences, individuals

may also rely on a potentially biased source of information—such as partisan or neutral

media outlets.

We examine three distinct scenarios in which individuals form opinions about an un-

known state of the world. In the first scenario (case (i)), agents have no access to external

information and base their opinions solely on the aggregation of the opinions of others.

In the second scenario (case (ii)), individuals consider the opinions of other agents and

have access to an unbiased source of information (e.g., an impartial media outlet). In the

third scenario (case (iii)), individuals again consider the opinions of other agents but have

access to a group-specific biased source of information (e.g., a partisan media outlet).

In case (i), when agents form an opinion without having access to any source of infor-

mation, with affective polarization, we always observe in-group consensus and out-group

polarization. The long-run opinion of each agent is determined solely by the weighted

sum of the initial opinions of their direct and indirect connections. The weights, and thus

the influences of each agent’s initial opinion on others’ long-run opinions, are given by

the eigenvector centralities of the identity-interaction network, which is a signed, struc-

turally balanced network.4 Indeed, since each agent wants to be as close as possible to

the opinions of agents of the same group but as far as possible from those of agents of the

other group, the more central an agent j is in the network, the more agent i conforms to

(deviate from) j’s opinion in the long-run if she belongs to the same (other) group. Com-

pared to standard models of opinion dynamics (e.g., DeGroot, 1974; Golub and Jackson,

2010), introducing affective polarization leads to polarization of opinion between the two

groups, thereby preventing a consensus among all agents.

In case (ii), when agents have access to an unbiased source of information, long-run

opinions are independent of initial opinions. Prior studies (Jadbabaie et al., 2012; Molavi

et al., 2018) show that, in the absence of affective polarization, mild assumptions guaran-

tee that agents reach a consensus and aggregate information effectively. By contrast, we

show that affective polarization—whereby agents negatively incorporate out-group infor-

mation—leads to a failure of learning the truth, and can also foster ideological polarization

depending on the network structure. Long-run opinions converge to a vector proportional

to weighted Katz–Bonacich centrality in the identity-interaction network, which contains

both positive and negative links. Opinion leaders in this signed network—the individu-

als who better aggregate information—are generally not the same as in standard models:

4From the social-interaction network, we derive the identity-interaction matrix, which captures how
each agent’s opinion influences others depending on group identity. Its eigenvector centralities correspond
closely to the status measure for signed networks of Bonacich and Lloyd (2004), and our framework
provides a microfoundation for this measure in settings with negative relations. A network is structurally
balanced when all in-group links are positive and all out-group links are negative (Harary, 1953), as
observed, e.g., in online social networks (Guha et al., 2004).
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agents with many inter-group interactions face greater exposure to negative sentiment and

may therefore be the least accurate in aggregating information, despite being central in

the social network. These predictions align with experimental evidence: users endorsing

conspiracy theories tend to increase their engagement with conspiratorial content when

exposed to debunking posts (Zollo et al., 2017), while antisemitism instigated anti-market

culture among non-Jews in proximity to Jewish communities (Grosfeld et al., 2013).

In case (iii), when agents have a biased source of information, long-run opinions

depend on the biases and how they propagate in the network. Thus, the long-run opinion

of each agent is determined by a linear combination of the true state of the world and

the biases. In standard models, biases of opposite sign tend to cancel each other out,

while biases of the same sign tend to persist. By contrast, with affective polarization

opposite-sign biases tend to exacerbate each other, amplifying polarization; instead, same-

sign biases tend to cancel each other out, dampening the negative effect of affective

polarization on opinions. Surprisingly, biases may even lead to long-run opinions closer

to the truth than in case (ii), and reducing affective polarization does not necessarily

improve information aggregation, consistent with experimental evidence (Levy, 2021).

Then, we study policies that aim to improve learning and reduce disagreement. Un-

der affective polarization, information campaigns can backfire due to group antagonism.

Improving exposure to unbiased information (case (ii)) for only one group moves it closer

to the truth while pushing the other away, so this intervention may increase disagreement

unless both sides are reached. If the media outlets are sufficiently biased (case (iii)),

providing better information to the whole society is optimal only if the two groups are

exposed to biases in opposite directions; if instead the biases are aligned, only the more

biased one should be targeted. We also identify the agent to optimally target with more

accurate information, i.e., the one whose beliefs propagate maximally through the net-

work. Finally, we show that censorship can backfire as well: restricting extreme opinions

improves learning only when groups are on opposite sides of the truth, but may worsen

outcomes when both groups are on the same side. Overall, these results provide guidance

for designing policies that mitigate the effects of affective polarization.

This paper contributes to the literature on non-Bayesian opinion dynamics (DeGroot,

1974; Golub and Jackson, 2010, 2012; Jadbabaie et al., 2012; Molavi et al., 2018) by

introducing negative weights to model affective polarization. Relative to standard mod-

els, our framework explains how exposure to the opposing group or to partisan media

can increase polarization (Bail et al., 2018; Zollo et al., 2017) and that under affective

polarization information policies designed to curb misinformation may backfire.

Recent work studies negative relationships primarily as anti-conformism. For instance,

Buechel et al. (2015) model agents who average neighbors’ opinions but may misrepresent
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their own via conformity or anti-conformity, while Zhang et al. (2018) and Grabisch et al.

(2019) classify agents as conformist or anti-conformist. In contrast, our framework lets

agents’ desire to conform depend on both their own identity and that of the agent with

whom they interact. Shi et al. (2019) also study convergence in signed networks. Our

contribution is to introduce biased and unbiased media and study how they interact with

antagonistic links. This allows us to identify when affective polarization causes learning

failure and ideological polarization, and to derive novel policy implications. Finally, our

paper also contributes to the literature on the spread of misinformation in networks (Bloch

et al., 2018; Merlino et al., 2023; Della Lena, 2024) and polarization (Callander and

Carbajal, 2022; Campbell et al., 2025) by explicitly modeling out-group antagonism.

We also contribute to the literature on identity (Akerlof and Kranton, 2000; Shayo,

2020) and affective polarization (Iyengar et al., 2019). While identity has been widely

studied in economics, its role in opinion dynamics has received little attention. Work on

affective polarization typically focuses on partisan identity, i.e., the tendency of partisans

to view opponents negatively and co-partisans positively (Iyengar and Westwood, 2015),

but lacks a formal model explaining how affective polarization and social media jointly

shape ideological polarization. Understanding how affective polarization shapes opinions

is key to interpreting our results. Our predictions align with recent empirical evidence

(e.g., Guilbeault et al., 2018; Jenke, 2024; Lerman et al., 2024) and help reconcile seem-

ingly contradictory findings on whether exposure to opinion leaders or partisan media

mitigates or exacerbates polarization (Bail et al., 2018; Levy, 2021). Most importantly,

the framework provides a basis for designing policies to counteract the negative effects of

affective polarization and partisan media on ideological polarization.

The paper proceeds as follows. Section 2 presents the model. Section 3 states the

main results. Section 4 explores policy implications. Section 5 concludes. Appendix A

provides the microfoundations of our model. All proofs are in Appendix B.

2 Model

We consider a society where agents update their opinions about the true state of the world

θ∗ ∈ Θ ⊂ R by aggregating information from two sources: their social contacts (whose

opinions they may wish to conform to or reject) and, when available, a (potentially biased)

external source of information. Without loss of generality, we assume θ∗ ̸= 0.

Agents Agents are divided into two groups, C := {A,B}, with sizes nA and nB re-

spectively, such that nA + nB = n. We order the agents such that A = {1, ..., nA} and

B = {nA + 1, ..., n}, and denote the entire set of agents as N = {1, 2, ..., n}.
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Social Interactions Agents interact in a network of social interactions, represented by

an n × n non-negative matrix W . Each entry wC
ij ∈ [0, 1] indicates the extent to which

agent i ∈ C, with C ∈ {A,B} pays attention to the opinion of agent j, for each i, j ∈ N .

The social-interaction matrix W can be expressed as follows:

W :=

[
W AA W AB

WBA WBB

]
,

where W AB:= ((wA
ij)i∈A)j∈B ∈ [0, 1]n

A×nB
represents the interactions between an agent i

from group A and an agent j from group B. The other sub-matrices of W are interpreted

similarly, capturing the interactions within and between groups. We assume that the

network is strongly connected5 and that wC
ii > 0 for all i ∈ C, with C ∈ {A,B}, thereby

ensuring that each agent pays attention to their own opinion to some degree.6

Media Outlets Each agent i ∈ C, with C ∈ {A,B}, may have access to a potentially

biased source of information θCi (e.g., a media outlet) that could reveal the true state of

the world. We denote by wC
i the weight that agent i assigns to θCi —i.e, the degree to

which i pays attention to or is influenced by the information source. Thus, wC
i > 0 can

also be interpreted as the exogenous probability that i believes their source is unbiased. If

agents lack access to such a source (e.g., because the topic is not verifiable), then wC
i = 0.

We focus on the group bias in agents’ private signals, assuming that ξAi ≡ ξA for all

i ∈ A and ξBi ≡ ξB for all i ∈ B, i.e., all agents in a group have the same bias—for

example, because they have access to the same source of information. Thus, for each

agent i ∈ C, θCi ≡ θC = θ∗ + ξC . Let ξ =
(
ξA, ξB

)⊤
denote the bias vector. Thus, the

overall column vector of information sources can be defined as θ =
(
θA,θB

)⊤
= θ∗1+ ξ,

where 1 is the n-vector of ones. Similarly, all vectors in the model follow this structure,

starting with the first nA agents, followed by the nB = n − nA agents. For example,

w =
(
wA,wB

)⊤
is the vector representing exposure to possibly biased information.

Opinion Updating Let µC
i,t denote the opinion help by agent i ∈ C, with C ∈ {A,B},

at time t. The corresponding vector of all agents’ opinions is given by µt =
(
µA

t ,µ
B
t

)⊤
.

Agents update their opinions taking a weighted combination of opinions from their own

5Strong connectivity requires that every node can reach every other node through a (possibly directed)
sequence of links, regardless of whether interactions are positive or negative. While this assumption is not
satisfied in platforms such as Twitter/X, large-scale directed networks typically contain a giant strongly
connected component (Gabielkov et al., 2014). Our results apply to such components, which capture the
part of the network where sustained opinion exchange is possible.

6We later use these properties to show the convergence of the opinion dynamics to a steady state.
These are standard assumptions in the literature on opinion dynamics (see, e.g., Golub and Jackson,
2010). As we focus on the implications of affective polarization, we rely on these well-established results.
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group, the other group, and the (possibly biased) external source of information.

Following Tajfel and Turner (1979) and Akerlof and Kranton (2000), we assume agents

strongly identify with their own group, shaping whose opinions they seek to match: agents

align with their in-group while tending to disagree with the out-group. The opinion of

agent i ∈ C with C ∈ {A,B} then evolves according to the following equation:

µC
i,t = αC

i

∑
j∈C

wC
ijµ

C
j,t−1 + βC

i

∑
z∈Cc

wC
izµ

Cc

z,t−1 + wC
i θ

C , (1)

where Cc := C \C represents the complement of group C (e.g., Ac = B), αC
i ≥ 0 denotes

the intensity of the agent’s in-group identity, and βC
i ≤ 0 represents the intensity of

out-group antagonism. We assume that αC
i

∑
j∈C wC

ij + |βC
i |
∑

z∈Cc wC
iz + wC

i = 1.7

Defining ΛC := diag[(αC
i )i∈C ] and, ΓC := diag[(βC

i )i∈C ], for all C = {A,B}, the

opinions of agents of groups A and B evolve according to the following equations:

µA
t =ΛAW AAµA

t−1 + ΓAW ABµB
t−1 +wA ⊙ θA, (2)

µB
t =ΛBWBBµB

t−1 + ΓBWBAµA
t−1 +wB ⊙ θB, (3)

where ⊙ is the element-wise (Hadamard) product.

Identity-Interaction Matrix Given this process of opinion dynamics, from the social-

interaction matrix W we derive the identity-interaction matrix W̃ , which captures how

an agent’s opinion influences another’s based on their group identities, i.e.,

W̃ :=

[
ΛAW AA ΓAW AB

ΓBWBA ΛBWBB

]
with sign(W̃ ) =

[
+ −
− +

]
.

Each agent maintains positive (or zero) links with members of their own group and nega-

tive (or zero) links with members of the other group. By Theorem 3 in Harary (1953), the

matrix W̃ corresponds to a structurally balanced network—that is, a network in which

the product of the signs of the edges of any possible cycle in W̃ is positive.8 While not

needed for our main results, structural balance naturally emerges from negative intergroup

sentiments implied by affective polarization.

As a running example, Figure 1 depicts a ring network of six agents, A = {1, 2, 3}
7This normalization naturally results if agents share a given amount of time/attention to the different

sources of information, but they incorporate negatively the opinions of members from the opposing group.
Negative links result, e.g., if agents using the Bayes rule to update their beliefs. See Appendix A.

8There is a path among distinct nodes in the ordered sequence S := {1, 2, . . . ,K − 1,K} in W̃ if
w̃Ck

k,k+1 ̸= 0 for each k ∈ {1, . . . ,K − 1}, where Ck is the group of agent k. The sign of the path is the

sign of
∏K−1

k=1 w̃Ck

k,k+1. A cycle is a path that begins and ends at the same node, and its sign is defined as
the sign of the associated path.
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and B = {4, 5, 6}, with the corresponding social- and identity-interaction matrices; the

identity-interaction matrix is structurally balanced (see Appendix C for more details).

