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Abstract

We study opinion dynamics in a social network consisting of two groups. Agents
update their opinions by conforming to members of their own group while reject-
ing the views of the opposing group (affective polarization), and by listening to a
media outlet that may provide biased information. We characterize the long-run
opinions and identify when affective polarization and media bias lead to ideolog-
ical polarization, persistent disagreement, or failures of learning. We also derive
when information interventions or censorship improve learning and reduce disagree-
ment, and when they backfire: better information helps only under specific media
bias configurations and when directed to the agents we identify as most effective at

propagating it through the network.
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1 Introduction

In 2013, NASA released data showing a clear decline in Arctic sea ice, underscoring the
urgency of climate action. Guilbeault et al. (2018) conducted a laboratory experiment to
study how liberals and conservatives interpreted this objective data. Liberals predicted
a further decline in sea ice, while conservatives saw it as evidence of an increase due
to a rebound in the most recent observations, illustrating polarization. The researchers
then facilitated discussions between both groups in social networks resembling a social
media platform and randomized participants in treatments with different information on
the political affiliation of their neighbors. When displaying political logos (Republican or
Democrat), participants remained entrenched in their original views and polarization per-
sisted. However, when political logos were not shown, cross-party interactions eliminated
belief polarization. By the end, both liberals and conservatives reached 90% accuracy in
their forecasts, with political differences largely disappearing.! This shows how affective
polarization, i.e., the emotional attachment to the own group and hostility toward the
opposing one,? shapes opinions and biases views on critical issues such as climate change.
The aim of this paper is to deepen the understanding of these issues by developing an
exogenous-network model of opinion dynamics with two distinct groups (e.g., Democrats
and Republicans). The model examines how affective polarization—in which individu-
als internalize the opinions of their group positively and those of the other group neg-
atively—and media outlets, represented as biased or unbiased sources of information,
impact the long-run opinions.®> We characterize the long-run opinions and establish con-
ditions under which affective polarization and media influence contribute to ideological
polarization or failure of learning, thereby guiding the formulation of effective policies.
Specifically, we investigate the opinion dynamics of individuals embedded in a signed
network, where society is divided into two groups. We model affective polarization by
assuming that individuals, at each time period, align their opinions with those of their
own group members (i.e., they positively average the opinions of their in-group peers);
conversely, they oppose the views of the other group (i.e., they negatively average the

opinions of their out-group peers). Together, these dynamics constitute what we refer to

Djourelova et al. (2024) also provide evidence that exposure to the same disaster event increases
climate change and environmental concerns among liberals but decreases them among conservatives,
widening the ideological gap by 11-17%.

2 Affective polarization refers to the “us vs. them” mentality among people with different political
beliefs, values, or attitudes, where opponents are not just seen as having different views but as morally
wrong or even evil (Iyengar et al., 2012). See Boxell et al. (2024) for cross-country evidence.

3In our model, media outlets include both traditional mass media (e.g., CNN, Fox News) and social
media platforms (e.g., Twitter, Facebook), which may provide biased or unbiased information. We assume
affective polarization exists, the interaction network is fixed, and exposure to media is exogenous. The
idea is that the opinions we focus on are not the reason the network exists so it can be taken as given.



as in-group identity and out-group antagonism. In addition to peer influences, individuals
may also rely on a potentially biased source of information—such as partisan or neutral
media outlets.

We examine three distinct scenarios in which individuals form opinions about an un-
known state of the world. In the first scenario (case (7)), agents have no access to external
information and base their opinions solely on the aggregation of the opinions of others.
In the second scenario (case (i7)), individuals consider the opinions of other agents and
have access to an unbiased source of information (e.g., an impartial media outlet). In the
third scenario (case (7)), individuals again consider the opinions of other agents but have
access to a group-specific biased source of information (e.g., a partisan media outlet).

In case (7), when agents form an opinion without having access to any source of infor-
mation, with affective polarization, we always observe in-group consensus and out-group
polarization. The long-run opinion of each agent is determined solely by the weighted
sum of the initial opinions of their direct and indirect connections. The weights, and thus
the influences of each agent’s initial opinion on others’ long-run opinions, are given by
the eigenvector centralities of the identity-interaction network, which is a signed, struc-
turally balanced network.* Indeed, since each agent wants to be as close as possible to
the opinions of agents of the same group but as far as possible from those of agents of the
other group, the more central an agent j is in the network, the more agent ¢ conforms to
(deviate from) j’s opinion in the long-run if she belongs to the same (other) group. Com-
pared to standard models of opinion dynamics (e.g., DeGroot, 1974; Golub and Jackson,
2010), introducing affective polarization leads to polarization of opinion between the two
groups, thereby preventing a consensus among all agents.

In case (ii), when agents have access to an unbiased source of information, long-run
opinions are independent of initial opinions. Prior studies (Jadbabaie et al., 2012; Molavi
et al., 2018) show that, in the absence of affective polarization, mild assumptions guaran-
tee that agents reach a consensus and aggregate information effectively. By contrast, we
show that affective polarization—whereby agents negatively incorporate out-group infor-
mation—Ileads to a failure of learning the truth, and can also foster ideological polarization
depending on the network structure. Long-run opinions converge to a vector proportional
to weighted Katz—Bonacich centrality in the identity-interaction network, which contains
both positive and negative links. Opinion leaders in this signed network—the individu-

als who better aggregate information—are generally not the same as in standard models:

4From the social-interaction network, we derive the identity-interaction matrix, which captures how
each agent’s opinion influences others depending on group identity. Its eigenvector centralities correspond
closely to the status measure for signed networks of Bonacich and Lloyd (2004), and our framework
provides a microfoundation for this measure in settings with negative relations. A network is structurally
balanced when all in-group links are positive and all out-group links are negative (Harary, 1953), as
observed, e.g., in online social networks (Guha et al., 2004).



agents with many inter-group interactions face greater exposure to negative sentiment and
may therefore be the least accurate in aggregating information, despite being central in
the social network. These predictions align with experimental evidence: users endorsing
conspiracy theories tend to increase their engagement with conspiratorial content when
exposed to debunking posts (Zollo et al., 2017), while antisemitism instigated anti-market
culture among non-Jews in proximity to Jewish communities (Grosfeld et al., 2013).

In case (iii), when agents have a biased source of information, long-run opinions
depend on the biases and how they propagate in the network. Thus, the long-run opinion
of each agent is determined by a linear combination of the true state of the world and
the biases. In standard models, biases of opposite sign tend to cancel each other out,
while biases of the same sign tend to persist. By contrast, with affective polarization
opposite-sign biases tend to exacerbate each other, amplifying polarization; instead, same-
sign biases tend to cancel each other out, dampening the negative effect of affective
polarization on opinions. Surprisingly, biases may even lead to long-run opinions closer
to the truth than in case (i7), and reducing affective polarization does not necessarily
improve information aggregation, consistent with experimental evidence (Levy, 2021).

Then, we study policies that aim to improve learning and reduce disagreement. Un-
der affective polarization, information campaigns can backfire due to group antagonism.
Improving exposure to unbiased information (case (i7)) for only one group moves it closer
to the truth while pushing the other away, so this intervention may increase disagreement
unless both sides are reached. If the media outlets are sufficiently biased (case (#ii)),
providing better information to the whole society is optimal only if the two groups are
exposed to biases in opposite directions; if instead the biases are aligned, only the more
biased one should be targeted. We also identify the agent to optimally target with more
accurate information, i.e., the one whose beliefs propagate maximally through the net-
work. Finally, we show that censorship can backfire as well: restricting extreme opinions
improves learning only when groups are on opposite sides of the truth, but may worsen
outcomes when both groups are on the same side. Overall, these results provide guidance
for designing policies that mitigate the effects of affective polarization.

This paper contributes to the literature on non-Bayesian opinion dynamics (DeGroot,
1974; Golub and Jackson, 2010, 2012; Jadbabaie et al., 2012; Molavi et al., 2018) by
introducing negative weights to model affective polarization. Relative to standard mod-
els, our framework explains how exposure to the opposing group or to partisan media
can increase polarization (Bail et al., 2018; Zollo et al., 2017) and that under affective
polarization information policies designed to curb misinformation may backfire.

Recent work studies negative relationships primarily as anti-conformism. For instance,

Buechel et al. (2015) model agents who average neighbors’ opinions but may misrepresent



their own via conformity or anti-conformity, while Zhang et al. (2018) and Grabisch et al.
(2019) classify agents as conformist or anti-conformist. In contrast, our framework lets
agents’ desire to conform depend on both their own identity and that of the agent with
whom they interact. Shi et al. (2019) also study convergence in signed networks. Our
contribution is to introduce biased and unbiased media and study how they interact with
antagonistic links. This allows us to identify when affective polarization causes learning
failure and ideological polarization, and to derive novel policy implications. Finally, our
paper also contributes to the literature on the spread of misinformation in networks (Bloch
et al., 2018; Merlino et al., 2023; Della Lena, 2024) and polarization (Callander and
Carbajal, 2022; Campbell et al., 2025) by explicitly modeling out-group antagonism.

We also contribute to the literature on identity (Akerlof and Kranton, 2000; Shayo,
2020) and affective polarization (Iyengar et al., 2019). While identity has been widely
studied in economics, its role in opinion dynamics has received little attention. Work on
affective polarization typically focuses on partisan identity, i.e., the tendency of partisans
to view opponents negatively and co-partisans positively (Iyengar and Westwood, 2015),
but lacks a formal model explaining how affective polarization and social media jointly
shape ideological polarization. Understanding how affective polarization shapes opinions
is key to interpreting our results. Our predictions align with recent empirical evidence
(e.g., Guilbeault et al., 2018; Jenke, 2024; Lerman et al., 2024) and help reconcile seem-
ingly contradictory findings on whether exposure to opinion leaders or partisan media
mitigates or exacerbates polarization (Bail et al., 2018; Levy, 2021). Most importantly,
the framework provides a basis for designing policies to counteract the negative effects of
affective polarization and partisan media on ideological polarization.

The paper proceeds as follows. Section 2 presents the model. Section 3 states the
main results. Section 4 explores policy implications. Section 5 concludes. Appendix A

provides the microfoundations of our model. All proofs are in Appendix B.

2 Model

We consider a society where agents update their opinions about the true state of the world
0* € © C R by aggregating information from two sources: their social contacts (whose
opinions they may wish to conform to or reject) and, when available, a (potentially biased)

external source of information. Without loss of generality, we assume 6* # 0.

Agents Agents are divided into two groups, C := {A, B}, with sizes n* and n” re-
spectively, such that n + n® = n. We order the agents such that A = {1,...,n*} and
B = {n” +1,...,n}, and denote the entire set of agents as N = {1,2,...,n}.