W =
1− w

3


1 1 0 0 0 1
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
1 0 0 0 1 1

 W̃ =
1− w

3


1 1 0 0 0 −1
1 1 1 0 0 0
0 1 1 −1 0 0
0 0 −1 1 1 0
0 0 0 1 1 1
−1 0 0 0 1 1



Figure 1: Ring network of six agents with groups A = {1, 2, 3} (red) and B = {4, 5, 6} (blue) with
αC
i = −βC

i = 1 and wC
i = w for all i ∈ C with C ∈ {A,B}. Dotted edges indicate negative links. The

social-interaction matrix W and the identity-interaction matrix W̃ are shown alongside the network.

We can now express equations (2) and (3) more compactly as follows:

µt = W̃µt−1 +w ⊙ θ. (4)

The first term on the right-hand side of (4) captures the influence of interpersonal opinion

exchanges in shaping beliefs, while the second term reflects the impact of the (un)biased

source of information. Hence, for any agent i ∈ C with C ∈ {A,B}, equation (1) becomes

µC
i,t =

∑
j∈C

w̃C
ijµ

C
j,t−1 +

∑
z∈Cc

w̃C
izµ

Cc

z,t−1 + wC
i (θ

∗ + ξC). (5)

Long run opinions We are interested in the long-run opinions of agents belonging to

the two groups. We denote the steady state value of the variables by suppressing the

index t. Thus, µC
i := limt→∞ µC

i,t is agent’s i opinion in the long run and µ :=
(
µC
)
C∈C

represents the vector of long-run opinions in society. Furthermore, let µ̄C :=
∑

i∈C µC
i

nC

represent the average long-run opinion within each group C ∈ {A,B}.

Centralities Let M̃ :=
(
I − W̃

)−1

=
∑+∞

k=0 W̃
k denote the Leontief inverse of the

identity-interaction matrix, which, under our assumptions, is well defined when agents

have access to media, as we show below. The generic element m̃C
ij measures the cumulative

influence of agent j on agent i ∈ C, with C ∈ {A,B}, through all walks in the network,

accounting for both positive in-group links and negative out-group links. We define the

vector of weighted (signed) Katz–Bonacich centralities in the identity-interaction network

as b̃ := b(W̃ ) = M̃w, with generic element for agent i ∈ C given by:

b̃Ci =
∑
j∈A

m̃C
ijw

A
j +

∑
k∈B

m̃C
ikw

B
k . (6)
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To emphasize the role of group interactions in bias propagation, we also define the con-

tributions from each group separately:

b̃CA
i =

∑
j∈A

m̃C
ijw

A
j , and b̃CB

i =
∑
k∈B

m̃C
ikw

B
k , (7)

so that b̃Ci = b̃CA
i + b̃CB

i and the total centrality vector can be compactly expressed as

b̃ =

[
b̃A

b̃B

]
=

[
b̃AA + b̃AB

b̃BA + b̃BB

]
. (8)

As we show below, if instead no agent has media access, i.e., wC
i = 0 for all i ∈ N , the

assumption αC
i

∑
j∈C wC

ij+ |βC
i |
∑

z∈Cc wC
iz = 1, together with structurally balance, implies

that W̃ has its largest eigenvalue equal to 1. Thus, we can define the left eigenvector

corresponding to the eigenvalue 1 of matrix W̃ as π̃ := π(W̃ ) = (π̃C
i )i∈N . Intuitively, π̃

C
i

captures the influence of agent i in the signed network. Its signs identify the two groups:

positive entries correspond to the own group and negative entries to the other.

Two points are worth noting. First, eigenvector and Katz-Bonacich centralities cap-

ture different notions of network influence: eigenvector centrality emphasizes recursive

importance through connections to other central nodes, while the weighted Katz-Bonacich

incorporates the exposure to exogenous sources of information (the media outlets) and

discounts more heavily influence that travels through longer walks. Second, while the

measures on unsigned matrices are always positive (Jackson, 2008), those based on the

identity-interaction matrix W̃ can be positive or negative due to positive in-group and

negative out-group links; thus, a node influential in W need not be influential in W̃ .

Table C-1 in Appendix C illustrates this for the ring network.

Ideological polarization and disagreement We say that society exhibits ideological

polarization when, in the long run, the opinions of the two groups systematically differ.

Recall that µC
i denotes the long-run opinion of agent i ∈ C, with C ∈ {A,B}. Then:

Definition 1 A society exhibits ideological polarization if there exists a value y such

that sign(µA
i − y) ̸= sign(µB

j − y) for all i ∈ A and j ∈ B. We measure the degree of

ideological polarization by the distance between the two groups’ average opinions, |µ̄A−µ̄B|.

We say that a group or society exhibits disagreement when its members hold differing

opinions. If all members share the same opinion, the variance equals zero, indicating

consensus. Conversely, when opinions diverge, the variance becomes positive, signaling

disagreement. Formally:

8



Definition 2 A society (group) exhibits disagreement if long-run opinions are not iden-

tical in it, i.e., if V ar[µ] > 0 (V ar[µC ] > 0 for group C ∈ {A,B}). We measure the

degree of disagreement by the variance of long-run opinions, i.e., V ar[µ] (V ar[µC ]).

(a) Ideological polarization and disagreement
(ξA = −ξB)

(b) Disagreement without ideological polar-
ization (ξA = ξB)

Figure 2: Ideological polarization vs disagreement: Opinion dynamics for the blue and red groups in the
ring network of Figure 1 with the same initial opinions but different media biases.

To illustrate these concepts, Figure 2 shows two examples of opinion dynamics in the

ring network of Figure 1. In both cases, long-run disagreement arises within and across

groups, but ideological polarization is present only in panel (a).

Microfoundations In Appendix A, we provide several microfoundations for the up-

dating rule (5). In the first, we interpret µt as opinions. Bayesian agents exhibit two

cognitive biases: persuasion bias, whereby they fail to properly account for repetition in

the information they receive (DeMarzo et al., 2003); and zero-sum thinking, the belief

that gains for one group necessarily come at the expense of the other (e.g., Chinoy et al.,

2025). Under zero-sum thinking, when an agent observes an out-group member express-

ing a positive view about a policy, they interpret it as evidence that the policy benefits

the out-group at their own group’s expense and adjust their opinion in the opposite di-

rection. A positive view expressed by an in-group member is taken as evidence that the

policy benefits their own group, raising their opinion. Under these biases, after receiving

a private noisy signal about the policy’s effect, each agent updates their opinion via peer

interactions and public information; then (5) follows.

If we interpret µt as behaviors, actions, voiced opinions, or attitudes, (5) corresponds

to myopic best-response dynamics in network games with both positive and negative

spillovers, arising from in-group conformity and out-group differentiation (e.g., political

voiced opinions) or peer pressure (e.g., recycling).
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3 Main results

In this section, we compare opinion dynamics with and without antagonism in three

distinct informational environments:

(i) No Information (wC
i = 0 for each i ∈ C, C ∈ {A,B}) Agents have no access to

external information. This corresponds to debates on issues without an objective

truth (e.g., ethical dilemmas such as abortion) or where data are unavailable (e.g.,

a vaccine before large-scale rollout).

(ii) Unbiased Source (wC
i > 0 for i ∈ C, C ∈ {A,B}, ξA = ξB = 0) Agents observe

a neutral, identity-independent source, such as factual or scientific evidence. This

represents settings where all individuals receive the same objective information—for

example, scientific data on vaccine efficacy in reducing COVID-19 mortality.

(iii) Biased Sources (wC
i > 0 for i ∈ C, C ∈ {A,B}, ξA ̸= 0, ξB ̸= 0) Agents consume

partisan information aligned with their group identity, reflecting selective media

exposure—for instance, Republicans following Fox News and Democrats or Liberals

preferring MSNBC or CNN.

3.1 Opinion dynamics with affective polarization

Our main result is summarized in the following theorem.

Theorem 1 The opinions dynamics defined in equation (4) always converges to a unique

long-run opinion vector µ := limt→∞µt. Moreover,

(i) (No information) If there is no source of information, for all i ∈ A and j ∈ B,

long-run opinions are equal toµA
i ≡ µA = π̃⊤µ0,

µB
j ≡ µB = −µA.

(9)

(ii) (Unbiased information) If agents have access to an unbiased source of informa-

tion, for each i ∈ C, with C ∈ {A,B}, long-run opinions are given by

µC
i = b̃Ci θ

∗. (10)

(iii) (Biased information) If agents have access to a biased source of information, for

each i ∈ C, with C ∈ {A,B}, long-run opinions are equal to

µC
i = b̃Ci θ∗ + b̃CA

i ξA + b̃CB
i ξB. (11)
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Opinions always converge to a unique value. This follows from the strong connectivity of

the network, the normalization of individuals’ weights over information sources, and the

fact that agents place a positive weight on their own past opinion and/or the media outlet.

Under these assumptions, the spectral properties of the identity-interaction matrix ensure

that both the eigenvector and Katz-Bonacich centralities are well-defined.9

Consider case (i). When there is no available source of information (or no true state

of the world), affective polarization generates a sharp divergence in opinions between

agents belonging to different groups. Regardless of the network structure or the initial

distribution of opinions, in-group consensus and out-group polarization emerge. Hence,

while an agent’s network position (captured by their eigenvector centrality) determines

how their initial opinion contributes to the group’s long-run opinion, all agents within the

same group ultimately share identical views, with no within-group disagreement.10

This pattern is consistent with highly polarized moral debates, where no objective or

testable truth exists and opinions reflect values, emotions, group identity, and affective

polarization. Evidence from social media confirms this for debates about abortion: follow-

ing the June 2022 overturning of Roe vs. Wade, Lerman et al. (2024) show that liberals

and conservatives formed two distinct clusters on Twitter, with supportive interactions

within groups and negative sentiment across them.

Next, consider case (ii), where agents value information about the state of the world

and are exposed to an unbiased source, θ∗. Despite receiving accurate information, affec-

tive polarization causes agents to reject the opinions of the opposing group. As a result,

even identical views across groups are weighted negatively, distorting perceptions of the

true state of the world. In this setting, each agent’s long-run opinion equals θ∗ times

her Katz–Bonacich centrality in W̃, which is strictly below one. This centrality there-

fore measures how efficiently the agent aggregates information. The closer, in this sense,

she is to members of the other group—measured by the cumulative strength of direct

and indirect paths connecting them—the lower her centrality, as negative links attenuate

the contributions along those paths. Intuitively, an agent with more connections to the

out-group relies more heavily on negatively-weighted information, which pulls her opinion

away from the truth. The next proposition formalizes these facts.

Proposition 1 When agents are exposed to an unbiased source of information (case (ii)),

affective polarization leads to learning failure. Additionally, agents with more (direct and

indirect) exposure to the other group are farther away from the truth.

9In our model, W̃ has spectral radius equal to one in case (i), guaranteeing that the eigenvector
centralities are well-defined, and lower than one in cases (ii) and (iii), guaranteeing that the Neumann
series,

∑+∞
k=0 W̃

k, leading to Katz-Bonacich centralities converges.
10A similar result has been obtained by Shi et al. (2019).
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Case (ii) captures contexts where individuals, regardless of identity, have access to

credible information (e.g., scientific evidence or neutral media). Here, affective polariza-

tion does not necessarily induce ideological polarization, as in case (i), but it hampers

collective learning and information aggregation.

Political and scientific debates often illustrate the pattern of case (ii): partisan hos-

tility or group rivalry prevents agents from fully processing valid information, leading to

persistent disagreement despite unbiased evidence. For example, the retweet network of

COVID-19 discussions during the first months of the pandemic contained many small

clusters, and these divisions did not coalesce into the kind of entrenched, binary ideolog-

ical camps seen in case (i) (Lerman et al., 2024). This empirical pattern is consistent

with the heterogeneous opinion structure µ = b̃ . θ∗, where opinion variation is driven by

agents’ differing network centralities rather than a simple group-wide split.

Lastly, consider case (iii). In this scenario, long-run opinions also depend on the biases,

ξC , and how they propagate in the network, as governed by the matrix M̃ . Specifically,

the long-run opinion of agent i is a linear combination of the true state of the world, θ∗,

and the biases, as expressed by equation (11). These biases are internalized by agents

either positively or negatively, depending on whether they originate from their own or the

opposing group. Consequently, from a social learning perspective, it is more desirable for

the two groups to be biased in the same direction (e.g., ξA = ξB > 0) than in opposite

directions (e.g., ξA = −ξB > 0). In other words, when media outlets share biases of the

same sign but differ in narrative,11 they can mitigate the adverse effects of out-group

antagonism, reducing ideological polarization and disagreement and improving learning

than if the biases were of opposite sign. Interestingly, this may lead to long-run opinions

being closer to the truth than in case (ii), where no bias exists.

Proposition 2 When agents are exposed to biased information (case (iii)), affective po-

larization reinforces biases of opposite sign and mitigates those of the same sign. More-

over, agents’ opinions may be closer to the truth than under unbiased information.

Studies on COVID-19 show that exposure to biased information from partisan media

increased political polarization (Jungkunz, 2021), as individuals disproportionately relied

on news aligned with their ideological identity, reinforcing disagreement across political

groups (Strydhorst et al., 2023). Research documenting these patterns highlights the role

of partisan information environments in amplifying political divides during the pandemic

11A real-world example is trade policy: Republican-leaning media (e.g., Fox News) highlight harm
to U.S. workers, while Democratic-leaning outlets (e.g., MSNBC) emphasize social and environmental
dumping. A second example comes from antitrust debates: left-leaning media stress inequality and worker
exploitation, whereas right-leaning outlets focus on market fairness. In both cases, the two media outlets
disseminate information through different narratives, but biased in the same directions.
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(Motta et al., 2020). Additionally, affective polarization drives selective belief formation.

Combining observational data and a survey experiment, Jenke (2024) shows that individu-

als are inclined to accept in-party misinformation and to reject out-party misinformation.

Thus, antagonism can act as a filter against out-party misinformation, which should be

taken into account when designing policies, as we show in Section 4.

3.2 Opinion dynamics without affective polarization

To highlight our findings, we compare Theorem 1 with a benchmark model without out-

group antagonism, in which βC
i ≥ 0 for all i ∈ C, with C ∈ {A,B}. For this benchmark,

let W̃+ := (|w̃C
ij |)i,j∈N , and define π̃+ := π(W̃+) = (π̃C+

i )i∈N the associated eigenvector

centrality and b̃+ := b(W̃+) the associated Katz–Bonacich centrality vector, where the

elements are defined as in equations (6), (7), and (8). Since the functional forms of these

centralities are unchanged, the superscript “+” simply identifies the corresponding objects

in the model without out-group antagonism.12

Theorem 2 The opinion dynamics defined in equation (4) with αC
i > 0, βC

i ≥ 0, for all

i ∈ C, with C ∈ {A,B}, always converges to a unique µ. Furthermore:

(i) (No information) (Golub and Jackson, 2010) If there is no media outlet, then

µC
i ≡ µ for all i ∈ C, with C ∈ {A,B}, where

µ =
∑
j∈N

π̃C+
j µC

j,0. (12)

(ii) (Unbiased information) (Jadbabaie et al., 2012) If agents have access to an un-

biased source of information, then µC
i ≡ µ for all i ∈ C, with C ∈ {A,B}, where

µ = θ∗. (13)

(iii) (Biased information) (Friedkin and Johnsen, 1990) If agents have access to a

biased source of information, then, for each i ∈ C, with C ∈ {A,B}, long-run

opinions are equal to

µC
i = b̃C+

i θ∗ + b̃CA+
i ξA + b̃CB+

i ξB. (14)

Theorem 2(i) corresponds to the standard DeGroot model of opinion updating based

on neighbors’ average opinions (DeGroot, 1974; Golub and Jackson, 2010). Without out-

group antagonism, agents’ opinions always converge to a single long-run value, resulting

12See the proof of Theorem 2 for the formal definition of these centralities.
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in societal consensus. As shown by Golub and Jackson (2010), long-run opinions are a

weighted average of the initial opinions, where each agent’s weight corresponds to their

eigenvector centrality (see equation (12)). Furthermore, if initial opinions are indepen-

dently distributed with mean θ∗, and the network is balanced and satisfies the minimal

out-dispersion property, long-run opinions converge to the true state of the world.13 This

highlights the critical role of out-group antagonism in the emergence of ideological polar-

ization in the society, especially when agents have no access to external information.

Theorem 2(ii) parallels the findings of Jadbabaie et al. (2012). They show that when

agents have access to an unbiased source of information, consensus on the truth is always

reached, regardless of initial opinions or network structure (provided that the network is

strongly connected). Comparing the long-run opinions in (13) with those in (10) (Theo-

rem 1) reveals that group antagonism introduces distortions that hinder both learning of

the true state of the world and the achievement of consensus. Once out-group antagonism

is introduced, long-run opinions deviate from the truth θ∗, and this divergence increases

with the strength of antagonism.

Theorem 2(iii) corresponds to a setting with a biased information source, consistent

with the findings of Friedkin and Johnsen (1990). The functional form of long-run opinions

in (14) remains as in Theorem 1, but the Katz–Bonacich centralities are now computed

over a non-signed network, implying that agents internalize the biases of both groups with

positive weights. Consequently, in the absence of out-group antagonism, negatively corre-

lated biases enable agents to internalize opposing perspectives through social interactions,

partially offsetting their own bias and reducing its overall effect. When such opposing

biases balance each other, the average opinion in society moves closer to the truth. Con-

versely, when biases are aligned in the same direction, they reinforce one another and

persist. Hence, without out-group antagonism, negatively correlated group biases tend

to yield more accurate societal beliefs. By contrast, while out-group antagonism always

distorts learning with unbiased media (case (ii)), when biases are present (case (iii)), the

impact of antagonism depends on the correlation of group biases: negatively correlated

biases imply more polarization than positively correlated biases.

Figure 3 compares long-run opinions from Theorem 1 (with group antagonism) and

Theorem 2 (without antagonism) for different values of βC
i and when θ∗ = 1. Each panel,

based on the ring network in Figure 1, shows how opinions vary with the information

structure and the strength of inter-group interactions: β = 0 represents no interaction

13A network is balanced if no family can receive infinitely more weight from the remaining agents than
it gives. It satisfies the minimal out-dispersion property if any sufficiently large finite family allocates at
least some minimal weight to nearly all of society. In Golub and Jackson (2010), a family is defined as
a collection of agents that may be changing and growing as the society expands. For formal definitions
and a detailed discussion, see Golub and Jackson (2010).
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between groups; β > 0 corresponds to the benchmark without antagonism (Theorem 2),

while β < 0 captures out-group antagonism (Theorem 1), with more negative values

indicating stronger antagonism.

(a) No information (b) Unbiased information

(c) Same-sign biases (ξA = ξB = 0.5) (d) Opposite-sign biases (ξA = −ξB =
0.5)

Figure 3: Long-run opinions in the ring network with and without out-group antagonism. The green
dotted line (if present) represents the true state of the world, θ∗ = 1.

The general pattern displayed in Figure 3 mirrors the experimental evidence in Guil-

beault et al. (2018), where displaying political logos prevents information aggregation and

consensus, while removing the logos—and thus eliminating antagonistic reactions—allows

subjects to better aggregate information and their opinions tend to converge. Our model

displays a similar qualitative contrast. With group antagonism, disagreement persists

and long-run opinions may move further from the truth and display polarization; with-

out antagonism, social interactions favor opinion aggregation and consensus even under

different informational environments. In this sense, our model shows how antagonism in-

teracts with the structure of information to determine whether social interactions promote

consensus or disagreement.

In particular, Panel (a) of Figure 3 (no information) shows that out-group antagonism

is crucial for the emergence of ideological polarization when agents lack external infor-

mation. In panel (b) (unbiased information), once antagonism appears (β < 0), long-run

opinions begin to deviate from the truth θ∗, with stronger antagonism leading to greater

divergence. Panels (c) and (d) of Figure 3 illustrate the case of biased information. In
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panel (c), the biases have the same sign (ξA = ξB = 0.5). When affective polarization is

present (β < 0), out-group antagonism partially counteracts positively correlated misin-

formation, bringing long-run opinions closer to the truth θ∗; in contrast, when β > 0, the

two biases reinforce each other and generate a consensus far away from θ∗. In panel (d),

the groups receive biases of opposite sign (ξA = 0.5 and ξB = −0.5). Under conformity

(β > 0), these opposing distortions cancel out, and the average opinion aligns closely with

the truth. When affective polarization emerges (β < 0), however, antagonism prevents

this cancellation, disagreement rises, and the average opinion moves further from θ∗ as β

becomes more negative.

Table 1 summarizes these results, highlighting the impact of the information structure

and the presence or absence of out-group antagonism.

Out-Group Antagonism No Out-Group Antagonism

(i) No information In-group consensus Consensus
Out-group polarization

(ii) Unbiased source Disagreement and Consensus and
of information failure of learning learning

(iii.1) Same-sign biased Reduced distance No reduced distance
sources of information from the truth from the truth

(iii.2) Opposite-sign biased Increased Reduced distance
sources of information Polarization from the truth

Table 1: Opinion dynamics with and without out-group antagonism

4 Policy implications

In this section, we examine how policies that enhance the accuracy of information available

to one or both groups influence outcomes. We also consider interventions targeting specific

individuals and censorship. Our analysis focuses on two key outcomes: the distance from

the truth and the degree of disagreement between groups.14

4.1 Information campaigns

In many countries, information campaigns or media coverage on issues such as vaccination,

climate change, or immigration often lead individuals to interpret messages differently and

respond in opposing ways (Djourelova et al., 2024; Egorov et al., 2025; Grossman et al.,

2020; Schneider-Strawczynski and Valette, 2025). Our model captures these heterogeneous

14Designing policies to maximize welfare requires committing to a specific microfoundation, as each
assumes a different utility function, leading to distinct welfare definitions and policy implications.
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reactions. In particular, it allows us to derive the conditions under which providing better

information improves learning.

Consider first the case in which information campaigns are unbiased (Theorem 1(ii)),

such as government advertising on the societal benefits of vaccination or recycling. It is

natural to assume that only one group pays attention to the campaign, namely the group

politically aligned with the government. Formally, the campaign increases the attention

that all agents in group C ∈ {A,B} pay to the unbiased information source—while all the

other weights are proportionally reduced—such that for all i ∈ C, wC′
i > wC

i , where wC′
i

denotes the post-campaign weight assigned to the unbiased source. For all agents j ∈ Cc,

the weights remain unchanged, i.e., wCc′
j = wCc

j . The next proposition shows that, due to

affective polarization, the campaign has opposite effects on the two groups.

Proposition 3 If agents are exposed to an unbiased source of information (case (ii)),

increasing this exposure for one group moves its opinions closer to the truth but pushes

those of the other group further away.

This proposition implies that focusing on individuals already inclined toward the desired

behavior—for example, motivating environmentally conscious individuals to recycle more

(as in Ellen et al., 1991)—may backfire by eliciting opposite reactions among others.

Thus, the effect of such a policy on average learning in society is ambiguous. Hence,

information campaigns should aim to persuade both groups by offering differentiated

messages tailored to distinct political orientations, as shown by (Kidwell et al., 2013) in

the context of recycling.

We now turn to information campaigns in the presence of biased media outlets (The-

orem 1(iii)). In this setting, we examine the effects of a policy aimed at reducing media

bias. The next proposition characterizes the conditions under which providing marginally

more accurate information to one of the two groups—i.e., reducing |ξA| or |ξB|—enhances

learning and lowers disagreement in society as a whole.

Proposition 4 If agents are exposed to biased sources of information (case (iii)), for each

C ∈ {A,B}, there exist two weakly increasing piecewise-linear functions, fC(·) (convex)

and gC(·) (concave), such that:

(a) If ξC > 0, providing marginally more accurate information to group C improves

learning for both groups and decreases disagreement in society if and only if ξC >

fC(ξC
c
).

(b) If ξC < 0, providing marginally more accurate information to group C improves

learning for both groups and decreases disagreement in society if and only if ξC <

gC(ξC
c
).
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Proposition 4 characterizes when providing more accurate information to a group

improves learning for both groups and reduces societal disagreement. The key insight is

that interventions are most effective when the targeted group’s bias is sufficiently extreme

compared to the other group. For a group C with positive bias (ξC > 0, part (a)),

improving information accuracy benefits society when ξC > fC(ξC
c
). For a group with

negative bias (ξC < 0, part (b)), the intervention is beneficial when ξC < gC(ξC
c
).

The functions fC(·) and gC(·) define the critical thresholds for successful intervention.
These functions delimit the parameter regions where information provision has a positive

effect for learning in group A, learning in group B, and overall disagreement. For each

outcome, the corresponding condition defines to a line in the (ξA, ξB) plane, since opinions

are linear in biases. The upper and lower envelopes of these lines define, respectively, the

convex function fC(·) and the concave function gC(·), separating regions where greater

information accuracy improves outcomes from those where it may be counterproductive.

These regions are illustrated by the colored areas in Figure 4. In panel (a), the

red region identifies the parameter values for which improving information for group A

enhances average learning in both groups and reduces disagreement. The blue region in

panel (b) identifies the analogous parameter values for interventions targeting group B.

The white regions indicate cases in which the intervention backfires along at least one

dimension.

(a) Red: ξA > fA(ξB), ξA < gA(ξB) (b) Blue: ξA > (fB)−1(ξB), ξA < (gB)−1(ξB)

Figure 4: Regions where providing more accurate information to group A (panel (a)) or group B (panel
(b)) improves average learning in both groups and reduces disagreement.

When biases are positively correlated (ξA and ξB have the same sign), the conditions of

Proposition 4 conflict. For instance, if both are positive, we need ξA > fA(ξB) if targeting

group A, a constraint that holds only if biases differ sufficiently (the red region in Figure

5). Analogously, we need ξB > fB(ξA) if targeting group B (or, ξA < (fB)−1(ξB), the
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blue region of Figure 5). Hence, improving both groups’ information would generate

counteracting forces. Intuitively, correcting one group’s bias makes it more moderate, but

the other group—observing this through group antagonism—reacts by becoming more

extreme, potentially worsening overall learning.

When biases are negatively correlated (ξA and ξB have opposite signs), the conditions

in Proposition 4 align. For instance, with ξA > 0, if both ξA > fA(ξB) and ξB <

gB(ξA) (i.e., ξA > (gB)−1(ξB)) hold, then improving information for either or both groups

enhances learning and reduces disagreement (the purple regions in Figure 5). This occurs

because correcting one group’s upward bias complements correcting the other group’s

downward bias—both corrections push the average opinion toward the truth, making

interventions beneficial when biases are sufficiently large.

Corollary 1 formalizes the key insight on simultaneous interventions.