Social Interactions Agents interact in a network of social interactions, represented by
an n X n non-negative matrix W. Each entry wg € [0, 1] indicates the extent to which
agent i € C, with C' € {A, B} pays attention to the opinion of agent j, for each i,j € N.

The social-interaction matriz W can be expressed as follows:

W =

WAA WAB
WBA WBB ’

where WAB:= ((wf})ica)jen € [0, 1]7**n” represents the interactions between an agent i
from group A and an agent j from group B. The other sub-matrices of W are interpreted
similarly, capturing the interactions within and between groups. We assume that the
network is strongly connected® and that w§ > 0 for all i € C, with C' € {A, B}, thereby

ensuring that each agent pays attention to their own opinion to some degree.%

Media Outlets Each agent i € C, with C' € {A, B}, may have access to a potentially
biased source of information 6¢ (e.g., a media outlet) that could reveal the true state of
the world. We denote by w{ the weight that agent i assigns to §7—i.e, the degree to
which i pays attention to or is influenced by the information source. Thus, w{ > 0 can
also be interpreted as the exogenous probability that ¢ believes their source is unbiased. If
agents lack access to such a source (e.g., because the topic is not verifiable), then w¢ = 0.

We focus on the group bias in agents’ private signals, assuming that £ = ¢4 for all
i€ Aand &8 = €8 for all i € B, i.e., all agents in a group have the same bias—for
example, because they have access to the same source of information. Thus, for each
agent i € O, ¢ = 0° = 0* +¢C. Let & = (EA,EB)T denote the bias vector. Thus, the
overall column vector of information sources can be defined as 8 = (BA, 08 )T =0"1+€,
where 1 is the n-vector of ones. Similarly, all vectors in the model follow this structure,
starting with the first n® agents, followed by the n® = n — n? agents. For example,

W = (WA, wh )T is the vector representing exposure to possibly biased information.

Opinion Updating Let uft denote the opinion help by agent i € C, with C € {A, B},
at time t. The corresponding vector of all agents’ opinions is given by p; = (uf, utB)T.

Agents update their opinions taking a weighted combination of opinions from their own

5Strong connectivity requires that every node can reach every other node through a (possibly directed)
sequence of links, regardless of whether interactions are positive or negative. While this assumption is not
satisfied in platforms such as Twitter /X, large-scale directed networks typically contain a giant strongly
connected component (Gabielkov et al., 2014). Our results apply to such components, which capture the
part of the network where sustained opinion exchange is possible.

6We later use these properties to show the convergence of the opinion dynamics to a steady state.
These are standard assumptions in the literature on opinion dynamics (see, e.g., Golub and Jackson,
2010). As we focus on the implications of affective polarization, we rely on these well-established results.



group, the other group, and the (possibly biased) external source of information.
Following Tajfel and Turner (1979) and Akerlof and Kranton (2000), we assume agents

strongly identify with their own group, shaping whose opinions they seek to match: agents

align with their in-group while tending to disagree with the out-group. The opinion of

agent i € C' with C' € {A, B} then evolves according to the following equation:

c _ C c C C C, Ce CpnC
Hiy = & E W1 T+ B; E Wiy 1 T W, 0, (1)
jec zeCe

where C¢ := C \ C represents the complement of group C' (e.g., A° = B), a¢ > 0 denotes

the intensity of the agent’s in-group identity, and ¢ < 0 represents the intensity of

out-group antagonism. We assume that aic ZjeC wg + |BZC\ Zzecc wg + wiC =17
Defining AY := diag[(af)icc] and, TY = diag[(8)icc], for all C = {A, B}, the

opinions of agents of groups A and B evolve according to the following equations:

pi =AW S TAWAE P+ wt o 07, (2)
pe =APWEEuE L TPWEALE 1+ wh o 6", (3)

where © is the element-wise (Hadamard) product.

Identity-Interaction Matrix Given this process of opinion dynamics, from the social-
interaction matrix W we derive the identity-interaction matrix W, which captures how

an agent’s opinion influences another’s based on their group identities, i.e.,

+_
—- +

PBYYBA  ABYYBB with sign(W') =

AAW AA FAwAB]

Each agent maintains positive (or zero) links with members of their own group and nega-
tive (or zero) links with members of the other group. By Theorem 3 in Harary (1953), the
matrix W corresponds to a structurally balanced network—that is, a network in which
the product of the signs of the edges of any possible cycle in W is positive.® While not
needed for our main results, structural balance naturally emerges from negative intergroup
sentiments implied by affective polarization.

As a running example, Figure 1 depicts a ring network of six agents, A = {1,2,3}

"This normalization naturally results if agents share a given amount of time/attention to the different
sources of information, but they incorporate negatively the opinions of members from the opposing group.
Negative links result, e.g., if agents using the Bayes rule to update their beliefs. See Appendix A.

8There is a path among distinct nodes in the ordered sequence S := {1,2,...,K — 1, K} in W if

Wik # 0 for each k € {1,..., K — 1}, where Cf is the group of agent k. The sign of the path is the

sign of HkK;ll u?kcf;”ﬁl. A cycle is a path that begins and ends at the same node, and its sign is defined as

the sign of the associated path.



and B = {4,5,6}, with the corresponding social- and identity-interaction matrices; the

identity-interaction matrix is structurally balanced (see Appendix C for more details).
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Figure 1: Ring network of six agents with groups A = {1,2,3} (red) and B = {4,5,6} (blue) with
af = B¢ =1 and wf = w for all i € C with C € {4, B}. Dotted edges indicate negative links. The
social-interaction matrix W and the identity-interaction matrix W are shown alongside the network.

We can now express equations (2) and (3) more compactly as follows:
w = V~Vut_1 +w®6. (4)

The first term on the right-hand side of (4) captures the influence of interpersonal opinion
exchanges in shaping beliefs, while the second term reflects the impact of the (un)biased

source of information. Hence, for any agent i € C' with C' € {A, B}, equation (1) becomes

uft = Z@Dgﬂgpl + Z wiuf}l + wic(e* + fc) (5)
jec z€Ce

Long run opinions We are interested in the long-run opinions of agents belonging to
the two groups. We denote the steady state value of the variables by suppressing the

index t. Thus, p¢ := lim; o ,ugt is agent’s ¢ opinion in the long run and p := (,uo)

cec
C
represents the vector of long-run opinions in society. Furthermore, let p¢ := Zi—%”’
represent the average long-run opinion within each group C' € {4, B}.
- N1 -
Centralities Let M = (I — W> = Jjj) Wk denote the Leontief inverse of the

identity-interaction matrix, which, under our assumptions, is well defined when agents
have access to media, as we show below. The generic element mg measures the cumulative
influence of agent j on agent i € C, with C' € {A, B}, through all walks in the network,
accounting for both positive in-group links and negative out-group links. We define the
vector of weighted (signed) Katz—Bonacich centralities in the identity-interaction network

as b := b(W) = Mw, with generic element for agent i € C' given by:

e = Z mgwj‘ + Z mGwp. (6)

jeA keB



To emphasize the role of group interactions in bias propagation, we also define the con-

tributions from each group separately:

b4 = me wy, and WP = kawk, (7)

jeEA keB

so that 510 = BZCA + BiCB and the total centrality vector can be compactly expressed as

~ hA bAA | pAB
b=1|._|=]|- - (8)

bB bBA + bBB
As we show below, if instead no agent has media access, i.e., w" = 0 for all i € N, the
assumption a¢ 3. jec wi+ 8713 e wl = 1, together with structurally balance, implies

that W has its largest eigenvalue equal to 1. Thus, we can define the left eigenvector

corresponding to the eigenvalue 1 of matrix W as 7 := w(W) = (7€

Nien. Intuitively, 7¢

captures the influence of agent 7 in the signed network. Its signs identify the two groups:
positive entries correspond to the own group and negative entries to the other.

Two points are worth noting. First, eigenvector and Katz-Bonacich centralities cap-
ture different notions of network influence: eigenvector centrality emphasizes recursive
importance through connections to other central nodes, while the weighted Katz-Bonacich
incorporates the exposure to exogenous sources of information (the media outlets) and
discounts more heavily influence that travels through longer walks. Second, while the
measures on unsigned matrices are always positive (Jackson, 2008), those based on the
identity-interaction matrix W can be positive or negative due to positive in-group and
negative out-group links; thus, a node influential in W need not be influential in W.

Table C-1 in Appendix C illustrates this for the ring network.

Ideological polarization and disagreement We say that society exhibits ideological
polarization when, in the long run, the opinions of the two groups systematically differ.
Recall that ¢ denotes the long-run opinion of agent i € C, with C' € {A, B}. Then:

Definition 1 A society exhibits ideological polarization if there exists a value y such
that sign(u —y) # sign(uf —vy) foralli € A and j € B. We measure the degree of

ideological polarization by the distance between the two groups’ average opinions, | — P

We say that a group or society exhibits disagreement when its members hold differing
opinions. If all members share the same opinion, the variance equals zero, indicating
consensus. Conversely, when opinions diverge, the variance becomes positive, signaling

disagreement. Formally:



Definition 2 A society (group) exhibits disagreement if long-run opinions are not iden-
tical in it, i.e., if Var(p] > 0 (Var[u®] > 0 for group C € {A, B}). We measure the

degree of disagreement by the variance of long-run opinions, i.e., Var[u] (Var[u®]).

05}

(a) Ideological polarization and disagreement (b) Disagreement without ideological polar-

(4 =) ization (4 = ¢7)

Figure 2: Ideological polarization vs disagreement: Opinion dynamics for the blue and red groups in the
ring network of Figure 1 with the same initial opinions but different media biases.

To illustrate these concepts, Figure 2 shows two examples of opinion dynamics in the
ring network of Figure 1. In both cases, long-run disagreement arises within and across

groups, but ideological polarization is present only in panel (a).

Microfoundations In Appendix A, we provide several microfoundations for the up-
dating rule (5). In the first, we interpret p, as opinions. Bayesian agents exhibit two
cognitive biases: persuasion bias, whereby they fail to properly account for repetition in
the information they receive (DeMarzo et al., 2003); and zero-sum thinking, the belief
that gains for one group necessarily come at the expense of the other (e.g., Chinoy et al.,
2025). Under zero-sum thinking, when an agent observes an out-group member express-
ing a positive view about a policy, they interpret it as evidence that the policy benefits
the out-group at their own group’s expense and adjust their opinion in the opposite di-
rection. A positive view expressed by an in-group member is taken as evidence that the
policy benefits their own group, raising their opinion. Under these biases, after receiving
a private noisy signal about the policy’s effect, each agent updates their opinion via peer
interactions and public information; then (5) follows.

If we interpret p; as behaviors, actions, voiced opinions, or attitudes, (5) corresponds
to myopic best-response dynamics in network games with both positive and negative
spillovers, arising from in-group conformity and out-group differentiation (e.g., political

voiced opinions) or peer pressure (e.g., recycling).