Figure 5: Optimal information-provision policy in the (ξB, ξA) space. Regions show when
providing more accurate information improves learning and reduce disagreement. Purple areas:
improving information for either or both groups A and B is beneficial. Red areas: improving
only A’s information is effective without backfire. Blue areas: improving only B’s information
is effective without backfire. White areas: improving information for either group backfires on
learning or disagreement.

Corollary 1 If agents are exposed to biased sources of information (case (iii)), providing

better information to both groups improves learning and disagreement for the whole society

if and only if sign(ξB) ̸= sign(ξA) and the magnitude of biases is large enough—i.e.,

ξA > max{fA(ξB), (gB)−1(ξB)} when ξA > 0.

Overall, Proposition 4 and Corollary 1 show that when group biases have opposite

signs, improving information for one or both groups improves learning and reduces dis-

agreement, provided that the biases are sufficiently large. When biases share the same

sign, such interventions are more likely to backfire: better information benefits society

only when the gap between biases is wide enough and the more biased group is targeted.
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These results shed light on how malevolent actors seek to harm learning and social

cohesion. Misinformation campaigns circulate false or misleading content, distort facts,

or highlight divisive narratives, as seen in foreign influence operations, online propaganda,

and anti-vaccination misinformation (e.g., Broniatowski et al., 2018; Zhuravskaya et al.,

2020; Simchon et al., 2022). In our model, such interventions correspond to increasing

the bias received by one or both groups—i.e., increasing |ξA| and/or |ξB|. Whenever

reducing these biases would improve learning and decrease disagreement, pushing them

in the opposite direction produces the opposite outcomes. Therefore, whenever biases

have opposite sign and are strong enough, malevolent agents would spread even more

misinformation.

Understanding these dynamics informs the design of effective anti-misinformation poli-

cies. Identifying the most vulnerable groups allows policymakers to limit attacks that seek

to increase polarization.

4.2 Targeting

We analyze a policy that targets a single agent rather than an entire group. In practice,

broad information campaigns may be infeasible or too costly, as they require reaching a

large and heterogeneous audience. In such cases, influencing a specific individual can be a

more efficient way to shape beliefs and foster information diffusion. For instance, Alatas

et al. (2020) show that engaging influential figures on social media significantly increased

the reach and impact of pro-vaccination messages in Indonesia.

However, identifying which individual should be targeted is not straightforward. Fol-

lowing Ballester et al. (2006), we define the key player as the agent for whom improving

information more effectively brings the average opinion in society closer to the truth.

Formally, let ξ′(i) denote a vector of biases such that agent i ∈ C receives marginally

more accurate information—that is, ξCi decreases in magnitude while maintaining its

sign—whereas all other agents in group C retain the same bias, ξCj = ξC for all j ̸= i

and C ∈ {A,B}. Let µ̄
(
ξ′(i)

)
denote the long-run average opinion in society after agent

i receives improved information.

The key player i∗ is defined as the agent who minimizes the distance between the

average opinion and the truth:

min
i∈C
C∈C

{∣∣µ̄(ξ′(i))− θ∗
∣∣} .

Finally, define the out-degree (weighted) Bonacich centrality as the column sum of

the Leontief inverse—which accounts for all walks of all lengths originating from agent
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i—weighted by the attention given to the media outlet, wC
i . Formally:

b̃
[out]C
i :=

(∑
j∈A

m̃A
ji +

∑
k∈B

m̃B
ki

)
wC

i .

Proposition 5 Suppose agents are exposed to biased sources of information (case (iii)).

(a) The key player i∗ is the agent with the largest absolute (out-degree) Bonacich cen-

trality |b̃[out]Ci∗ |, chosen from group C ∈ {A,B}, whose sign matches ξC when µ̄ > θ∗

and opposes it when µ̄ < θ∗. If no such agent exists, improving information for any

agent worsens the average learning in society.

(b) There exists ξ̄ > 0 such that the key-player policy reduces disagreement in the whole

society if and only if |ξCi∗| > ξ̄.

The key-player policy identifies the agent whose improved information most effectively

brings society’s average opinion closer to the truth. The sign of an agent’s out-degree

Bonacich centrality b̃
[out]C
i indicates whether their influence propagates primarily through

in-group connections (positive sign) or out-group connections (negative sign). When

influence flows primarily through in-group paths, other agents assign positive weight to

this person’s opinion on average; when it flows primarily through out-group paths, they

assign negative weight on average, due to the dominance of negative inter-group links.

The optimal intervention depends on the aggregate bias and the position of the key

player in the network. If society overestimates the truth (µ̄ > θ∗), we need to target an

agent whose corrected opinion will pull the average down. This requires, e.g., someone

with positive out-degree centrality (influence through in-group paths) and positive bias:

reducing their upward bias directly reduces the average opinion. Conversely, if society

underestimates (µ̄ < θ∗), we need to pull the average up. This requires, e.g., someone

with negative out-degree centrality (influence through out-group paths) and positive bias:

reducing their upward bias increases the average opinion.

Hence, the magnitude of the Bonacich centrality captures how strongly an agent’s

information affects others, while its sign indicates the direction of this influence. The

policy therefore targets the agent with the largest absolute Bonacich centrality, among

those whose influence moves the others’ opinion towards the truth.

By construction, targeting the key player improves the average learning across society.

However, its effect on each group’s learning is ambiguous: one group may move further

from the truth even as the societal average improves. As we discuss in the proof of

Proposition 5, because group averages depend linearly on individual biases, adjusting the

key player’s bias has the same qualitative effect on group-level learning as shifting the

bias of all agents in her group in the same direction, mirroring the logic of Proposition 4.
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Part (b) extends this parallel to disagreement. However, disagreement depends non-

linearly on individual biases, so the resulting condition in part (b) is novel, although the

requirement that the key player’s bias be sufficiently large in magnitude remains in the

same spirit as Proposition 4.

Finally, the key-player framework also provides insight into how a malevolent actor

could worsen learning. By the logic of Proposition 5, such an agent would target the same

key player, providing them with highly biased or misleading information. Identifying the

key player thus reveals which individuals are most critical to protect from misinformation,

as influence over them propagates strongly through the network and can significantly

increase polarization or move the average opinion away from the truth.

4.3 Censorship

Another form of intervention is censorship, that is, limiting the diffusion of information

or opinions that deviate excessively from the truth. Such policies are often motivated by

the goal of curbing misinformation or protecting public discourse from extreme or false

claims. In what follows, we analyze the effects of censorship and show that, even when

applied “fairly”—that is, by removing extreme opinions independently of their political

alignment with those in power—it may backfire and worsen aggregate learning.

The results in the previous sections have direct implications for censorship when ap-

plied to media outlets. Conceptually, a benevolent censor would reduce media bias—an

instance of the information policy in Proposition 4. The effects then depend on the joint

configuration of group biases. When biases are negatively correlated, limiting the bias

of one group—that is, censoring its most distorted media outlet—improves learning for

both groups and reduces disagreement, as the direct and indirect effects of the policy

reinforce each other. When biases are positively correlated, however, such interventions

can backfire: reducing the bias of one group may trigger opposite reactions in the other,

worsening overall disagreement, particularly when the two groups are exposed to similarly

distorted media outlets. Thus, even well-intentioned censorship of extreme information

can inadvertently increase polarization or hinder learning, depending on the underlying

alignment of biases in society.

Another form of censorship targets individuals directly by constraining their publicly

stated opinions, e.g., on social media. Such interventions are relatively easy to implement

online and have indeed been used in practice through account moderation or content

removal. We now analyze this case, where agents are prevented from expressing views

that deviate too far from the truth.

To study this kind of censorship, we focus on the case in which the policy maker

censors all opinions above a certain threshold ¯̄µ > θ∗. Denote the long-run opinion when
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censorship is in place by µ̂ and define [x]+ := max{x, 0}; then:

Proposition 6 If the policymaker imposes an upper censorship level ¯̄µ > θ∗, the long-run

opinions with censorship µ̂ satisfy

µ̂ = µ− M̃W̃ [µ̂− ¯̄µ1]+. (15)

Moreover, there exists a threshold k such that if maxj∈B µB
j < k < ¯̄µ < maxi∈A µA

i , then

censorship applies only to agents in group A. In this case, equation (15) implies that:

• Censorship moves the average opinions of group A closer to the truth if and only if

µ̄A > θ∗.

• Censorship moves the average opinions of group B closer to the truth if and only if

µ̄B < θ∗.

The effect of censorship depends on the groups’ initial positions relative to the truth.

Censoring a group shifts its opinion downward, and, because of out-group antagonism,

induces an upward reaction in the other group. If the two groups are sufficiently polarized,

censoring members of the group that overstates the truth makes both adjustments point

toward θ∗, improving learning for everyone. Conversely, when the average opinions of both

groups lie above the truth, censoring either one pulls that group closer while pushing the

other further away; the opposite holds when both are below the truth.

In short, in the presence of group antagonism, censorship is beneficial for the whole

society only if the two groups are sufficiently polarized; otherwise, it can backfire. This

is consistent with the broader logic of the model and the previous policy sections.

5 Conclusion

Affective polarization (a deep distrust and hostility toward the opposing political group)

has become a defining feature of contemporary public debate. For example, former Pres-

ident Obama referred to the rise of “negative partisanship” in the 2024 U.S. elections,

noting that citizens are motivated less by support for specific policies than by opposition

to the other side (The Economist, 2024). In such environments, arguments are filtered

through group identity, and discussions are driven as much by loyalty and hostility as

by facts. These patterns motivate a formal framework for understanding identity-driven

opinion dynamics.

We study how affective polarization and media exposure influence ideological polar-

ization and disagreement in a society of two groups exchanging opinions on a network.
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Without media exposure, affective polarization always generates long-run ideological po-

larization. With exposure to unbiased media, affective polarization prevents consensus

and induces persistent disagreement, and the distortion in learning is larger for agents

with more inter-group contacts. With biased media, affective polarization amplifies biases

of opposite sign, deepening polarization, but attenuates biases of the same sign, which

can bring opinions closer to the truth.

Our model shows that the impact of information interventions depends on the align-

ment and magnitude of group biases and the network of interactions. Providing more

accurate information to all individuals improves learning and reduces disagreement only

when biases point in opposite directions; when biases align, interventions are more likely

to backfire unless they target the most extreme group. Targeting influential agents allows

efficient correction of aggregate beliefs, while censorship or limiting extreme opinions is

effective only when groups start on opposite sides of the truth; otherwise, it may increase

polarization. These insights underscore that policies must account for social influence and

preexisting biases: ignoring affective polarization can lead to misleading predictions, as

illustrated during the COVID-19 pandemic, where partisan animosity was tightly linked

to attitudes toward health measures and vaccination (Druckman et al., 2021). Addressing

these challenges requires more than reducing misinformation; it calls for carefully designed

interventions that account for group antagonism and bias alignment.

Motivated by the literature on affective polarization, this paper takes it as given

and focuses on how its effects on opinion dynamics. Additionally, we assumed that the

network was exogenous, positioning it as a foundational step toward understanding the

impact of out-group antagonism on long-run opinions. Introducing network endogeneity

would represent a significant advancement, as it would allow for the study of endogenous

out-group antagonism and the co-evolution of opinions and network formation. We leave

these extensions as a direction for future research.
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Appendix

A Microfoundation/interpretation

We provide here various microfoundations for the updating rule described in (5). While we

interpret µt as individuals’ opinions or beliefs, it can also represent behavior or attitude,

as emphasized by Golub and Jackson (2010, 2012).

A.1 Opinions with persuasion bias and zero-sum thinking

When interpreting µt as opinions, we build on DeMarzo et al. (2003). At time t = 0,

agents receive private noisy signals, observe the opinions of their neighbors, and update

their own opinions by assigning weights to these observed opinions. These weights are

determined at t = 1 and remain constant thereafter, capturing persuasion bias—the

tendency of agents to neglect the correlation induced by repeated information over time.

We depart from DeMarzo et al. (2003) in two important respects. First, we allow

for group-specific public information sources. Second, we assume that agents possess

incomplete information not only about the precision of others’ signals but also about how

these signals relate to their own expected utility. This perspective aligns with evidence

that individuals often interpret policy debates through a zero-sum lens. For example, in

trade policy, while economists generally emphasize that free trade raises overall welfare,

public opposition frequently reflects the belief that its benefits accrue mainly to economic

elites while ordinary workers bear the losses (e.g., Ali et al., 2025).]

In particular, we assume that agents form opinions about the average effect of a

policy ϕ. Let uC
i (ϕ) denote the utility of individual i ∈ C under policy p. The objective

expected value of policy p is group-independent and equals UC(ϕ) :=
∫
i∈C uC

i (ϕ)di = θ∗

for all C ∈ {A,B}. That is, although individual utilities uC
i (ϕ) may vary across agents,

the average impact of the policy is identical across groups.

Agents, however, lack full information about how the policy affects the two groups

and hold a misspecified utility function that reflects zero-sum thinking—the belief that

gains for one individual or group necessarily come at the expense of others.15 Formally,

the expected utility of an individual i ∈ C is given by

EC
i

[
UC(ϕ)

]
= −EC

i

[
UCc

(ϕ)
]
,

15Zero-sum thinking is treated here as a psychological trait, as in Bergeron et al. (2023), Chinoy et al.
(2025), and Gavrilets and Seabright (2025). Ali et al. (2025) shows instead how zero-sum thinking can
manifest even with completely rational voters.
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so that any policy believed to benefit the out-group is perceived as harmful to the in-group.

At time t = 0, each agent i ∈ C with C ∈ {A,B} receives a private noisy signal sCi

about the effect of the policy on their own utility. This signal is given by sCi = uC
i (ϕ)+ϵCi ,

where ϵCi is normally distributed with mean zero. Since the group-level expected utility

satisfies UC(ϕ) = θ∗, all private signals are unbiased. That is, for any i, j ∈ C, E[sCi ] =
E[uC

i (ϕ)] = E[uC
j (ϕ)] = UC(ϕ) = θ∗. Given uninformative priors, each agent sets their

initial opinion to µC
i,0 = sCi . These private signals thus set the initial conditions for

the opinion dynamics; for all subsequent periods (t ≥ 1), updates are driven by peer

interactions and the recurring public information source as in DeMarzo et al. (2003).

In particular, at time t = 1, each agent i ∈ C observes the initial opinions of their

neighbors and interprets them as noisy signals about the expected utility of the policy.

Specifically, for each in-group neighbor j ∈ C, agent i treats µC
j,0 as a signal about the

group-level expected utility UC(ϕ) = θ∗ and assigns it a subjective precision τCC
ij =

1
VarCi [ϵCj ]

. For each out-group neighbor k ∈ Cc, agent i interprets µCc

k,0 as a signal about the

out-group’s expected utility UCc
(ϕ), which, under zero-sum thinking, they believe equals

−UC(ϕ) = −θ∗. Accordingly, agent i treats µCc

k,0 as a signal about −UC(ϕ) and assigns it

a subjective precision τCCc

ik = 1
VarCi [ϵC

c
k ]

.16

Agents of each group C also observe signal θC about their group’s expected utility

from the policy, which they perceive as unbiased with subjective precision τCiθ . Therefore,

for t ≥ 1, Bayesian agent i ∈ C updates opinions according to:

µC
i,t =

∑
j∈C

w̃C
ijµ

C
j,t−1 +

∑
z∈Cc

w̃C
izµ

Cc

z,t−1 + wC
i θ

C ,

where, for all k ∈ N ≡ A ∪B,

w̃C
ik =


τCC
ik∑

j∈A τCA
ij +

∑
z∈B τCB

iz + τCiθ
if k ∈ C,

τCCc

ik∑
j∈A τCA

ij +
∑

z∈B τCB
iz + τCiθ

· (−1) if k ∈ Cc,

16Negative weights on the opinions of the out-group (i.e., βC
i < 0) may also arise if agents systematically

pay attention to different experts or information sources (Sethi and Yildiz, 2016), or rely on different
models to interpret the same experiences (Haghtalab et al., 2021). In this view, belief distortion reflects
not hostility but inference under limited or group-biased exposure: agents filter out (what they perceive
as) the bias in their neighbors’ opinions. Alternatively, negative weights can be justified as a rational
response when agents believe that the signals of out-group members are less precise, for example when
trying to learn a drifting state of the world (Dasaratha et al., 2023).
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and17

wC
i =

τCiθ∑
j∈A τCA

ij +
∑

z∈B τCB
iz + τCiθ

.

In sum, persuasion bias and zero-sum thinking jointly yield the linear updating rule

(5), embedding both positive and negative influence in a microfounded way. This provides

the bridge between psychologically grounded belief formation and the long-run opinion

dynamics we analyze.18

A.2 Behaviors/actions/attitudes and network games

When interpreting µt as behaviors, actions, or attitudes, the updating rule described

in (5) corresponds to the myopic best-response dynamics of network games with linear

best replies with both positive and negative spillovers. In doing so, our model not only

incorporates but also extends several key contributions from the existing network-game

literature (Ballester et al., 2006; Bramoullé et al., 2014; Jackson and Zenou, 2015).19

Coordination/anti-coordination game In many settings, individuals face social pres-

sure to express opinions that signal loyalty to their own group and distance from rivals.

For instance, in debates on trade, climate change, or COVID vaccination, publicly en-

dorsing a position associated with the opposite political camp may carry identity costs,

even when privately agreed with. This motivates a framework in which voiced opinions

or attitudes balance in-group conformity, out-group differentiation, and closeness to one’s

own beliefs about the state of the world. We formalize this as follows. For each i ∈ C,

consider the following utility function:

17This reduced-form approach captures the idea that the media outlet provides in each period a signal
centered at θC with precision τCiθ , as in Jadbabaie et al. (2012) or Della Lena (2024). We abstract from
noise to simplify the exposition, as it does not affect the steady-state characterization (see Theorem 2).

18An alternative formulation has each agent i form subjective expectations about how agent j’s signal
relates to the truth θ∗. Agent i believes Ei[sj ] = fij(θ

∗), where fij : R → R is a (group-specific) distortion
function capturing perceived bias. Denoting the subjective precision as τij = V ari[ϵj ]

−1, the updating
rule becomes:

µi,t =
∑
k∈N

τik∑
j∈N τij + τiθ

f−1
ik (µk,t−1) +

τiθ∑
j∈N τij + τiθ

f−1
iθ (θ).

This formulation nests the zero-sum case when fij(θ
∗) = θ∗ for in-group agents and fij(θ

∗) = −θ∗ for
other agents. Agents perceive their own group receiving unbiased signals centered at θ∗ as well-informed,
while perceiving the other group receiving biased signals centered at −θ∗ as ill-informed.

19Given our assumptions about the network, in cases with external information the condition
αC
i

∑
j∈C wC

ij + |βC
i |
∑

z∈Cc wC
iz +wC

i = 1 ensures the existence and uniqueness of an equilibrium. When
there is no external information, there may be multiple Nash equilibria; however, fixing initial beliefs
selects a unique trajectory under best-reply dynamics and thus a unique limiting opinion profile.
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uC
i

(
µ; θ∗

)
= −α̂C

i ·
∑
j∈C

wC
ij

(
µC
i − µC

j

)2
︸ ︷︷ ︸

in-group identity

− β̂C
i ·

∑
z∈Cc

wC
iz

(
µC
i − (−µCc

z )
)2

︸ ︷︷ ︸
out-group antagonism

− ŵC
i · Ei

[(
µC
i − θ∗

)2]︸ ︷︷ ︸
distance from the truth

, (A-1)

The first term, weighted by α̂C
i > 0, captures the preference to align with the voiced opin-

ions/attitudes of the agents in their own group. The second term, weighted by β̂C
i > 0,

captures out-group antagonism and the psychological loss of not expressing an opposi-

tional attitude toward the out-group. This loss is low when the agent’s voiced opinion

counteracts the out-group’s stance and increases whenever the agent’s opinion aligns with,

or supports, the out-group’s stance. The last term, weighted by ŵC
i ≥ 0, reflects the cost

of voicing an opinion or holding an attitude different from their true one.

The interaction between identity and cognitive dissonance (e.g., Festinger, 1957) ex-

plains these dynamics: individuals reduce the discomfort of holding conflicting beliefs or

attitudes by conforming to the opinions of their own group and distancing themselves

from the ideas embraced by a group they disdain.

Let µ−i denote the action of all agents other than i and define κ := α̂C
i

∑
j∈C wC

ij +

β̂C
i

∑
z∈Cc wC

iz+ ŵC
i . Each agent i ∈ C, with C ∈ {A,B} chooses µC

i to maximize equation

(A-1), yielding the best-reply function:20

µC
i (µ−i) =

1

κ

[
α̂C
i

∑
j∈C

wC
ijµ

C
j − β̂C

i

∑
z∈Cc

wC
izµ

Cc

z + ŵC
i θ

C

]
.

If αC
i = α̂C

i /κ, β
C
i = −β̂C

i /κ, and wC
i = ŵC

i /κ, we obtain

µC
i (µ−i) =αC

i

∑
j∈C

wC
ijµ

C
j + βC

i

∑
z∈Cc

wC
izµ

Cc

z + wC
i θ

C

=
∑
j∈C

w̃C
ijµ

C
j +

∑
z∈Cc

w̃C
izµ

Cc

z + wC
i (θ

∗ + ξC). (A-2)

When each agent myopically responds to their peers, we can aggregate these best replies

for all agents in groups A and B, yielding the opinion dynamics described in (5).

20To derive the best response below, we use the assumption that the signal is precise, although not nec-

essarily correct. This implies that Ei

[(
µC
i − θ∗

)2]
=
(
µC
i − θC

)2
. The F.O.C. are −2α̂C

i

∑
j∈C wC

ij

(
µC
i −

µC
j

)
− 2β̂C

i

∑
z∈Cc wC

iz

(
µC
i +µCc

z

)
− 2ŵC

i

(
µC
i − θC

)
= 0. The S.O.C., −2α̂C

i

∑
j∈C wC

ij − 2β̂C
i

∑
z∈Cc wC

iz −
2ŵC

i < 0, are always satisfied since α̂C
i > 0, β̂C

i > 0, and ŵC
i ≥ 0.
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Network games with strategic complements and substitutes Following Ballester

et al. (2006) and Bramoullé et al. (2014), let the utility function for each agent i ∈ C be:

uC
i

(
µ; θC

)
= wC

i θ
CµC

i − 1

2
(µC

i )
2 + µC

i

(
αC
i

∑
j∈C

wC
ijµ

C
j + βC

i

∑
z∈Cc

wC
izµ

Cc

z

)
, (A-3)

where the first two terms determine i’s optimal action in isolation; αC
i > 0 reflects the in-

tensity of positive spillovers from other agents within the same group, representing strate-

gic complementarities in actions among agents of the same group; in contrast, βC
i < 0

indicates the intensity of the negative spillovers from agents in the other group, captur-

ing strategic substitutes in actions between agents from different groups. Contrary to

Ballester et al. (2006) and Bramoullé et al. (2014), we allow for heterogeneous spillovers

and negative values of the action xi. In practice, we do not impose any restrictions

on the relative magnitude of these spillovers, permitting individuals to experience both

positive and negative spillovers in a heterogeneous manner. The only restriction is the

normalization αC
i

∑
j∈C wC

ij + |βC
i |
∑

z∈Cc wC
iz + wC

i = 1 for each i ∈ N .

The utility function (A-3) can be exemplified by the case of recycling: while evidence

suggests positive peer effects, where individuals are more likely to recycle if their friends do

(Johansson, 2016), recycling also functions as a local public good (Kinateder and Merlino,

2017, 2022), which can lead to negative spillovers. In our model, agents experience peer

pressure from their friends, motivating them to recycle, but are more individualistic when

considering the recycling efforts of others, which tends to reduce their own effort via the

free-riding effect.

Let µ−i denote the action of all agents other than i. Each agent i ∈ C, with C ∈ {A,B}
chooses µC

i to maximizes equation (A-3), yielding the best-reply function:21

µC
i (µ−i) =αC

i

∑
j∈C

wC
ijµ

C
j + βC

i

∑
z∈Cc

wC
izµ

Cc

z + wC
i θ

C

=
∑
j∈C

w̃C
ijµ

C
j +

∑
z∈Cc

w̃C
izµ

Cc

z + wC
i (θ

∗ + ξC). (A-4)

When each agent myopically responds to their peers, we can aggregate these best

replies for all agents in groups A and B, yielding the opinion dynamics described in (5).

Finally, note that equations (A-2) and (A-4) also result from the best replies of any

combination of the two network games in equation (A-1) and equation (A-3). As in

Boucher et al. (2024) and Ushchev and Zenou (2020), we can envision scenarios where

peer pressure, conformism, and anti-conformism coexist.

21The first order condition is wC
i θ

C − µC
i +αC

i

∑
j∈C wC

ijµ
C
j + βC

i

∑
z∈Cc wC

izµ
Cc

z = 0; the second-order
condition is always satisfied.
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B Proofs

Proof of Theorem 1

Note that equation (4) can be written as:[
µA

t

µB
t

]
= W̃

[
µA

t−1

µB
t−1

]
+

[
wA(θ∗ + ξA)

wB(θ∗ + ξB)

]
. (B-1)

Since the matrix W̃ has conformable partitions (i.e., each partition has the same number

of rows and columns), its powers have positive terms on the diagonal blocks and negative

terms on the off-diagonal blocks. For example,

W̃ 2 =

[
(W̃ AA)2 + W̃ ABW̃BA W̃ AAW̃ AB + W̃ ABW̃BB

W̃BAW̃ AA + W̃BBW̃BA W̃BAW̃ AB + (W̃BB)2

]
.

Hence, sign(W̃ 2) = sign(W̃ ) =

[
+ −
− +

]
. Iterating, this property holds for all t, so that

sign(W̃ t) =

[
+ −
− +

]
for all t ∈ N. (B-2)

Case (i) First, consider the case in which wC
i = 0 for all i ∈ N . Equation (B-1)

becomes

[
µA

t

µB
t

]
= W̃

[
µA

t−1

µB
t−1

]
. In more compact form, µt = W̃µt−1. By iterating the

process, we obtain µt = W̃ t µ0, where W̃ t is the power t of the matrix W̃ . Assuming

that the network is strongly connected with positive self-loops ensures that the matrix

W̃ is irreducible. Moreover, since λ1 = 1 is the dominant eigenvalue of W̃ , then W̃ is

power convergent and we can define W̃∞ := limt→∞ W̃ t. We have that

µ := lim
t→∞

µt = W̃∞ µ0. (B-3)

Since W̃ is structurally balanced, there exists a diagonal matrix D = diag(d1, . . . , dn)

with di ∈ {+1,−1} such that DW̃ D = W̃+. Hence, W̃ and W̃+ are similar and share

the same eigenvalues. Given our assumptions on W , W̃+ is a nonnegative, irreducible,

aperiodic, and row-stochastic (since in case (i) wC
i = 0 for all i ∈ N) matrix.