3

Main results

In this section, we compare opinion dynamics with and without antagonism in three

distinct informational environments:

(4)

(iid)

No Information (w{ = 0 for each i € C, C € {A, B}) Agents have no access to
external information. This corresponds to debates on issues without an objective
truth (e.g., ethical dilemmas such as abortion) or where data are unavailable (e.g.,

a vaccine before large-scale rollout).

Unbiased Source (w¢ > 0 for i € C, C € {A, B}, ¢! = 8 = 0) Agents observe
a neutral, identity-independent source, such as factual or scientific evidence. This
represents settings where all individuals receive the same objective information—for

example, scientific data on vaccine efficacy in reducing COVID-19 mortality.

Biased Sources (w¢ > 0 fori € O, C € {A, B}, £ # 0, €8 £ 0) Agents consume
partisan information aligned with their group identity, reflecting selective media

exposure—for instance, Republicans following Fox News and Democrats or Liberals
preferring MSNBC or CNN.

3.1 Opinion dynamics with affective polarization

Our main result is summarized in the following theorem.

Theorem 1 The opinions dynamics defined in equation (4) always converges to a unique

long-run opinion vector p := lim;_,, p;. Moreover,

(i) (No information) If there is no source of information, for alli € A and j € B,

long-run opinions are equal to

pt =7 po,
ph = —ph.

I
I

(9)

A
i
B
j

(i) (Unbiased information) If agents have access to an unbiased source of informa-

tion, for each i € C, with C' € {A, B}, long-run opinions are given by

ué =bo*. (10)

(i1i) (Biased information) If agents have access to a biased source of information, for

each i € C, with C € {A, B}, long-run opinions are equal to
i o= b0+ BT BT R (11)

10



Opinions always converge to a unique value. This follows from the strong connectivity of
the network, the normalization of individuals’ weights over information sources, and the
fact that agents place a positive weight on their own past opinion and/or the media outlet.
Under these assumptions, the spectral properties of the identity-interaction matrix ensure
that both the eigenvector and Katz-Bonacich centralities are well-defined.”

Consider case (7). When there is no available source of information (or no true state
of the world), affective polarization generates a sharp divergence in opinions between
agents belonging to different groups. Regardless of the network structure or the initial
distribution of opinions, n-group consensus and out-group polarization emerge. Hence,
while an agent’s network position (captured by their eigenvector centrality) determines
how their initial opinion contributes to the group’s long-run opinion, all agents within the
same group ultimately share identical views, with no within-group disagreement.'’

This pattern is consistent with highly polarized moral debates, where no objective or
testable truth exists and opinions reflect values, emotions, group identity, and affective
polarization. Evidence from social media confirms this for debates about abortion: follow-
ing the June 2022 overturning of Roe vs. Wade, Lerman et al. (2024) show that liberals
and conservatives formed two distinct clusters on Twitter, with supportive interactions
within groups and negative sentiment across them.

Next, consider case (ii), where agents value information about the state of the world
and are exposed to an unbiased source, §*. Despite receiving accurate information, affec-
tive polarization causes agents to reject the opinions of the opposing group. As a result,
even identical views across groups are weighted negatively, distorting perceptions of the
true state of the world. In this setting, each agent’s long-run opinion equals 6* times
her Katz—Bonacich centrality in W, which is strictly below one. This centrality there-
fore measures how efficiently the agent aggregates information. The closer, in this sense,
she is to members of the other group—measured by the cumulative strength of direct
and indirect paths connecting them—the lower her centrality, as negative links attenuate
the contributions along those paths. Intuitively, an agent with more connections to the
out-group relies more heavily on negatively-weighted information, which pulls her opinion

away from the truth. The next proposition formalizes these facts.

Proposition 1 When agents are exposed to an unbiased source of information (case (ii)),
affective polarization leads to learning failure. Additionally, agents with more (direct and

indirect) exposure to the other group are farther away from the truth.

9n our model, W has spectral radius equal to one in case (i), guaranteeing that the eigenvector
centralities are well-defined, and lower than one in cases (i¢) and (7ii), guaranteeing that the Neumann
series, Zﬁif) Wk, leading to Katz-Bonacich centralities converges.

10A similar result has been obtained by Shi et al. (2019).
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Case (i1) captures contexts where individuals, regardless of identity, have access to
credible information (e.g., scientific evidence or neutral media). Here, affective polariza-
tion does not necessarily induce ideological polarization, as in case (i), but it hampers
collective learning and information aggregation.

Political and scientific debates often illustrate the pattern of case (i7): partisan hos-
tility or group rivalry prevents agents from fully processing valid information, leading to
persistent disagreement despite unbiased evidence. For example, the retweet network of
COVID-19 discussions during the first months of the pandemic contained many small
clusters, and these divisions did not coalesce into the kind of entrenched, binary ideolog-
ical camps seen in case (i) (Lerman et al., 2024). This empirical pattern is consistent
with the heterogeneous opinion structure p = b.0*, where opinion variation is driven by
agents’ differing network centralities rather than a simple group-wide split.

Lastly, consider case (7iz). In this scenario, long-run opinions also depend on the biases,
€¢, and how they propagate in the network, as governed by the matrix M. Specifically,
the long-run opinion of agent i is a linear combination of the true state of the world, 6%,
and the biases, as expressed by equation (11). These biases are internalized by agents
either positively or negatively, depending on whether they originate from their own or the
opposing group. Consequently, from a social learning perspective, it is more desirable for
the two groups to be biased in the same direction (e.g., ¢4 = ¢2 > 0) than in opposite
directions (e.g., €4 = —¢B > 0). In other words, when media outlets share biases of the
same sign but differ in narrative,!! they can mitigate the adverse effects of out-group
antagonism, reducing ideological polarization and disagreement and improving learning
than if the biases were of opposite sign. Interestingly, this may lead to long-run opinions

being closer to the truth than in case (i7), where no bias exists.

Proposition 2 When agents are exposed to biased information (case (iii)), affective po-
larization reinforces biases of opposite sign and mitigates those of the same sign. More-

over, agents’ opinions may be closer to the truth than under unbiased information.

Studies on COVID-19 show that exposure to biased information from partisan media
increased political polarization (Jungkunz, 2021), as individuals disproportionately relied
on news aligned with their ideological identity, reinforcing disagreement across political
groups (Strydhorst et al., 2023). Research documenting these patterns highlights the role

of partisan information environments in amplifying political divides during the pandemic

LA real-world example is trade policy: Republican-leaning media (e.g., Fox News) highlight harm
to U.S. workers, while Democratic-leaning outlets (e.g., MSNBC) emphasize social and environmental
dumping. A second example comes from antitrust debates: left-leaning media stress inequality and worker
exploitation, whereas right-leaning outlets focus on market fairness. In both cases, the two media outlets
disseminate information through different narratives, but biased in the same directions.
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(Motta et al., 2020). Additionally, affective polarization drives selective belief formation.
Combining observational data and a survey experiment, Jenke (2024) shows that individu-
als are inclined to accept in-party misinformation and to reject out-party misinformation.
Thus, antagonism can act as a filter against out-party misinformation, which should be

taken into account when designing policies, as we show in Section 4.

3.2 Opinion dynamics without affective polarization

To highlight our findings, we compare Theorem 1 with a benchmark model without out-
group antagonism, in which 3¢ > 0 for all i € C, with C' € {A, B}. For this benchmark,
let W+ .= (|oG)ijen, and define 7+ = 7(WH) = (7" )ien the associated eigenvector
centrality and b := b(W*) the associated Katz-Bonacich centrality vector, where the
elements are defined as in equations (6), (7), and (8). Since the functional forms of these
centralities are unchanged, the superscript “+” simply identifies the corresponding objects

in the model without out-group antagonism.'?

Theorem 2 The opinion dynamics defined in equation (4) with of > 0,55 > 0, for all
i€ C, with C € {A, B}, always converges to a unique . Furthermore:

(i) (No information) (Golub and Jackson, 2010) If there is no media outlet, then
pé = p for alli € C, with C € {A, B}, where

n= G, (12)

jJEN
(i1) (Unbiased information) (Jadbabaie et al., 2012) If agents have access to an un-
biased source of information, then u& = u for all i € C, with C € {A, B}, where

pw=0". (13)

(i11) (Biased information) (Friedkin and Johnsen, 1990) If agents have access to a
biased source of information, then, for each i € C, with C € {A, B}, long-run

opinions are equal to
pl = bET O  pEAT e 4 pIBT B, (14)

Theorem 2(7) corresponds to the standard DeGroot model of opinion updating based
on neighbors’ average opinions (DeGroot, 1974; Golub and Jackson, 2010). Without out-

group antagonism, agents’ opinions always converge to a single long-run value, resulting

12Gee the proof of Theorem 2 for the formal definition of these centralities.
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in societal consensus. As shown by Golub and Jackson (2010), long-run opinions are a
weighted average of the initial opinions, where each agent’s weight corresponds to their
eigenvector centrality (see equation (12)). Furthermore, if initial opinions are indepen-
dently distributed with mean 6*, and the network is balanced and satisfies the minimal
out-dispersion property, long-run opinions converge to the true state of the world.'® This
highlights the critical role of out-group antagonism in the emergence of ideological polar-
ization in the society, especially when agents have no access to external information.

Theorem 2(ii) parallels the findings of Jadbabaie et al. (2012). They show that when
agents have access to an unbiased source of information, consensus on the truth is always
reached, regardless of initial opinions or network structure (provided that the network is
strongly connected). Comparing the long-run opinions in (13) with those in (10) (Theo-
rem 1) reveals that group antagonism introduces distortions that hinder both learning of
the true state of the world and the achievement of consensus. Once out-group antagonism
is introduced, long-run opinions deviate from the truth 6*, and this divergence increases
with the strength of antagonism.

Theorem 2(i7i) corresponds to a setting with a biased information source, consistent
with the findings of Friedkin and Johnsen (1990). The functional form of long-run opinions
in (14) remains as in Theorem 1, but the Katz—Bonacich centralities are now computed
over a non-signed network, implying that agents internalize the biases of both groups with
positive weights. Consequently, in the absence of out-group antagonism, negatively corre-
lated biases enable agents to internalize opposing perspectives through social interactions,
partially offsetting their own bias and reducing its overall effect. When such opposing
biases balance each other, the average opinion in society moves closer to the truth. Con-
versely, when biases are aligned in the same direction, they reinforce one another and
persist. Hence, without out-group antagonism, negatively correlated group biases tend
to yield more accurate societal beliefs. By contrast, while out-group antagonism always
distorts learning with unbiased media (case (7)), when biases are present (case (ii7)), the
impact of antagonism depends on the correlation of group biases: negatively correlated
biases imply more polarization than positively correlated biases.

Figure 3 compares long-run opinions from Theorem 1 (with group antagonism) and
Theorem 2 (without antagonism) for different values of 3% and when 6* = 1. Each panel,
based on the ring network in Figure 1, shows how opinions vary with the information

structure and the strength of inter-group interactions: § = 0 represents no interaction

13 A network is balanced if no family can receive infinitely more weight from the remaining agents than
it gives. It satisfies the minimal out-dispersion property if any sufficiently large finite family allocates at
least some minimal weight to nearly all of society. In Golub and Jackson (2010), a family is defined as
a collection of agents that may be changing and growing as the society expands. For formal definitions
and a detailed discussion, see Golub and Jackson (2010).
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between groups; § > 0 corresponds to the benchmark without antagonism (Theorem 2),
while 5 < 0 captures out-group antagonism (Theorem 1), with more negative values

indicating stronger antagonism.
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Figure 3: Long-run opinions in the ring network with and without out-group antagonism. The green
dotted line (if present) represents the true state of the world, 6* = 1.

The general pattern displayed in Figure 3 mirrors the experimental evidence in Guil-
beault et al. (2018), where displaying political logos prevents information aggregation and
consensus, while removing the logos—and thus eliminating antagonistic reactions—allows
subjects to better aggregate information and their opinions tend to converge. Our model
displays a similar qualitative contrast. With group antagonism, disagreement persists
and long-run opinions may move further from the truth and display polarization; with-
out antagonism, social interactions favor opinion aggregation and consensus even under
different informational environments. In this sense, our model shows how antagonism in-
teracts with the structure of information to determine whether social interactions promote
consensus or disagreement.

In particular, Panel (a) of Figure 3 (no information) shows that out-group antagonism
is crucial for the emergence of ideological polarization when agents lack external infor-
mation. In panel (b) (unbiased information), once antagonism appears (f < 0), long-run
opinions begin to deviate from the truth 6*, with stronger antagonism leading to greater

divergence. Panels (c¢) and (d) of Figure 3 illustrate the case of biased information. In
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panel (c), the biases have the same sign (é4 = ¢8 = 0.5). When affective polarization is
present (8 < 0), out-group antagonism partially counteracts positively correlated misin-
formation, bringing long-run opinions closer to the truth 6*; in contrast, when g > 0, the
two biases reinforce each other and generate a consensus far away from 6*. In panel (d),
the groups receive biases of opposite sign (é4 = 0.5 and ¢ = —0.5). Under conformity
(8 > 0), these opposing distortions cancel out, and the average opinion aligns closely with
the truth. When affective polarization emerges (5 < 0), however, antagonism prevents
this cancellation, disagreement rises, and the average opinion moves further from 6* as 8
becomes more negative.

Table 1 summarizes these results, highlighting the impact of the information structure

and the presence or absence of out-group antagonism.

‘ H Out-Group Antagonism ‘ No Out-Group Antagonism

Consensus

(7) No information

In-group consensus
Out-group polarization

(1) Unbiased source
of information

Disagreement and
failure of learning

Consensus and
learning

(791.1) Same-sign biased
sources of information

Reduced distance
from the truth

No reduced distance
from the truth

(#7i.2) Opposite-sign biased
sources of information

Increased
Polarization

Reduced distance
from the truth

Table 1: Opinion dynamics with and without out-group antagonism

4 Policy implications

In this section, we examine how policies that enhance the accuracy of information available
to one or both groups influence outcomes. We also consider interventions targeting specific
individuals and censorship. Our analysis focuses on two key outcomes: the distance from

the truth and the degree of disagreement between groups.'*

4.1 Information campaigns

In many countries, information campaigns or media coverage on issues such as vaccination,
climate change, or immigration often lead individuals to interpret messages differently and
respond in opposing ways (Djourelova et al., 2024; Egorov et al., 2025; Grossman et al.,

2020; Schneider-Strawczynski and Valette, 2025). Our model captures these heterogeneous

4 Designing policies to maximize welfare requires committing to a specific microfoundation, as each
assumes a different utility function, leading to distinct welfare definitions and policy implications.
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reactions. In particular, it allows us to derive the conditions under which providing better
information improves learning.

Consider first the case in which information campaigns are unbiased (Theorem 1(ii)),
such as government advertising on the societal benefits of vaccination or recycling. It is
natural to assume that only one group pays attention to the campaign, namely the group
politically aligned with the government. Formally, the campaign increases the attention

that all agents in group C' € {A, B} pay to the unbiased information source—while all the
Cr

i

other weights are proportionally reduced—such that for all i € C, w¢’" > w{, where w
denotes the post-campaign weight assigned to the unbiased source. For all agents j € C°,
" = w§". The next proposition shows that, due to

affective polarization, the campaign has opposite effects on the two groups.

the weights remain unchanged, i.e., w

Proposition 3 If agents are exposed to an unbiased source of information (case (ii)),
increasing this exposure for one group moves its opinions closer to the truth but pushes

those of the other group further away.

This proposition implies that focusing on individuals already inclined toward the desired
behavior—for example, motivating environmentally conscious individuals to recycle more
(as in Ellen et al., 1991)—may backfire by eliciting opposite reactions among others.
Thus, the effect of such a policy on average learning in society is ambiguous. Hence,
information campaigns should aim to persuade both groups by offering differentiated
messages tailored to distinct political orientations, as shown by (Kidwell et al., 2013) in
the context of recycling.

We now turn to information campaigns in the presence of biased media outlets (The-
orem 1(7i7)). In this setting, we examine the effects of a policy aimed at reducing media
bias. The next proposition characterizes the conditions under which providing marginally
more accurate information to one of the two groups—i.e., reducing |€4| or [¢®|—enhances

learning and lowers disagreement in society as a whole.

Proposition 4 If agents are exposed to biased sources of information (case (iii)), for each
C € {A, B}, there exist two weakly increasing piecewise-linear functions, f¢(-) (convezx)

and g©(+) (concave), such that:

(a) If € > 0, providing marginally more accurate information to group C improves

learning for both groups and decreases disagreement in society if and only if €€ >
FEEe).
(b) If €€ < 0, providing marginally more accurate information to group C improves

learning for both groups and decreases disagreement in society if and only if £€¢ <

ge(€9).
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Proposition 4 characterizes when providing more accurate information to a group
improves learning for both groups and reduces societal disagreement. The key insight is
that interventions are most effective when the targeted group’s bias is sufficiently extreme
compared to the other group. For a group C with positive bias (£¢ > 0, part (a)),
improving information accuracy benefits society when ¢¢ > f€(¢¢°). For a group with
negative bias (€Y < 0, part (b)), the intervention is beneficial when £¢ < g©(£°).

The functions f(-) and g©(-) define the critical thresholds for successful intervention.
These functions delimit the parameter regions where information provision has a positive
effect for learning in group A, learning in group B, and overall disagreement. For each
outcome, the corresponding condition defines to a line in the (¢4, £7) plane, since opinions
are linear in biases. The upper and lower envelopes of these lines define, respectively, the
convex function f¢(-) and the concave function g“(-), separating regions where greater
information accuracy improves outcomes from those where it may be counterproductive.

These regions are illustrated by the colored areas in Figure 4. In panel (a), the
red region identifies the parameter values for which improving information for group A
enhances average learning in both groups and reduces disagreement. The blue region in
panel (b) identifies the analogous parameter values for interventions targeting group B.
The white regions indicate cases in which the intervention backfires along at least one

dimension.

§A €A

\\\\\ . ¥y F

(a) Red: €% > fA(€7), €4 < g4(67) (b) Blue: &4 > (f7)71(€7), €4 < (¢%)7(€")

Figure 4: Regions where providing more accurate information to group A (panel (a)) or group B (panel
(b)) improves average learning in both groups and reduces disagreement.

When biases are positively correlated (€4 and £ have the same sign), the conditions of
Proposition 4 conflict. For instance, if both are positive, we need ¢4 > f4(¢5) if targeting
group A, a constraint that holds only if biases differ sufficiently (the red region in Figure
5). Analogously, we need &8 > fB(£4) if targeting group B (or, £* < (fP)1(€P), the
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blue region of Figure 5). Hence, improving both groups’ information would generate
counteracting forces. Intuitively, correcting one group’s bias makes it more moderate, but
the other group—observing this through group antagonism—reacts by becoming more
extreme, potentially worsening overall learning.

When biases are negatively correlated (¢4 and ¢ have opposite signs), the conditions
in Proposition 4 align. For instance, with ¢4 > 0, if both ¢4 > f4(¢P) and €8 <
gB (€M) (ie., €1 > (¢B)71(€P)) hold, then improving information for either or both groups
enhances learning and reduces disagreement (the purple regions in Figure 5). This occurs
because correcting one group’s upward bias complements correcting the other group’s
downward bias—both corrections push the average opinion toward the truth, making
interventions beneficial when biases are sufficiently large.

Corollary 1 formalizes the key insight on simultaneous interventions.

SA

10

L B
-10 = 5 10

-10

Figure 5: Optimal information-provision policy in the (¢7,£4) space. Regions show when
providing more accurate information improves learning and reduce disagreement. Purple areas:
improving information for either or both groups A and B is beneficial. Red areas: improving
only A’s information is effective without backfire. Blue areas: improving only B’s information
is effective without backfire. White areas: improving information for either group backfires on
learning or disagreement.

Corollary 1 If agents are exposed to biased sources of information (case (iii)), providing
better information to both groups improves learning and disagreement for the whole society
if and only if sign(&B) # sign(€4) and the magnitude of biases is large enough—i.e.,
€4 > max{ AEP), (7)1 (€%)} when €4 > 0.

Overall, Proposition 4 and Corollary 1 show that when group biases have opposite
signs, improving information for one or both groups improves learning and reduces dis-
agreement, provided that the biases are sufficiently large. When biases share the same
sign, such interventions are more likely to backfire: better information benefits society

only when the gap between biases is wide enough and the more biased group is targeted.
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These results shed light on how malevolent actors seek to harm learning and social
cohesion. Misinformation campaigns circulate false or misleading content, distort facts,
or highlight divisive narratives, as seen in foreign influence operations, online propaganda,
and anti-vaccination misinformation (e.g., Broniatowski et al., 2018; Zhuravskaya et al.,
2020; Simchon et al., 2022). In our model, such interventions correspond to increasing
the bias received by one or both groups—i.e., increasing |¢4] and/or [€8]. Whenever
reducing these biases would improve learning and decrease disagreement, pushing them
in the opposite direction produces the opposite outcomes. Therefore, whenever biases
have opposite sign and are strong enough, malevolent agents would spread even more
misinformation.