Thus, by the Perron–Frobenius theorem, the spectral radius is ρ(W̃+) = 1 with the

dominant eigenvalue λ1 = 1, while all other eigenvalues satisfy |λi| < 1. Since similarity

preserves spectral properties, the same holds for W̃ . Moreover, there exist strictly positive
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right and left eigenvectors satisfying W̃+1 = 1 and π⊤W̃+ = π⊤, where π⊤ can be

normalized to 1. Perron–Frobenius also implies that (W̃+)∞ := limt→∞(W̃+)t = 1π⊤.

Because W̃ t = D(W̃+)tD for all t, taking limits we obtain W̃∞ = D (1π⊤)D.

Thus, defining 1̃ := D1 and π̃⊤ := π⊤D, substituting into (B-3), the long-run opinion is

given by µ :=
(
1̃ π̃⊤)µ0, so that µA

i ≡ µA, µB
j ≡ µB for each i ∈ A and j ∈ B, with

µA =1 ·

(∑
j∈A

π̃A
j µ

A
j,0 +

∑
k∈B

π̃B
k µ

B
k,0

)
=
∑
j∈A

π̃A
j µ

A
j,0 +

∑
k∈B

π̃B
k µ

B
k,0

=(π̃A)⊤µA
0 + (π̃B)⊤µB

0 = −µB.

Note that 1̃ and π̃⊤ are the right and left eigenvectors of W̃ associated with the leading

eigenvalue λ1 = 1. Let u⊤ and v denote the left and right eigenvectors of W̃ for λ1 = 1,

so that u⊤W̃ = u⊤ and W̃v = v. Substituting W̃ = DW̃+D gives u⊤(DW̃+D) = u⊤

and (DW̃+D)v = v. Multiplying the first equation on the right by D and the second on

the left by D, and using D2 = I, yields (u⊤D)W̃+ = u⊤D and W̃+(Dv) = Dv. Since

the left and right Perron eigenvectors of W̃+ are π⊤ and 1, it follows that u⊤D = π⊤

and Dv = 1, hence u⊤ = π⊤D = π̃⊤ and v = D1 = 1̃.

Cases (ii)-(iii) Consider the cases when wi > 0 for at least some i ∈ N . Iterating

(B-1), we obtain:

µt+1 =W̃µt +w ⊙ θ,

µt+2 =W̃
(
W̃µt + w̃ ⊙ θ

)
+w ⊙ θ,

...

µt+T =W̃ Tµt +
T−1∑
τ=0

W̃ τw ⊙ θ,

so that

lim
T→∞

(µt+T ) = lim
T→∞

(
W̃ Tµt +

T−1∑
τ=0

W̃ τw ⊙ θ

)
=
(
I − W̃

)−1

w ⊙ θ. (B-4)

For cases (ii) and (iii), we assume at least one wC
i > 0. The model’s normalization,

αC
i

∑
j∈C wC

ij+|βC
i |
∑

z∈Cc wC
iz+wC

i = 1, implies that the row sums of the matrix W̃+—which

contains the absolute values of matrix W̃—are
∑

j |w̃ij| = 1 − wC
i ≤ 1. Thus, W̃+ is

a substochastic matrix. Since the network W is assumed to be strongly connected, the
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non-negative matrix W̃+ is irreducible. As W̃+ is an irreducible and substochastic ma-

trix with at least one row sum strictly less than 1 (since at least one wC
i > 0), its spectral

radius ρ(W̃+) is strictly less than 1. Because ρ(W̃ ) ≤ ρ(W̃+), we have ρ(W̃ ) < 1. This

ensures that limT→∞W̃ T = 0 and the Neumann series
∑∞

τ=0 W̃
τ converges to (I−W̃ )−1.

Given this, noting that
(
I − W̃

)
is always invertible establishes the result.

Thus, if the source of information is unbiased, i.e., θi = θ∗ for all i ∈ N , (B-4) becomes

µ =
(
I − W̃

)−1

wθ∗ = b̃θ∗. Therefore the long-run opinion of agent i is

µC
i =

(∑
j∈A

m̃C
ijw

A
j +

∑
k∈B

m̃C
ikw

B
k

)
θ∗ = b̃Ci θ

∗.

If instead the source of information is biased, observing that M̃ :=
(
I − W̃

)−1

, we can

write equation (B-4) as

µ =M̃

[
wA(θ∗ + ξA)

wB(θ∗ + ξB)

]
= M̃wθ∗ + M̃ (w ⊙ ξ) = b̃θ∗ + M̃ (w ⊙ ξ) .

Therefore the long-run opinion of each agent i ∈ N is given by:

µC
i =

(∑
j∈A

m̃C
ijw

A
j +

∑
k∈B

m̃C
ikw

B
k

)
θ∗ +

∑
j∈A

m̃C
ijw

A
j ξ

A +
∑
k∈B

m̃C
ikw

B
k ξ

B

= b̃Ci θ
∗ + b̃CA

i ξA + b̃CB
i ξB.

By equation (B-2), it is trivial to see that b̃CC
i > 0 and b̃CCc

i < 0 always. ■

Proof of Proposition 1

By Theorem 1, long–run opinions under an unbiased source satisfy

µ = (I − W̃ )−1w θ∗ = b̃ θ∗.

As we have already shown, under structural balance, the signed matrix admits the decom-

position W̃ = DW̃+D, where D is diagonal with entries ±1 and W̃+ ≥ 0 has the same

absolute values as W̃ . Since (I − W̃+)1 = w, in the corresponding unsigned network,

µ = (I − W̃+)−1w θ∗ = b̃+ θ∗ = 1 θ∗.

Note that D = D−1 = D⊤ and Dk = D for k odd while Dk = I for k even. Then, since

D2 = I it follows that (DW̃+D)t = D(W̃+)tD. Thus:
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(I − W̃ )−1 =
∞∑
t=0

(W̃ )t =
∞∑
t=0

(DW̃+D)t =
∞∑
t=0

D(W̃+)tD = D(I − W̃+)−1D.

As M̃+ = (I − W̃+)−1 has strictly positive entries, M̃ = (I − W̃ )−1 has the same

absolute values but matches the sign pattern induced by D. Thus, since w has all

positive entries, each element of (I−W̃ )−1w is always less or equal than the corresponding

element of (I−W̃+)−1w. Hence, every Katz-Bonacich coefficient satisfies b̃Ci ≤ 1, so that

b̃Ci |θ∗| ≤ |θ∗|, for all i ∈ C, with C ∈ {A,B} and the learning gap for agent i ∈ C is

1− b̃Ci .

Moreover, for agent i ∈ C, the exposure (direct and indirect) to the other group is

captured by
∑

j∈Cc |M̃ij|. Thus, given that M̃ = DM̃+D the more direct and indirect

paths each agent has with agents belonging to the other group the lower her centrality

and thus the farther away from the truth. ■

Proof of Proposition 2

Let us write the long-run opinion of a generic agent i ∈ C when ξA and ξB are different

from zero and affective polarization is present:

µC
i = b̃Ci︸︷︷︸

<1

θ∗ + b̃CC
i︸︷︷︸
+

ξC + b̃CCc

i︸︷︷︸
−

ξC
c

.

From this equation, we see that:

• If sign(ξA) = sign(ξB) (positively correlated biases), the negative coefficient b̃CCc

i ∈
(−1, 0) partially cancels the contribution of ξC

c
, leading to bias mitigation.

• If sign(ξA) ̸= sign(ξB) (negatively correlated biases), the negative sign of b̃CCc

i ∈
(−1, 0) reverses the contribution of ξC

c
, aligning both bias components in the same

direction and exacerbating the total bias.

Since |b̃Ci θ∗| < |θ∗| always holds, long-run opinions can be closer to the truth θ∗ whenever

the bias terms b̃CC
i ξC + b̃CCc

i ξC
c
reduce the gap between b̃Ci θ

∗ and θ∗. ■
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Proof of Theorem 2

First, define the identity-interaction matrix without group antagonism, W̃+. Let ΓC+ :=

diag[(|βC
i |)i∈C ], for all C ∈ {A,B}. Then, all entries of ΓC+ are nonnegative. We have

W̃+ :=

[
ΛAW AA ΓA+W AB

ΓB+WBA ΛBWBB

]
with sign(W̃+) =

[
+ +

+ +

]
.

Then, M̃+ :=
(
I − W̃+

)−1

=
∑+∞

k=0(W̃
+)k with elements m̃+

ij. Thus, b̃+ := b(W̃+) =

M̃+w is the vector of weighted Katz-Bonacich centralities (Ballester et al., 2006) in the

identity-interaction network without group antagonism. The corresponding individual

weighted Katz-Bonacich centralities is given by

b̃C+
i :=

∑
j∈A

m̃C+
ij wA

j +
∑
k∈B

m̃C+
ik wB

k .

The contributions from each group is thus defined as:

b̃CA+
i :=

∑
j∈A

m̃C+
ij wA

j and b̃CB+
i :=

∑
k∈B

m̃C+
ik wB

k ,

so that b̃C+
i = b̃CA+

i + b̃CB+
i and the total centrality vector can be expressed compactly as

b̃+ =

[
b̃A+

b̃B+

]
=

[
b̃AA+ + b̃AB+

b̃BA+ + b̃BB+

]
.

The rest of the proof can be derived by adapting that of Theorem 1. ■

Proof of Proposition 3

Consider case (ii), with unbiased information (ξA = ξB = 0). By Theorem 1(ii), |µC
i | <

|θ∗| for all i ∈ C and C ∈ {A,B}. Moreover, the stead-state opinion vector satisfies:(
I − W̃

)
µ = w ⊙ θ∗. (B-5)

Let us denote with eCi the standard basis vector for agent i in group C, that is, the vector

with a 1 in position i and zeros elsewhere. Then by differencing equation (B-5) with

respect to wC
i we get
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(
I − W̃

) ∂µ

∂wC
i

− ∂W̃

∂wC
i

µ =θ∗eCi

⇒ ∂µ

∂wC
i

=M

(
θ∗eCi +

∂W̃

∂wC
i

µ

)
∂µ

∂wC
i

=M

(
θ∗eCi − 1

1− wC
i

(∑
j∈A

w̃C
ijµ

A
j +

∑
k∈B

w̃C
ikµ

B
k

)
eCi

)

The last equality follows from the fact that, for each i, the sum of the absolute values

of the entries in row i of W̃ satisfies
∑

j∈A |w̃C
ij | +

∑
k∈B |w̃C

ik| = 1 − wC
i . Therefore, a

marginal increase in wC
i affect only the i-th row by rescaling all weights proportionally.

As a result, for each j ∈ N ,
∂w̃C

ij

∂wC
i
= − w̃C

ij

1−wC
i
.

Using the steady state condition µC
i =

∑
j∈A w̃C

ijµ
A
j +

∑
k∈B w̃C

ikµ
B
k + wC

i θ
∗ = b̃Ci θ

∗ we

get

∂µ

∂wC
i

= M

(
θ∗eCi − µC

i − wC
i θ

∗

1− wC
i

eCi

)
= M

(
θ∗ − µC

i

1− wC
i

eCi

)
=

(
1− b̃Ci
1− wC

i

θ∗

)
MeCi

Since b̃Ci < 1 and wC
i < 1, the scalar

1−b̃Ci
1−wC

i
θ∗ has the same sign as θ∗. Hence, a marginal

increase in wC
i shifts long-run opinions in the direction of θ∗ or away from it according

to the sign pattern of M̃ , which has the same block-sign structure as W̃ (see proof of

Proposition 1). Thus, agents in the same group as i move toward θ∗, while agents in the

other group move away from it.

Finally, since the result holds for each i ∈ C individually, a simultaneous increase in wC
i

for all agents in group C yields an aggregate effect that preserves the same sign pattern

for all agents’ long-run opinions, which proves the proposition. ■

Proof of Proposition 4

By Theorem 1(iii), we have that (µC
i − θ∗) = (b̃Ci − 1)θ∗ + b̃CA

i ξA + b̃CB
i ξB, so the average

distance from the truth is

µ̄C − θ∗ =
1

nC

∑
i∈C

(µC
i − θ∗) =

1

nC

∑
i∈C

[
(b̃Ci − 1)θ∗ + b̃CA

i ξA + b̃CB
i ξB

]
,

where, for each i ∈ C, b̃CA
i ≥ 0 and b̃CB

i ≤ 0 if C = A; the inequalities are reversed if

C = B.

Suppose now that ξA > 0. Then, giving group A more accurate information is equivalent
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to reducing ξA. Hence, a lower ξA reduces the average distance from the truth in group

A if and only if µ̄A > θ∗, which implies 1
nA

∑
i∈A

[
(b̃Ai − 1)θ∗ + b̃AA

i ξA + b̃AB
i ξB

]
> 0.

Rearranging, the condition implies that ξA > lA(ξB), where

lA(ξB) :=

∑
i∈A(1− b̃Ai )∑

i∈A b̃AA
i︸ ︷︷ ︸

>0

θ∗ +
−
∑

i∈A b̃AB
i∑

i∈A b̃AA
i︸ ︷︷ ︸

>0

ξB. (B-6)

Similarly, reducing ξA reduces the distance from the truth of an agent i ∈ B if and only

if µ̄B < θ∗, which implies ξA > lB(ξB), where

lB(ξB) :=

∑
i∈B(1− b̃Bi )∑

i∈B b̃BA
i︸ ︷︷ ︸

<0

θ∗ +

∑
i∈B b̃BB

i

−
∑

i∈B b̃BA
i︸ ︷︷ ︸

>0

ξB. (B-7)

If ξA < 0, the inequalities are reversed, yielding ξA < lA(ξB) and ξA < lB(ξB).