Understanding these dynamics informs the design of effective anti-misinformation poli-
cies. Identifying the most vulnerable groups allows policymakers to limit attacks that seek

to increase polarization.

4.2 Targeting

We analyze a policy that targets a single agent rather than an entire group. In practice,
broad information campaigns may be infeasible or too costly, as they require reaching a
large and heterogeneous audience. In such cases, influencing a specific individual can be a
more efficient way to shape beliefs and foster information diffusion. For instance, Alatas
et al. (2020) show that engaging influential figures on social media significantly increased
the reach and impact of pro-vaccination messages in Indonesia.

However, identifying which individual should be targeted is not straightforward. Fol-
lowing Ballester et al. (2006), we define the key player as the agent for whom improving
information more effectively brings the average opinion in society closer to the truth.

Formally, let &'(7) denote a vector of biases such that agent i € C' receives marginally
more accurate information—that is, ¢ decreases in magnitude while maintaining its
sign—whereas all other agents in group C' retain the same bias, fjc = &% forall j # i
and C € {A, B}. Let /1(5’ (z)) denote the long-run average opinion in society after agent
¢ receives improved information.

The key player i* is defined as the agent who minimizes the distance between the
average opinion and the truth:

min {}/j(&'(z)) — 0"

icC
ceC

}.

Finally, define the out-degree (weighted) Bonacich centrality as the column sum of

the Leontief inverse—which accounts for all walks of all lengths originating from agent
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i—weighted by the attention given to the media outlet, w{. Formally:

l;gout]c = (Z ﬁ@ﬁ + Z ﬁlkBi> wic.

jEA keB

Proposition 5 Suppose agents are exposed to biased sources of information (case (iii)).

(a) The key player i* is the agent with the largest absolute (out-degree) Bonacich cen-
trality |l~)£ffuﬂc|

and opposes it when i < 0*. If no such agent exists, improving information for any

, chosen from group C' € {A, B}, whose sign matches £ when i > 0*

agent worsens the average learning in society.

(b) There exists £ > 0 such that the key-player policy reduces disagreement in the whole
> €.

society if and only if |5

The key-player policy identifies the agent whose improved information most effectively
brings society’s average opinion closer to the truth. The sign of an agent’s out-degree
Bonacich centrality BE"““C indicates whether their influence propagates primarily through
in-group connections (positive sign) or out-group connections (negative sign). When
influence flows primarily through in-group paths, other agents assign positive weight to
this person’s opinion on average; when it flows primarily through out-group paths, they
assign negative weight on average, due to the dominance of negative inter-group links.

The optimal intervention depends on the aggregate bias and the position of the key
player in the network. If society overestimates the truth (z > 6*), we need to target an
agent whose corrected opinion will pull the average down. This requires, e.g., someone
with positive out-degree centrality (influence through in-group paths) and positive bias:
reducing their upward bias directly reduces the average opinion. Conversely, if society
underestimates (1 < 0*), we need to pull the average up. This requires, e.g., someone
with negative out-degree centrality (influence through out-group paths) and positive bias:
reducing their upward bias increases the average opinion.

Hence, the magnitude of the Bonacich centrality captures how strongly an agent’s
information affects others, while its sign indicates the direction of this influence. The
policy therefore targets the agent with the largest absolute Bonacich centrality, among
those whose influence moves the others’ opinion towards the truth.

By construction, targeting the key player improves the average learning across society.
However, its effect on each group’s learning is ambiguous: one group may move further
from the truth even as the societal average improves. As we discuss in the proof of
Proposition 5, because group averages depend linearly on individual biases, adjusting the
key player’s bias has the same qualitative effect on group-level learning as shifting the

bias of all agents in her group in the same direction, mirroring the logic of Proposition 4.
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Part (b) extends this parallel to disagreement. However, disagreement depends non-
linearly on individual biases, so the resulting condition in part (b) is novel, although the
requirement that the key player’s bias be sufficiently large in magnitude remains in the
same spirit as Proposition 4.

Finally, the key-player framework also provides insight into how a malevolent actor
could worsen learning. By the logic of Proposition 5, such an agent would target the same
key player, providing them with highly biased or misleading information. Identifying the
key player thus reveals which individuals are most critical to protect from misinformation,
as influence over them propagates strongly through the network and can significantly

increase polarization or move the average opinion away from the truth.

4.3 Censorship

Another form of intervention is censorship, that is, limiting the diffusion of information
or opinions that deviate excessively from the truth. Such policies are often motivated by
the goal of curbing misinformation or protecting public discourse from extreme or false
claims. In what follows, we analyze the effects of censorship and show that, even when
applied “fairly”—that is, by removing extreme opinions independently of their political
alignment with those in power—it may backfire and worsen aggregate learning.

The results in the previous sections have direct implications for censorship when ap-
plied to media outlets. Conceptually, a benevolent censor would reduce media bias—an
instance of the information policy in Proposition 4. The effects then depend on the joint
configuration of group biases. When biases are negatively correlated, limiting the bias
of one group—that is, censoring its most distorted media outlet—improves learning for
both groups and reduces disagreement, as the direct and indirect effects of the policy
reinforce each other. When biases are positively correlated, however, such interventions
can backfire: reducing the bias of one group may trigger opposite reactions in the other,
worsening overall disagreement, particularly when the two groups are exposed to similarly
distorted media outlets. Thus, even well-intentioned censorship of extreme information
can inadvertently increase polarization or hinder learning, depending on the underlying
alignment of biases in society.

Another form of censorship targets individuals directly by constraining their publicly
stated opinions, e.g., on social media. Such interventions are relatively easy to implement
online and have indeed been used in practice through account moderation or content
removal. We now analyze this case, where agents are prevented from expressing views
that deviate too far from the truth.

To study this kind of censorship, we focus on the case in which the policy maker

censors all opinions above a certain threshold g > 6*. Denote the long-run opinion when
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censorship is in place by @1 and define [z]T := max{x,0}; then:

Proposition 6 If the policymaker imposes an upper censorship level p > 6*, the long-run

opinions with censorship [ satisfy
fr=p—MWI[n— ] (15)

Moreover, there exists a threshold k such that if max;cp ,ujB <k < i < max;eq i, then

censorship applies only to agents in group A. In this case, equation (15) implies that:

e (Censorship moves the average opinions of group A closer to the truth if and only if
it > 0.
o (lensorship moves the average opinions of group B closer to the truth if and only if

B < .

The effect of censorship depends on the groups’ initial positions relative to the truth.
Censoring a group shifts its opinion downward, and, because of out-group antagonism,
induces an upward reaction in the other group. If the two groups are sufficiently polarized,
censoring members of the group that overstates the truth makes both adjustments point
toward 6%, improving learning for everyone. Conversely, when the average opinions of both
groups lie above the truth, censoring either one pulls that group closer while pushing the
other further away; the opposite holds when both are below the truth.

In short, in the presence of group antagonism, censorship is beneficial for the whole
society only if the two groups are sufficiently polarized; otherwise, it can backfire. This

is consistent with the broader logic of the model and the previous policy sections.

5 Conclusion

Affective polarization (a deep distrust and hostility toward the opposing political group)
has become a defining feature of contemporary public debate. For example, former Pres-
ident Obama referred to the rise of “negative partisanship” in the 2024 U.S. elections,
noting that citizens are motivated less by support for specific policies than by opposition
to the other side (The Economist, 2024). In such environments, arguments are filtered
through group identity, and discussions are driven as much by loyalty and hostility as
by facts. These patterns motivate a formal framework for understanding identity-driven
opinion dynamics.

We study how affective polarization and media exposure influence ideological polar-

ization and disagreement in a society of two groups exchanging opinions on a network.

23



Without media exposure, affective polarization always generates long-run ideological po-
larization. With exposure to unbiased media, affective polarization prevents consensus
and induces persistent disagreement, and the distortion in learning is larger for agents
with more inter-group contacts. With biased media, affective polarization amplifies biases
of opposite sign, deepening polarization, but attenuates biases of the same sign, which
can bring opinions closer to the truth.

Our model shows that the impact of information interventions depends on the align-
ment and magnitude of group biases and the network of interactions. Providing more
accurate information to all individuals improves learning and reduces disagreement only
when biases point in opposite directions; when biases align, interventions are more likely
to backfire unless they target the most extreme group. Targeting influential agents allows
efficient correction of aggregate beliefs, while censorship or limiting extreme opinions is
effective only when groups start on opposite sides of the truth; otherwise, it may increase
polarization. These insights underscore that policies must account for social influence and
preexisting biases: ignoring affective polarization can lead to misleading predictions, as
illustrated during the COVID-19 pandemic, where partisan animosity was tightly linked
to attitudes toward health measures and vaccination (Druckman et al., 2021). Addressing
these challenges requires more than reducing misinformation; it calls for carefully designed
interventions that account for group antagonism and bias alignment.

Motivated by the literature on affective polarization, this paper takes it as given
and focuses on how its effects on opinion dynamics. Additionally, we assumed that the
network was exogenous, positioning it as a foundational step toward understanding the
impact of out-group antagonism on long-run opinions. Introducing network endogeneity
would represent a significant advancement, as it would allow for the study of endogenous
out-group antagonism and the co-evolution of opinions and network formation. We leave

these extensions as a direction for future research.
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Appendix

A Microfoundation /interpretation

We provide here various microfoundations for the updating rule described in (5). While we
interpret u,; as individuals’ opinions or beliefs, it can also represent behavior or attitude,
as emphasized by Golub and Jackson (2010, 2012).

A.1 Opinions with persuasion bias and zero-sum thinking

When interpreting p; as opinions, we build on DeMarzo et al. (2003). At time t = 0,
agents receive private noisy signals, observe the opinions of their neighbors, and update
their own opinions by assigning weights to these observed opinions. These weights are
determined at ¢ = 1 and remain constant thereafter, capturing persuasion bias—the
tendency of agents to neglect the correlation induced by repeated information over time.

We depart from DeMarzo et al. (2003) in two important respects. First, we allow
for group-specific public information sources. Second, we assume that agents possess
incomplete information not only about the precision of others’ signals but also about how
these signals relate to their own expected utility. This perspective aligns with evidence
that individuals often interpret policy debates through a zero-sum lens. For example, in
trade policy, while economists generally emphasize that free trade raises overall welfare,
public opposition frequently reflects the belief that its benefits accrue mainly to economic
elites while ordinary workers bear the losses (e.g., Ali et al., 2025).]

In particular, we assume that agents form opinions about the average effect of a
policy ¢. Let u{(¢) denote the utility of individual i € C' under policy p. The objective
expected value of policy p is group-independent and equals U (¢) := J; o ul(p)di = 6*
for all C € {A, B}. That is, although individual utilities u{(¢) may vary across agents,
the average impact of the policy is identical across groups.

Agents, however, lack full information about how the policy affects the two groups
and hold a misspecified utility function that reflects zero-sum thinking—the belief that
gains for one individual or group necessarily come at the expense of others.!® Formally,

the expected utility of an individual 7 € C' is given by

E [U%(¢)] = —E7 [U7(¢)],

15Zero-sum thinking is treated here as a psychological trait, as in Bergeron et al. (2023), Chinoy et al.
(2025), and Gavrilets and Seabright (2025). Ali et al. (2025) shows instead how zero-sum thinking can
manifest even with completely rational voters.
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so that any policy believed to benefit the out-group is perceived as harmful to the in-group.
At time ¢t = 0, each agent i € C with C' € {A, B} receives a private noisy signal s¢

about the effect of the policy on their own utility. This signal is given by s = u(¢) +¢%,

c

where €; is normally distributed with mean zero. Since the group-level expected utility

satisfies U(¢) = 0*, all private signals are unbiased. That is, for any i,j € C, E[s¢] =
Eluf (¢)] = E[u§(¢)] = U°(¢) = 6*. Given uninformative priors, each agent sets their
c

initial opinion to Mgo = s These private signals thus set the initial conditions for

the opinion dynamics; for all subsequent periods (¢ > 1), updates are driven by peer
interactions and the recurring public information source as in DeMarzo et al. (2003).

In particular, at time ¢ = 1, each agent ¢ € C observes the initial opinions of their
neighbors and interprets them as noisy signals about the expected utility of the policy.
Specifically, for each in-group neighbor j € C, agent 7 treats ,uj% as a signal about the

cc _

group-level expected utility U(¢) = 6* and assigns it a subjective precision 75 i =

Var+[e]0] For each out-group neighbor k£ € C°, agent ¢ interprets ,u% as a signal about the

out-group’s expected utility U (¢), which, under zero-sum thinking, they believe equals
~U%(¢) = —0*. Accordingly, agent i treats ,ukc,g as a signal about —U%(¢) and assigns it
a subjective precision T3¢ = W.m

Agents of each group C also observe signal #¢ about their group’s expected utility
from the policy, which they perceive as unbiased with subjective precision 7. Therefore,

for ¢ > 1, Bayesian agent ¢ € C' updates opinions according to:

Zw lu]ct 1+ szz”zt 1+w090

jeC zeCe

where, for all k € N = AU B,

CC

c _ Z]EA i +ZzeB zz %

(~1) ifkece,
Z]EA i +ZzeB 7,z g

16Negative weights on the opinions of the out-group (i.e., Bic < 0) may also arise if agents systematically
pay attention to different experts or information sources (Sethi and Yildiz, 2016), or rely on different
models to interpret the same experiences (Haghtalab et al., 2021). In this view, belief distortion reflects
not hostility but inference under limited or group-biased exposure: agents filter out (what they perceive
as) the bias in their neighbors’ opinions. Alternatively, negative weights can be justified as a rational
response when agents believe that the signals of out-group members are less precise, for example when
trying to learn a drifting state of the world (Dasaratha et al., 2023).

if ke,

2
0
e
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and!'’
c
c T30
w; =

' Z]GA i +ZZGB (%1 _'_7—

In sum, persuasion bias and zero-sum thinking jointly yield the linear updating rule

(5), embedding both positive and negative influence in a microfounded way. This provides
the bridge between psychologically grounded belief formation and the long-run opinion

dynamics we analyze.'®

A.2 Behaviors/actions/attitudes and network games

When interpreting p; as behaviors, actions, or attitudes, the updating rule described
in (5) corresponds to the myopic best-response dynamics of network games with linear
best replies with both positive and negative spillovers. In doing so, our model not only
incorporates but also extends several key contributions from the existing network-game
literature (Ballester et al., 2006; Bramoullé et al., 2014; Jackson and Zenou, 2015).

Coordination/anti-coordination game In many settings, individuals face social pres-
sure to express opinions that signal loyalty to their own group and distance from rivals.
For instance, in debates on trade, climate change, or COVID vaccination, publicly en-
dorsing a position associated with the opposite political camp may carry identity costs,
even when privately agreed with. This motivates a framework in which voiced opinions
or attitudes balance in-group conformity, out-group differentiation, and closeness to one’s
own beliefs about the state of the world. We formalize this as follows. For each i € C,

consider the following utility function:

17This reduced-form approach captures the idea that the media outlet provides in each period a signal
centered at §¢ with precision 74, as in Jadbabaie et al. (2012) or Della Lena (2024). We abstract from
noise to simplify the exposition, as it does not affect the steady-state characterization (see Theorem 2).
18 An alternative formulation has each agent i form subjective expectations about how agent j’s signal
relates to the truth 6*. Agent i believes E;[s;] = f;;(0*), where f;; : R — R is a (group-specific) distortion
function capturing perceived bias. Denoting the subjective precision as 7;; = Var; [ej]_l7 the updating

rule becomes:
pie = S T+ T

k1) + = 1(0).
keN o 2 ’

jen Tij +7-29 jen Tij + Tig
This formulation nests the zero-sum case when f;;(0*) = 6* for in-group agents and f;;(6*) = —6* for
other agents. Agents perceive their own group receiving unbiased signals centered at 6* as well-informed,
while perceiving the other group receiving biased signals centered at —6* as ill-informed.

9Given our assumptions about the network, in cases with external information the condition
af Yjec wg- + 1B, cce wS, +wE =1 ensures the existence and uniqueness of an equilibrium. When
there is no external information, there may be multiple Nash equilibria; however, fixing initial beliefs
selects a unique trajectory under best-reply dynamics and thus a unique limiting opinion profile.
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ul(s07) = —af - > wl(uf =) = 57 3wl (uf — (—pl))?

jeC zeCe
~ v N ~~ s
in-group identity out-group antagonism
~C C *) 2
ot m [y (a)
- g
Vv

distance from the truth

The first term, weighted by & > 0, captures the preference to align with the voiced opin-
ions/attitudes of the agents in their own group. The second term, weighted by BZC > 0,
captures out-group antagonism and the psychological loss of not expressing an opposi-
tional attitude toward the out-group. This loss is low when the agent’s voiced opinion
counteracts the out-group’s stance and increases whenever the agent’s opinion aligns with,
or supports, the out-group’s stance. The last term, weighted by w¢ > 0, reflects the cost
of voicing an opinion or holding an attitude different from their true one.

The interaction between identity and cognitive dissonance (e.g., Festinger, 1957) ex-
plains these dynamics: individuals reduce the discomfort of holding conflicting beliefs or
attitudes by conforming to the opinions of their own group and distancing themselves
from the ideas embraced by a group they disdain.

Let pu_; denote the action of all agents other than i and define k := a¢ Z Q +
3¢ > ece wi 4w . Each agent i € C, with C' € {A, B} chooses nf to maximize equatlon

)

(A-1), yielding the best-reply function:*

p () = = |69 " win§ — 87 " wipd” + vl 6°
jeC zeCe
If of = a¢/k, B¢ = —°/k, and wE = ©F /k, we obtain
i) =af Y wiu§ + 87> wind” +wl6”
jec zeCe
B Z wZ]MJ + Z wzzlj“z + wzc(e* + é—C’) (A'2)
jec zeC'e

When each agent myopically responds to their peers, we can aggregate these best replies

for all agents in groups A and B, yielding the opinion dynamics described in (5).

20To derive the best response below, we use the assumption that the signal is precise, although not nec-
essarily correct. This implies that E; [(MZC - 9*)2] = (uf — 90)2. The F.O.C. are —24¢ Y we (HZC -

') — 288 Y e wS (pf +pS7) — 208 (u€ —6°) = 0. The S.0.C., —24¢ Yicc W —289 Y oo wS —
2wz < 0, are always satisfied since &¢ > 0, 8¢ > 0, and @< > 0.
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Network games with strategic complements and substitutes Following Ballester
et al. (2006) and Bramoullé et al. (2014), let the utility function for each agent i € C be:

1
ug (p:09) = w09 = S ()" + ( O wGps + B0 wip > . (A3)

jec zeCe

where the first two terms determine #’s optimal action in isolation; af > 0 reflects the in-
tensity of positive spillovers from other agents within the same group, representing strate-
gic complementarities in actions among agents of the same group; in contrast, 5¢C <0
indicates the intensity of the negative spillovers from agents in the other group, captur-
ing strategic substitutes in actions between agents from different groups. Contrary to
Ballester et al. (2006) and Bramoullé et al. (2014), we allow for heterogeneous spillovers
and negative values of the action z;. In practice, we do not impose any restrictions
on the relative magnitude of these spillovers, permitting individuals to experience both
positive and negative spillovers in a heterogeneous manner. The only restriction is the
normalization of Y. wf; + 672 coe wi, +wf’ =1 for each i € N.

The utility function (A-3) can be exemplified by the case of recycling: while evidence
suggests positive peer effects, where individuals are more likely to recycle if their friends do
(Johansson, 2016), recycling also functions as a local public good (Kinateder and Merlino,
2017, 2022), which can lead to negative spillovers. In our model, agents experience peer
pressure from their friends, motivating them to recycle, but are more individualistic when
considering the recycling efforts of others, which tends to reduce their own effort via the
free-riding effect.

Let p_; denote the action of all agents other than i. Each agent i € C, with C' € {A, B}

chooses 1 to maximizes equation (A-3), yielding the best-reply function:?!

_aC waﬂ’] + BC Z wzz#z _I— wzcec

jeC zeCe
= Z wzgl’b] + Z wzzuz + wzc(e* + SC) (A_4)
jec zeCe

When each agent myopically responds to their peers, we can aggregate these best
replies for all agents in groups A and B, yielding the opinion dynamics described in (5).
Finally, note that equations (A-2) and (A-4) also result from the best replies of any
combination of the two network games in equation (A-1) and equation (A-3). As in
Boucher et al. (2024) and Ushchev and Zenou (2020), we can envision scenarios where

peer pressure, conformism, and anti-conformism coexist.

21The first order condition is w{0¢ — uf + af Zjec w%,ujC +BE Y coe wopud” = 0; the second-order
condition is always satisfied.
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B Proofs

Proof of Theorem 1

Note that equation (4) can be written as:

A ~ A A o* A
Ky [ w2 (0" +£7)

Since the matrix W has conformable partitions (i.e., each partition has the same number
of rows and columns), its powers have positive terms on the diagonal blocks and negative

terms on the off-diagonal blocks. For example,
. (WAL | WABWBA  WAAWAB | Yy ABYy BB
W= WBAWAA L WBBWBA  WBAWAB L (WBB)Z

_|__

Hence, sign(W?) = sign(W) = . Iterating, this property holds for all ¢, so that

for all t € N. (B-2)

Case (i) First, consider the case in which w®¥ = 0 for all i € N. Equation (B-1)

A A
becomes utB =W ugl . In more compact form, pu;, = W, . By iterating the
ke Fei_q

process, we obtain pu; = W' o, where Wt is the power t of the matrix w. Assuming
that the network is strongly connected with positive self-loops ensures that the matrix
W is irreducible. Moreover, since A\ = 1 is the dominant eigenvalue of W, then W is

power convergent and we can define W™ = limy oo Wt We have that
po= lim py = W pg. (B-3)
t—o0

Since W is structurally balanced, there exists a diagonal matrix D = diag(dy, ..., d,)
with d; € {+1,—1} such that DW D = W+. Hence, W and W+ are similar and share
the same eigenvalues. Given our assumptions on W, Wt is a nonnegative, irreducible,
aperiodic, and row-stochastic (since in case (i) w{ = 0 for all i € N) matrix.