Figure B-1 shows the effect of marginally reducing |ξA| on average learning across groups

in the (ξB, ξA) space.

Figure B-1: Effect on group learning of providing more accurate information to group A. Violet: both
groups move closer to truth. Red: only group A moves closer. Blue: only group B moves closer. White:
neither group moves closer. Solid lines represent (B-6) and (B-7).

Suppose that ξB > 0. Then, giving group B more accurate information is equivalent to

reducing ξB. Hence, a lower ξB reduces the average distance from the truth in group

B if and only if µ̄B > θ∗, which leads to ξA < lB(ξB), which we can also write as

ξB > (lB)−1(ξA) as lB is a linear function with positive slope.

A smaller ξB reduces the distance from the truth of an agent i ∈ A if and only if µ̄A < θ∗,

which leads to ξA < lA(ξB), which we can also write as ξB > (lA)−1(ξA) as lA is a linear

function with positive slope.

If ξB < 0, the inequalities are reversed, yielding ξA > lA(ξB) and ξA > lB(ξB) (or

ξB < (lA)−1(ξA) and ξB < (lB)−1(ξA)).

Figure B-2 shows the effect of marginally reducing |ξB| on average learning across groups

36



in the (ξB, ξA) space.

Figure B-2: Effect on group learning of providing more accurate information to group B. Violet: both
groups move closer to truth. Red: only group A moves closer. Blue: only group B moves closer. White:
neither group moves closer. Solid lines represent (B-6) and (B-7).

Concerning disagreement, by Theorem 1(iii), we can write the long run opinions as

µ = b̃θ∗ + (b̃AA, b̃BA)⊤ξA + (b̃AB, b̃BB)⊤ξB.

Hence,

V ar [µ] =(θ∗)2V ar[b̃] + (ξA)2V ar[(b̃AA, b̃BA)⊤] + (ξB)2V ar[(b̃AB, b̃BB)⊤]+

+ 2ξAθ∗Cov
[
b̃, (b̃AA, b̃BA)⊤

]
+ 2ξBθ∗Cov

[
b̃, (b̃AB, b̃BB)⊤

]
+

+ 2ξAξBCov
[
b̃AA, b̃BA)⊤, (b̃AB, b̃BB)⊤)

]
.

Noting that b̃ = (b̃AA, b̃BA)⊤ + (b̃AB, b̃BB)⊤, after algebraic manipulations, we get

V ar [µ] =(θ∗)2V ar
[
b̃
]
+ ξA(ξA + 2θ∗)V ar

[
(b̃AA, b̃BA)⊤

]
+ ξB(ξB + 2θ∗)V ar

[
(b̃AB, b̃BB)⊤

]
+

+ 2
(
θ∗(ξA + ξB) + ξAξB

)
Cov

[
(b̃AB, b̃BB)⊤, (b̃AA, b̃BA)⊤)

]
.

Hence,

∂V ar[µ]

∂ξA
= 2(ξA + θ∗)V ar

[
(b̃AA, b̃BA)⊤

]
+ 2

(
θ∗ + ξB

)
Cov

[
(b̃AB, b̃BB)⊤, (b̃AA, b̃BA)⊤)

]
,

∂V ar[µ]

∂ξB
= 2(ξB + θ∗)V ar

[
(b̃AB, b̃BB)⊤

]
+ 2

(
θ∗ + ξA

)
Cov

[
(b̃AB, b̃BB)⊤, (b̃AA, b̃BA)⊤)

]
.

If ξA is positive, giving more accurate information to group A means a reduction in ξA.

Hence, disagreement in society decreases if and only if ∂V ar[µ]
∂ξA

> 0, and vice versa if ξA is

negative. Hence, the following holds.

Suppose that ξA > 0. Then, giving group A more accurate information reduces the

disagreement in society if and only if ξA > dA(ξB), where
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dA(ξB) := −θ∗

1 +
Cov

[
(b̃AB, b̃BB)⊤, (b̃AA, b̃BA)⊤)

]
V ar

[
(b̃AA, b̃BA)⊤

]
+

−Cov
[
(b̃AB, b̃BB)⊤, (b̃AA, b̃BA)⊤)

]
V ar

[
(b̃AA, b̃BA)⊤

]
︸ ︷︷ ︸

>0

ξB.

(B-8)

If ξA < 0, the condition is reversed. Figure B-3 shows the effect of marginally reducing

|ξA| on overall disagreement in society within the (ξB, ξA) space.

Figure B-3: Effect on disagreement of providing more accurate information to group A. Green: dis-
agreement decreases. White: disagreement increases. Solid line represents (B-8).

If ξB is positive, giving more accurate information to group B means a reduction in ξB.

Hence, disagreement in society decreases if and only if ∂V ar[µ]
∂ξB

> 0, and vice versa if ξB is

negative. Hence, the following hold.

Suppose that ξB > 0. Then, giving group B more accurate information, i.e., decreasing

ξB, reduces the disagreement in society if and only if ξA < dB(ξB), where

dB(ξB) := −θ∗

1 +
V ar

[
(b̃AB, b̃BB)⊤

]
Cov

[
(b̃AB, b̃BB)⊤, (b̃AA, b̃BA)⊤)

]
+

V ar
[
(b̃AB, b̃BB)⊤

]
−Cov

[
(b̃AB, b̃BB)⊤, (b̃AA, b̃BA)⊤)

]
︸ ︷︷ ︸

>0

ξB,

(B-9)

which we can also write as ξB > (dB)−1(ξA) as dB is a linear function with positive slope.

The condition is reversed if ξB < 0. Figure B-4 shows the effect of marginally reducing

|ξB| on overall disagreement in society within the (ξB, ξA) space.

We can summarize the conditions under which providing more accurate information

to group A improves learning for group A and group B and reduce disagreement as:

ξA >fA(ξB) := max
{
lA(ξB), lB(ξB), dA(ξB)

}
if ξA > 0, (B-10)

ξA <gA(ξB) := min
{
lA(ξB), lB(ξB), dA(ξB)

}
if ξA < 0. (B-11)
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Figure B-4: Effect on disagreement of providing more accurate information to group B. Orange: dis-
agreement decreases. White: disagreement increases. Solid line represents (B-9).

Similarly, we summarize the conditions under which providing more accurate information

to group B improves learning for group A and group B and reduce disagreement as:

ξB >fB(ξA) := max
{
(lA)−1(ξA), (lB)−1(ξA), (dB)−1(ξA)

}
if ξB > 0, (B-12)

ξB <gB(ξA) := min
{
(lA)−1(ξA), (lB)−1(ξA), (dB)−1(ξA)

}
if ξB < 0. (B-13)

Proposition 4 follows directly from conditions (B-10)–(B-13). Since the functions lA, lB,

dA, and dB are linear with positive slope, it follows that, for each C ∈ A,B, the functions

fC and gC are increasing, with fC convex and gC concave. ■

Proof of Corollary 1

The corollary follows from two observations.

(i) When ξA and ξB have opposite signs, the conditions (B-10)–(B-13) under which pro-

viding better information to group A or to group B improves learning and decreases

disagreement in each group are compatible; when they have the same sign, these condi-

tions are incompatible.

(ii) Likewise, the conditions (B-10)–(B-13) under which providing better information to

group A or to group B reduces disagreement move in the same direction when ξA and ξB

have opposite signs, and in opposite directions otherwise.

Hence, when ξA and ξB have opposite signs, the relevant constraint is the more stringent

of ξA > fA(ξB) and ξB < gB(ξA), or equivalently ξA > (gB)−1(ξB).

This establishes Corollary 1. ■
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Proof of Proposition 5

To prove part (a), remember that the average opinion in society is

µ̄ (ξ′(i)) :=
1

n
1⊤µ (ξ′(i)) =

1

n

 ∑
C∈{A,B}

∑
z∈C

(∑
j∈A

m̃C
zjw

A
j (θ

∗ + ξAj ) +
∑
k∈B

m̃C
zkw

B
k (θ

∗ + ξBj )
) .

It follows that

∂µ̄
(
ξ′(i)

)
∂ξCi

=
1

n

(∑
j∈A

m̃A
jiw

C
i +

∑
k∈B

m̃B
kiw

C
i

)
=

1

n
b̃
C[out]
i . (B-14)

Then, we have the following:

1. Consider µ̄ > θ∗, which is equivalent to 1
n
1⊤
(
b̃θ∗ + M̃ (w ⊙ ξ)

)
> θ∗. Then:

(a) If ξC > 0, to move the average opinion closer to the truth, provide more accurate

information (i.e., decrease ξC) to an agent with positive b̃
C[out]
i ; then, pick the

agent i with the largest b̃
C[out]
i (if more than one, pick one of them at random).

(b) If ξC < 0, to move the average opinion closer to the truth, provide more accurate

information (i.e., increase ξC) to an agent with negative b̃
C[out]
i ; then, pick the

agent i with the smallest b̃
C[out]
i (if more than one, pick one of them at random).

This is equivalent to giving more accurate information to an agent in S, where

S = arg max
i∈C

C∈{A,B}

∣∣b̃C[out]
i

∣∣ s.t. sign
(
b̃
C[out]
i

)
= sign(ξC).

If such an agent exists, denote them by i∗. If S is empty, providing more accurate

information to any agent moves the average opinion further from the truth.

2. Consider µ̄ < θ∗, which is equivalent to 1
n
1⊤
(
b̃θ∗ + M̃ (w ⊙ ξ)

)
< θ∗. Then:

(a) If ξC > 0, to move the average opinion closer to the truth, provide more accurate

information (i.e., decrease ξC) to an agent with negative b̃
C[out]
i ; then, pick the

agent i with the smallest b̃
C[out]
i (if more than one, pick one of them at random).

(b) If ξC < 0, to move the average opinion closer to the truth, provide more accurate

information (i.e., increase ξC) to an agent with positive b̃
C[out]
i ; then, pick the

agent i with the largest b̃
C[out]
i (if more than one, pick one of them at random).

This is equivalent to giving more accurate information to an agent in S ′, where

S ′ = arg max
i∈C

C∈{A,B}

∣∣b̃C[out]
i

∣∣ s.t. sign
(
b̃
C[out]
i

)
̸= sign(ξC).
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If such an agent exists, denote them by i∗. If S is empty, providing more accurate

information to any agent moves the average opinion further from the truth.

Consider the effect of providing more accurate information to i∗ on the average opinion

of group A and B. By (B-14), it follows that

∂µ̄A
(
ξ′(i∗)

)
∂ξCi∗

=
1

nA

∑
j∈A

m̃A
ji∗w

C
i∗ =

1

nA
b̃
CA[out]
i∗ ,

∂µ̄B
(
ξ′(i∗)

)
∂ξCi∗

=
1

nB

∑
k∈B

m̃B
ki∗w

C
i∗ =

1

nB
b̃
CB[out]
i∗ .

Suppose S ∪ S ′ is not empty, i∗ ∈ A, and ξA > 0. Then, giving better information to

the key player i∗ is equivalent to reducing ξAi . Clearly, this reduces µA
i . As this reduces

(increases) µA
j (µB

j ) for all j ∈ A (j ∈ B) connected to i∗, µ̄A decrease while µ̄B increases.

This reduces the distance from the truth of the average opinion in group A if and only if

µ̄A > θ∗, which is equivalent to (B-6), and of the average opinion in group B if and only

if µ̄B < θ∗, which is equivalent to (B-7). Analogous arguments for the other cases show

that the conditions under which providing better information to the agent i∗ reduces

the distance between the group’s average opinion and the truth are identical to those

characterizing the effect of improving information for all agents in group A, as derived in

Proposition 4.

As for part (b), without loss of generality, suppose that i∗ ∈ A. Then,

µ = b̃θ∗ + (b̃AA, b̃BA)⊤ξA +

(
(m̃A

ki∗w
A
i∗)k∈A

(m̃B
li∗w

A
i∗)l∈B

)
∆ξAi∗ + (b̃AB, b̃BB)⊤ξB.

We can then write disagreement as:

V ar
[
µ(∆ξAi∗)

]
=(θ∗)2V ar[b̃] + (ξA)2V ar[(b̃AA, b̃BA)⊤] + (∆ξAi∗)

2V ar

[(
(m̃A

ki∗w
A
i∗)k∈A

(m̃B
li∗w

A
i∗)l∈B

)]
+

+ (ξB)2V ar[(b̃AB, b̃BB)⊤] + 2ξAξBCov
[
b̃AA, b̃BA)⊤, (b̃AB, b̃BB)⊤)

]
+

+ 2ξAθ∗Cov
[
b̃, (b̃AA, b̃BA)⊤

]
+ 2ξBθ∗Cov

[
b̃, (b̃AB, b̃BB)⊤

]
+

+ 2θ∗∆ξAi∗Cov

[
b̃,

(
(m̃A

ki∗w
A
i∗)k∈A

(m̃B
li∗w

A
i∗)l∈B

)]
+

+ 2ξA∆ξAi∗Cov

[
(b̃AA, b̃BA)⊤,

(
(m̃A

ki∗w
A
i∗)k∈A

(m̃B
li∗w

A
i∗)l∈B

)]
+

+ 2ξB∆ξAi∗Cov

[
(b̃AB, b̃BB)⊤,

(
(m̃A

ki∗w
A
i∗)k∈A

(m̃B
li∗w

A
i∗)l∈B

)]
.
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Therefore,

∂V ar[µ]

∂∆ξAi∗
= 2∆ξAi∗ · V ar

[(
(m̃A

ki∗w
A
i∗)k∈A

(m̃B
li∗w

A
i∗)l∈B

)]
+ 2θ∗ · Cov

[
b̃,

(
(m̃A

ki∗w
A
i∗)k∈A

(m̃B
li∗w

A
i∗)l∈B

)]
+

+ 2ξA · Cov

[
(b̃AA, b̃BA)⊤,

(
(m̃A

ki∗w
A
i∗)k∈A

(m̃B
li∗w

A
i∗)l∈B

)]
+ 2ξB · Cov

[
(b̃AB, b̃BB)⊤,

(
(m̃A

ki∗w
A
i∗)k∈A

(m̃B
li∗w

A
i∗)l∈B

)]
.