Thus, by the Perron-Frobenius theorem, the spectral radius is p(W*) = 1 with the
dominant eigenvalue \; = 1, while all other eigenvalues satisfy |A;| < 1. Since similarity

preserves spectral properties, the same holds for W. Moreover, there exist strictly positive
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T can be

right and left eigenvectors satisfying W+1 = 1 and 7' W+ = «', where &
normalized to 1. Perron-Frobenius also implies that (W) := lim,_,oo(W*)! = 17",
Because W' = D(W*)'D for all ¢, taking limits we obtain W> = D (17 ") D.

Thus, defining 1:=Dland 7' := 7' D, substituting into (B-3), the long-run opinion is

given by p := (i ﬁ'T) o, so that pdt = pu?, uf = 1 for each i € A and j € B, with

1. (z - zﬁfuzo)

jeA keB
_ ~A A ~B B
= § :ﬂ-j Mo + E Ty Mo
jeA keB

=7 g + (7°) g = —p.

Note that 1 and # " are the right and left eigenvectors of W associated with the leading
eigenvalue A\; = 1. Let u' and v denote the left and right eigenvectors of W for A; = 1,
so that u' W =u' and Wv = v. Substituting W = DW*D gives u' (DW D) =u’
and (DW+D)V = v. Multiplying the first equation on the right by D and the second on
the left by D, and using D? = I, yields (u' D)W+ =u' D and W+ (Dv) = Dv. Since
the left and right Perron eigenvectors of W+ are " and 1, it follows that u' D = 7"

and Dv =1, henceu' =nw'D=7" and v= D1 =1.

Cases (ii)-(i1i) Consider the cases when w; > 0 for at least some ¢ € N. Iterating
(B-1), we obtain:

po1 =Wy +w o0,
peso =W (W +W© 0) +we o,

71
porr =W p, + Z Wwo 8,
7=0
so that
T-1 i
. T x7T X7 _ _ 1 -
Tlgxolo(uw)_zlglo(W ut+;0vvw@9>_(1 W) wo . (B-4)

c

[

af 3o WG coe wiwf = 1, implies that the row sums of the matrix W+ which

z

For cases (ii) and (iii), we assume at least one wy > 0. The model’s normalization,

contains the absolute values of matrix W—are 3 i) =1 —w{ < 1. Thus, W+ is

a substochastic matrix. Since the network W is assumed to be strongly connected, the
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non-negative matrix W+ is irreducible. As W+ is an irreducible and substochastic ma-
trix with at least one row sum strictly less than 1 (since at least one w® > 0), its spectral
radius p(W1) is strictly less than 1. Because p(W) < p(W™), we have p(W) < 1. This
ensures that limp .. W7 = 0 and the Neumann series S WT converges to (I — W)
Given this, noting that (I — W) is always invertible estabhshes the result.

Thus, if the source of information is unbiased, i.e., 8; = * for all : € N, (B-4) becomes

~\ -1 -
n= (I — W) w6* = bf*. Therefore the long-run opinion of agent 1 is

<Zm” w; Z m“%) ISZCH*

JjeEA keB

. _\ -1
If instead the source of information is biased, observing that M := <I — W) , wWe can

write equation (B-4) as

pw =M [WA(€*+§A) =MwO0* + M (WO &) =b0"+ M(woE).

wi (0" +¢P)

Therefore the long-run opinion of each agent ¢ € N is given by:

o = (St + a0+ Tt + Tt
jeA keB jeA keB

By equation (B-2), it is trivial to see that 5S¢ > 0 and b°C° < 0 always. |
Proof of Proposition 1

By Theorem 1, long-run opinions under an unbiased source satisfy

=(I-W)'wo* =bb*

As we have already shown, under structural balance, the signed matrix admits the decom-
position W = D W D, where D is diagonal with entries £1 and W+ > 0 has the same

absolute values as W. Since (I — W)1 = w, in the corresponding unsigned network,
p=T—-WHwo*=b" 6" =16".

Note that D = D~' = DT and D* = D for k odd while D* = I for k even. Then, since
D? = T it follows that (DW*D)! = D(W*)!D. Thus:
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I-W)"'=) (W)= (DW'D)' =) DW")'D=DI-W")'D.
=0 =0 =0

As M+ = (I — W*)~! has strictly positive entries, M = (I — W)~! has the same
absolute values but matches the sign pattern induced by D. Thus, since w has all
positive entries, each element of (I —W)_lw is always less or equal than the corresponding
element of (I — W) 'w. Hence, every Katz-Bonacich coefficient satisfies b€ < 1, so that
bC10*| < |6, for all i+ € C, with C € {A, B} and the learning gap for agent i € C is
1—b¢.

Moreover, for agent i € C, the exposure (direct and indirect) to the other group is
captured by . c. M;;|. Thus, given that M = DM™* D the more direct and indirect
paths each agent has with agents belonging to the other group the lower her centrality
and thus the farther away from the truth. [

Proof of Proposition 2

Let us write the long-run opinion of a generic agent i € C' when ¢4 and ¢7 are different

from zero and affective polarization is present:

c 7C px | JCC ¢C | 7CCE £C©
py = by 074 by &+ b &
~~ ~~ S~~~
<1 + -
From this equation, we see that:

o If sign(é4) = sign(¢P) (positively correlated biases), the negative coefficient Biccc €

(—1,0) partially cancels the contribution of £°, leading to bias mitigation.

o If sign(¢4) # sign(¢P) (negatively correlated biases), the negative sign of l”)iccc €
(—1,0) reverses the contribution of £°°, aligning both bias components in the same

direction and exacerbating the total bias.

Since |b°0*| < |6*| always holds, long-run opinions can be closer to the truth * whenever
the bias terms 6°C¢C 4 b9C°¢C° reduce the gap between bC0* and 6*. |
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Proof of Theorem 2

First, define the identity-interaction matrix without group antagonism, W+. Let [t :=
diag[(|3°|)icc], for all C' € {A, B}. Then, all entries of '+ are nonnegative. We have

AAwAA FA+ WAB
FB+ WBA AB WBB

+ +

with sign(WT) =
="t

N o\ - - -
Then, M+ := (I — W*) = > 50 (WH)F with elements ;. Thus, b := b(W ) =
M+w is the vector of weighted Katz-Bonacich centralities (Ballester et al., 2006) in the
identity-interaction network without group antagonism. The corresponding individual

weighted Katz-Bonacich centralities is given by

pC+ agti C+,,B
b; g m; + E My, Wy -

JjeEA keB

The contributions from each group is thus defined as:

bCA-‘r E mC+ A and bCB+ E mzk wk7

JEA keB

so that b = 4" + bP+ and the total centrality vector can be expressed compactly as
K3 1 K3

B+ B BA+ B BAA+—{—I~)AB+
- bB+ - BBA++BBB+

The rest of the proof can be derived by adapting that of Theorem 1. [ |

Proof of Proposition 3

Consider case (ii), with unbiased information (£ = ¢% = 0). By Theorem 1(ii), |u¢| <
|0%| for all i € C' and C' € {A, B}. Moreover, the stead-state opinion vector satisfies:

(I—W)u:wQO*. (B-5)

Let us denote with ef’ the standard basis vector for agent i in group C, that is, the vector
with a 1 in position ¢ and zeros elsewhere. Then by differencing equation (B-5) with

respect to wic we get
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(I — W) 8_u - @u =#*e¢

ow¢  owf¢ ’
o .o OW
= awi =M <(9 e, + Wﬂ)
a# x C ~C A ~C B\ .C
0l =M | 0"e; — e ZUJUM] +Zwik:uk €
g JEA keB

The last equality follows from the fact that, for each 4, the sum of the absolute values

of the entries in row i of W satisfies Yiea Wl + Ypep 0G| = 1 —wf’. Therefore, a

marginal increase in w¢ affect only the i-th row by rescaling all weights proportionally.
W€

As a result, for each j € NV, 8w” = —ll_vzj_c.

(3

Using the steady state condition u¢ = djea WG ps + 3 ep Wy + wi 0" = bC0* we

op o M il o 0 —ui o 1_51'0* c

Since b€ < 1 and w® < 1, the scalar 1__

get

b . .
-0* has the same sign as 6*. Hence, a marginal

increase in w¢ shifts long-run opinions in the direction of 6* or away from it according
to the sign pattern of M, which has the same block-sign structure as W (see proof of
Proposition 1). Thus, agents in the same group as i move toward 6*, while agents in the
other group move away from it.

Finally, since the result holds for each i € C' individually, a simultaneous increase in w¢
for all agents in group C' yields an aggregate effect that preserves the same sign pattern

for all agents’ long-run opinions, which proves the proposition. |

Proof of Proposition 4
By Theorem 1(iii), we have that (u€ — %) = (b — 1)0* + bTAA + BB | 5o the average
distance from the truth is
_ . 1 . 1 - . s .
=0 = o 3 = 07) == D (6 — 16" + 50+ B
i€C ieC

where, for each i € C, 1~)Z-CA > 0 and lN)iCB < 0 if ¢ = A; the inequalities are reversed if
C =B.

Suppose now that €4 > 0. Then, giving group A more accurate information is equivalent
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to reducing 4. Hence, a lower ¢4 reduces the average distance from the truth in group
A if and only if g > 6, which implies - >, 4 [(IN);“ — 1) + b MEA +pABEB| > 0.

Rearranging, the condition implies that £ > [4(£5), where

ZieA(l ~_ 6?) 0* + B ZzeANB;‘B
Diea b . 2 iea b y

Vv Vv
>0 >0

14(E") = ¢v. (B-6)

Similarly, reducing 4 reduces the distance from the truth of an agent i € B if and only
if 1P < 6*, which implies €4 > [B(¢5), where

ZiéB(l ~_ EZB) 9* + ZiEB l;fB
ZiEB bfA . o ZieB bfAj

<0 >0

1°(67) = &, (B-7)

If €4 < 0, the inequalities are reversed, yielding €4 < [4(£8) and €4 < 1P(¢£5).
Figure B-1 shows the effect of marginally reducing |¢€%] on average learning across groups
in the (£8,¢4) space.

e 1(e7)

Figure B-1: Effect on group learning of providing more accurate information to group A. Violet: both
groups move closer to truth. Red: only group A moves closer. Blue: only group B moves closer. White:
neither group moves closer. Solid lines represent (B-6) and (B-7).