As we consider marginal changes in ξAi∗ , ∆ξAi∗ is infinitesimal, so that ∂V ar[µ]

∂∆ξA
i∗

reduces to

∂V ar[µ]

∂∆ξAi∗
= 2θ∗ · Cov

[
b̃,

(
(m̃A

ki∗w
A
i∗)k∈A

(m̃B
li∗w

A
i∗)l∈B

)]
+ 2ξA · Cov

[
(b̃AA, b̃BA)⊤,

(
(m̃A

ki∗w
A
i∗)k∈A

(m̃B
li∗w

A
i∗)l∈B

)]
+

+ 2ξB · Cov

[
(b̃AB, b̃BB)⊤,

(
(m̃A

ki∗w
A
i∗)k∈A

(m̃B
li∗w

A
i∗)l∈B

)]
.

Noting that b̃ = (b̃AA, b̃BA)⊤ + (b̃AB, b̃BB)⊤, we can write

∂V ar[µ]

∂∆ξAi∗
= 2(θ∗ + ξA) · Cov

[
(b̃AA, b̃BA)⊤,

(
(m̃A

ki∗w
A
i∗)k∈A

(m̃B
li∗w

A
i∗)l∈B

)]
+

+ 2(θ∗ + ξB) · Cov

[
(b̃AB, b̃BB)⊤,

(
(m̃A

ki∗w
A
i∗)k∈A

(m̃B
li∗w

A
i∗)l∈B

)]
.

Hence, giving more accurate information to player i∗ is equivalent to reducing ξAi∗ if and

only if ξA > 0. In that case, disagreement in society decreases if ∂V ar[µ]

∂∆ξA
i∗

> 0, which means

(θ∗ + ξA) · Cov

[
(b̃AA, b̃BA)⊤,

(
(m̃A

ki∗w
A
i∗)k∈A

(m̃B
li∗w

A
i∗)l∈B

)]
>− (θ∗ + ξB) · Cov

[
(b̃AB, b̃BB)⊤,

(
(m̃A

ki∗w
A
i∗)k∈A

(m̃B
li∗w

A
i∗)l∈B

)]
,

or, as the covariance Cov

[
(b̃AA, b̃BA)⊤,

(
(m̃A

ki∗w
A
i∗)k∈A

(m̃B
li∗w

A
i∗)l∈B

)]
is positive,

ξA >− θ∗ − (θ∗ + ξB) ·
Cov

[
(b̃AB, b̃BB)⊤,

(
(m̃A

ki∗w
A
i∗)k∈A

(m̃B
li∗w

A
i∗)l∈B

)]

Cov

[
(b̃AA, b̃BA)⊤,

(
(m̃A

ki∗w
A
i∗)k∈A

(m̃B
li∗w

A
i∗)l∈B

)] := ξ̄.

A similar argument holds if i∗ ∈ B. To conclude, if S is not empty, there exists a

threshold ξ̄ such that targeting the agent i ∈ C with more accurate information decreases
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disagreement if and only if ξCi∗ > ξ̄. This concludes the proof of Proposition 5. ■

Proof of Proposition 6

Consider the updating rule with an upper–censorship threshold ¯̄µ > θ∗. Censorship

removes the portion of any opinion exceeding ¯̄µ, so the stated opinion used by others is

µ̂i,t − [µ̂i,t − ¯̄µ]+. In vector form, the censored dynamics are

µ̂t+1 = W̃ µ̂t +w ⊙ θ − W̃ [µ̂t − ¯̄µ1]+. (B-15)

Since ρ(W̃ ) < 1, the uncensored updating rule converges to a unique steady state. Cen-

sorship keeps opinions within a fixed range at each time t, limiting extremes without

creating new ones. Thus, the censored dynamics also converge to a unique steady state.

Let µ̂ := limt→∞ µ̂t. Taking limits in (B-15) yields µ̂ = W̃ µ̂ + w ⊙ θ − W̃ [µ̂ − ¯̄µ1]+,

from which we obtain the implicit fixed-point representation

µ̂ = M̃ (w ⊙ θ)− M̃W̃ [µ̂− ¯̄µ1]+. (B-16)

Since the long–run opinion without censorship is µ = M̃(w⊙θ), substituting into (B-16)

yields equation (15).

To ensure that censorship applies only to agents in group A let explicitly write the censored

long-run opinions for the two groups[
µ̂A

µ̂B

]
=

[
µA

µB

]
−

[
M̃AA M̃AB

M̃BA M̃BB

][
W̃ AA W̃ AB

W̃BA W̃BB

][
µ̂A − ¯̄µ1nA

µ̂B − ¯̄µ1nB

]+
.

Therefore the long-run opinions of agents in group B satisfies

µ̂B = µB −
(
M̃BAW̃AA + M̃BBW̃BA

)
[µ̂A − ¯̄µ1nA ]+ −

(
M̃BAW̃AB + M̃BBW̃BB

)
[µ̂B − ¯̄µ1nB ]+.

Thus, the censorship does not bite on agents of group B if

max
j∈B

{
µB −

(
M̃BAW̃ AA + M̃BBW̃BA

)
[µ̂A − ¯̄µ1nA ]+

}
< ¯̄µ.

The matrix K := −
(
M̃BAW̃ AA + M̃BBW̃BA

)
has all positive entries, so that there

exists k̄ > 0 such that the sum each row’s entries are less than k̄. Hence, the vector

K[µ̂A − ¯̄µ1nA ]+ is bounded by k̄
[
maxi∈A µA

i − ¯̄µ
]+

. Therefore, a sufficient condition to
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ensure that the censorship does not affect agents in group B is

max
j∈B

µB
j + k̄

[
max
i∈A

µA
i − ¯̄µ

]+
< ¯̄µ.

The censorship applies to agents in group A when maxi∈A µA
i > ¯̄µ. Thus the condition

for which the censorship affect only agents in A (and no agent in B) is

max
j∈B

µB
j + k̄max

i∈A
µA
i − k̄ ¯̄µ < ¯̄µ and ¯̄µ < max

i∈A
µA
i

⇒ k :=
maxj∈B µB

j + k̄maxi∈A µA
i

1 + k̄
< ¯̄µ < max

i∈A
µA
i .

Thus, when the condition is satisfied [µ̂− ¯̄µ1]+ has positive entries only for agents in A.

Recall that M̃ = (I−W̃ )−1 = D(I−W̃+)−1D, therefore M̃W̃ = D(I−W̃+)−1W̃+D,

which has the same block-sign structure as W̃ .

Therefore, censorship reduces long-run opinions in group A and raises long-run opinions

in group B:

µ̂A
i ≤ µA

i for all i ∈ A, and µ̂B
j ≥ µB

j for all j ∈ B,

with strict inequalities whenever some agent in A is actually censored. Thus:

• Reducing µ̄A moves it closer to θ∗ if µ̄A > θ∗, and farther away if µ̄A < θ∗. Thus,

censorship brings the average opinion of group A closer to the truth if and only if

µ̄A > θ∗.

• Increasing µ̄B moves it closer to θ∗ if µ̄B < θ∗, and farther away if µ̄B > θ∗. Thus,

censorship brings the average opinion of group B closer to the truth if and only if

µ̄B < θ∗.

This concludes the proof of Proposition 6. ■

C Ring Network Example

Network Structure and Weights Consider the six-agent ring in Figure 1, with groups

A = {1, 2, 3} and B = {4, 5, 6}, and parameters αC
i = −βC

i = 1 and wC
i = w for all i ∈ C,

C ∈ A,B. Agents’ total attention is normalized to one. In these examples, we assume that

agents allocate attention equally across their own past opinion, the opinions of their two

neighbors, and—when present—the external signal. Each agent has two neighbors and a

self-loop. When no external source is present (wC
i = 0), attention is divided among these

three channels, so each receives a weight of 1/3. When an external source is introduced

(wC
i > 0), there is an additional information channel, and attention is divided equally
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across four channels. Thus every interpersonal link, the self loop, and the external source

of information all receive a weight of 1/4.

In the parameterization used in the main text, where the external weight is denoted

w, this corresponds to assigning (1−w)/3 to each interpersonal link and w to the external

source, as shown in Figure 1.

Matrix Representations and Leontief Inverses The social-interaction and identity-
interaction matrices can be explicitly written as follows. When no external source is
present (w = 0):

W =
1

3



1 1 0 0 0 1

1 1 1 0 0 0

0 1 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 1

1 0 0 0 1 1


, W̃ =

1

3



1 1 0 0 0 −1

1 1 1 0 0 0

0 1 1 −1 0 0

0 0 −1 1 1 0

0 0 0 1 1 1

−1 0 0 0 1 1


.

The resulting matrix W̃ is a signed matrix, with negative entries reflecting antagonistic

interactions across groups, and it is structurally balanced in the sense that each agent’s

positive and negative ties are arranged in accordance with with group membership.
When an external source is present (w = 1

4
):

W =
1

4



1 1 0 0 0 1

1 1 1 0 0 0

0 1 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 1

1 0 0 0 1 1


, W̃ =

1

4



1 1 0 0 0 −1

1 1 1 0 0 0

0 1 1 −1 0 0

0 0 −1 1 1 0

0 0 0 1 1 1

−1 0 0 0 1 1


.

The corresponding Leontief inverses, M = (I−W)−1 and M̃ = (I− W̃)−1, are:

M =



1.8 0.7 0.3 0.2 0.3 0.7

0.7 1.8 0.7 0.3 0.2 0.3

0.3 0.7 1.8 0.7 0.3 0.2

0.2 0.3 0.7 1.8 0.7 0.3

0.3 0.2 0.3 0.7 1.8 0.7

0.7 0.3 0.2 0.3 0.7 1.8


, M̃ =



1.8 0.7 0.3 −0.2 −0.3 −0.7

0.7 1.8 0.7 −0.3 −0.2 −0.3

0.3 0.7 1.8 −0.7 −0.3 −0.2

−0.2 −0.3 −0.7 1.8 0.7 0.3

−0.3 −0.2 −0.3 0.7 1.8 0.7

−0.7 −0.3 −0.2 0.3 0.7 1.8


.

Multiplying these matrices by the vector (1/4) · 1 gives the Katz-Bonacich centralities b

and b̃.

Social and Identity Centralities Table C-1 reports Katz-Bonacich and eigenvector

centralities for the ring network. Under the social-interaction matrix W, all agents have
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identical values because the network is perfectly symmetric: each agent interacts with

two neighbors and themselves. This uniformity disappears when considering the identity-

interaction matrix W̃, which introduces negative links to capture out-group antagonism.

These negative links reduce the effective influence of agents exposed to the opposing

group, creating variation in b̃. Agents 2 and 5, connected only to in-group neighbors,

have higher centralities, while agents 1, 3, 4, and 6—linked to out-group members—have

lower values.

Eigenvector centralities π̃ also reflect alignment with group identity, highlighting how

identity-based interactions reshape both the distribution and interpretation of influence

compared to standard social networks.

Nodes b(W ) b(W̃ ) π(W ) π(W̃ )

1 1 0.4 0.16 -0.16
2 1 0.6 0.16 -0.16
3 1 0.4 0.16 -0.16
4 1 0.4 0.16 0.16
5 1 0.6 0.16 0.16
6 1 0.4 0.16 0.16

Table C-1: Katz-Bonacich and eigenvector centralities for both the social interaction matrix W and the
(signed) identity-interaction matrix W̃ of ring network of six agents of Figure C-1.

Long-Run Opinions The structure of the identity-interaction matrix W̃, which incor-

porates antagonistic out-group links, generates heterogeneity in long-run opinions even in

a symmetric social network.

In case (i), with no external information, each group converges to an internal consen-

sus. The disagreement between groups reflects the combination of initial opinions and the

structure of identity-interaction matrix, as encoded in π̃.

In case (ii), with an unbiased external source, we have disagreement but no ideological

polarization across groups. Agents less exposed to out-group interactions (2, 5) are closer

to the truth, creating within-group disagreement. Because the social network is symmetric

across groups, both groups display the same degree of internal disagreement and the same

average opinion.

Case (iii) considers biased external sources. When biases align across groups (ξA =

ξB = 0.5), long-run opinions converge closer to the truth than in (ii). When biases are

opposed (ξA = −ξB = −0.5), out-group antagonism amplifies divergence and the degree

of ideological polarization and disagreement is high.
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(a) No information (b) Unbiased information

(c) Same-sign biases (ξA = ξB = 0.5) (d) Opposite-sign biases (ξA =
−ξB = −0.5)

Figure C-1: Long-run opinions for the ring network of Figure 1, beginning from (µi,0)i∈A = 0 and
(µi,0)i∈B = 2. Group A is depicted in Red and Group B is depicted in Blue. The green dotted line
represents the true state of the world, θ∗ = 1.
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