Suppose that €8 > 0. Then, giving group B more accurate information is equivalent to
reducing 2. Hence, a lower ¢ reduces the average distance from the truth in group
B if and only if i? > 0*, which leads to &4 < [B(¢P), which we can also write as
B > (1B)71(€4) as 1P is a linear function with positive slope.

A smaller £8 reduces the distance from the truth of an agent i € A if and only if i < 6",
which leads to €4 < [4(¢8), which we can also write as ¢8> (11)71(£4) as [4 is a linear
function with positive slope.

If ¢8 < 0, the inequalities are reversed, yielding &4 > [4(¢8) and ¢4 > 1B(¢8) (or
€8 < (1)1 (£4) and €7 < (1P)71(£1)).

Figure B-2 shows the effect of marginally reducing |£Z| on average learning across groups
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in the (£5,¢4) space.

& p(en)
10

-10F

Figure B-2: Effect on group learning of providing more accurate information to group B. Violet: both
groups move closer to truth. Red: only group A moves closer. Blue: only group B moves closer. White:
neither group moves closer. Solid lines represent (B-6) and (B-7).

Concerning disagreement, by Theorem 1(7i7), we can write the long run opinions as
= 69* + (BAA’ BBA)TgA + (EAB’ BBB)TgB.
Hence,

Var [ :(9*)2Var[i)] + (£A)2Var[(5AA, BBA)T] + (53)2‘/@7’[(5‘43, INJBB)T]—l—
+2649* Cow [5, (644, BBA)T] +2eB9*Cow [6, (BB, 5BB)T] 4

4 264¢BCou [i)AA7 bEA)T (BAB’ BBB)T)] _
Noting that b = (b4, b%4)T + (b8, bPB) T, after algebraic manipulations, we get

Var [p] =(0")*Var [i)] + (e + 20 Var [(BAA, BBA)T] +&P(€P + 20" Var [(BAB,BBB)T} +

19 (9*(€A I 53) I £A£B) Cov [(BAB7 BBB)T’ (EAA’ BBA)T)] _

Hence,
avacé;[—“] = 26" +0)Var |(677,67%)T| 42 (6" + %) Cou |(5*7,577)7, (6", 574)T)|

If €4 is positive, giving more accurate information to group A means a reduction in 4.

Hence, disagreement in society decreases if and only if %ﬂ"] > 0, and vice versa if £4 is
negative. Hence, the following holds.
Suppose that ¢4 > 0. Then, giving group A more accurate information reduces the

disagreement in society if and only if £é4 > d4(£P), where
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Cov |:<BAB7 BBB)T, (b4, 6BA)T):|

Var [(BAA’ BBA)T]

_Cov |:(6AB’ IN)BB)T7 (i)AA7 BBA)T)]
Var [(BAA’BBA)T}

v~

>0

dA(EP) = —0" [ 1+ ¢

+

(B-8)
If €4 < 0, the condition is reversed. Figure B-3 shows the effect of marginally reducing

|€4] on overall disagreement in society within the (€8, ¢4) space.

4 d*(€P)

Figure B-3: Effect on disagreement of providing more accurate information to group A. Green: dis-
agreement decreases. White: disagreement increases. Solid line represents (B-8).

If ¢B is positive, giving more accurate information to group B means a reduction in £5.
Hence, disagreement in society decreases if and only if %TB[“] > 0, and vice versa if £ is
negative. Hence, the following hold.

Suppose that ¢ > 0. Then, giving group B more accurate information, i.e., decreasing

€8 reduces the disagreement in society if and only if £é4 < dP(¢P), where

B

Y

Var [(BAB)BBB)T} . Var [(BAB7BBB)T]
Cov [(1}43’ [,BB)T7 (f)AA7 BBA)T)] —Cov [(51&37 BBB)T’ (BAA’ BBA)T)]

-~

>0

dP(EB) = -0 [ 1+

J/

(B-9)
which we can also write as ¢8> (dB)71(£4) as d® is a linear function with positive slope.
The condition is reversed if £¢% < 0. Figure B-4 shows the effect of marginally reducing
|€P| on overall disagreement in society within the (£Z,£4) space.

We can summarize the conditions under which providing more accurate information

to group A improves learning for group A and group B and reduce disagreement as:

&4 > fA(EP) = max {I4(¢P), 17 (7). d*(") } i€ >0, (B-10)
&4 <g(€%) i= min {I(€9), 1%(6"), d(6%) | i ¢t <o, (B-11)
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Figure B-4: Effect on disagreement of providing more accurate information to group B. Orange: dis-
agreement decreases. White: disagreement increases. Solid line represents (B-9).

Similarly, we summarize the conditions under which providing more accurate information

to group B improves learning for group A and group B and reduce disagreement as:

€ > P(e) = max [ (76N, 07) 7€), (@) e} i €m0, (B12)
€% <g(€") == min {(1)7H(EN, (F)HEN, (@) THEN)  if <0 (B13)
Proposition 4 follows directly from conditions (B-10)—(B-13). Since the functions [4, 7,
d4, and dP are linear with positive slope, it follows that, for each C' € A, B, the functions

f¢ and ¢© are increasing, with f¢ convex and ¢¢ concave. [

Proof of Corollary 1

The corollary follows from two observations.

(i) When ¢4 and ¢P have opposite signs, the conditions (B-10)-(B-13) under which pro-
viding better information to group A or to group B improves learning and decreases
disagreement in each group are compatible; when they have the same sign, these condi-
tions are incompatible.

(ii) Likewise, the conditions (B-10)—(B-13) under which providing better information to
group A or to group B reduces disagreement move in the same direction when ¢4 and ¢7
have opposite signs, and in opposite directions otherwise.

Hence, when ¢4 and ¢ have opposite signs, the relevant constraint is the more stringent
of ¢4 > fA(£B) and €8 < ¢gB(¢4), or equivalently €4 > (¢P)~1(£P).

This establishes Corollary 1. [ |
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Proof of Proposition 5

To prove part (a), remember that the average opinion in society is

pE) =1 pE = Y 3 (X mGuho +g)+ > mGuf e + )

Ce{A,B} zeC jcA keB

It follows that

8 ]_ out
”(gT_ﬁ (Zmﬂ wd + ) mfuw ) —b (B-14)

JjEA keB

Then, we have the following:
1. Consider i > 6*, which is equivalent to %1T (56* + M (WO S)) > 0*. Then:

(a) If £€¢ > 0, to move the average opinion closer to the truth, provide more accurate
information (i.e., decrease £¢) to an agent with positive b ; then, pick the

C[u](

agent ¢ with the largest b if more than one, pick one of them at random).

(b) If £ < 0, to move the average opinion closer to the truth, provide more accurate
information (i.e., increase £) to an agent with negative l;ic{ouﬂ; then, pick the

Clout] (

agent ¢ with the smallest l;z if more than one, pick one of them at random).

This is equivalent to giving more accurate information to an agent in S, where

S = arg max |l~)ic[0“t]‘ s.t. szgn(b [‘m]) = sign(£9).
Ce{AB}
If such an agent exists, denote them by ¢*. If S is empty, providing more accurate

information to any agent moves the average opinion further from the truth.
2. Consider i < 6*, which is equivalent to %1T (59* + M (Wo E)) < 0*. Then:

(a) If €Y > 0, to move the average opinion closer to the truth, provide more accurate
information (i.e., decrease £) to an agent with negative Eic[out]; then, pick the

Clout] (

agent ¢ with the smallest Bl if more than one, pick one of them at random).

(b) If €Y < 0, to move the average opinion closer to the truth, provide more accurate
“. then, pick the

if more than one, pick one of them at random).

information (i.e., increase £°) to an agent with positive I~)l lo

agent i with the largest b1 (

This is equivalent to giving more accurate information to an agent in S’, where

S = arg max
Ce{A B}

‘bc[ “]‘ s.t. szgn( ) + sign(€°).
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If such an agent exists, denote them by ¢*. If S is empty, providing more accurate

information to any agent moves the average opinion further from the truth.

Consider the effect of providing more accurate information to * on the average opinion
of group A and B. By (B-14), it follows that

aﬂA(El(l*)) 1= ou
T = TLA Z ﬂ*wl* = Abic*’A[ t],

jeA

GﬂB (5’(@*)) 1 ~ 1 7C Blou
—eC T B kaBlwlC = n—Bbi*B[ )

C
O€; keB

Suppose S U S’ is not empty, i* € A, and 4 > 0. Then, giving better information to
the key player i* is equivalent to reducing £. Clearly, this reduces u#'. As this reduces
(increases) ps (u?) for all j € A (j € B) connected to i*, it decrease while i” increases.
This reduces the distance from the truth of the average opinion in group A if and only if
i > 0%, which is equivalent to (B-6), and of the average opinion in group B if and only
if i? < 6%, which is equivalent to (B-7). Analogous arguments for the other cases show
that the conditions under which providing better information to the agent ¢* reduces
the distance between the group’s average opinion and the truth are identical to those
characterizing the effect of improving information for all agents in group A, as derived in
Proposition 4.

As for part (b), without loss of generality, suppose that i* € A. Then,
Iox | (RAA LBA\T ¢A (Mg Wit ke a A 7 AB 1,BB\T ¢B
p=00"+{",677) 4+ A&+ (b77,677) €7
(mli*wi* leB
We can then write disagreement as:

Var [(AgH] =(07)*Var[b] + (¢*)*Var|(6*,6°4) T + (AgH)*V +

(m?z*wé)keA
(ml]?*wz‘A*)leB
I (53)2‘/&7,[(5,43’ EBB)T] +264¢B Cov [I;AA’ I;BA)T’ (I;AB’ BBB)T)} X

+264" Cov [b, (64, 574) 7| + 2670"Cou [b, (b7, 557)T | +
= [ (Mg ) kea
> (i wi )ien

< a s nik wd
+ 2§AA§ACO’U (bAA, bBA)T, ((mkz w;

+ 20" A& Cov +

+ 2§BA§AC (EAB BBB)T (17 fi*wi*)keA
~Cov , , B oA )
(m ; *)leB



Therefore,

oVar[p (Mt w)kea . Mt wi ) pea
aA—[A]zmgﬁ Var e +20° - Cov | b, | "1 +
é‘i* (mll*wz*)leB mh*wi* leB
~ A A ~ A
+ 26" Cov | (B2, 65T, @’j;*wj)’““ + 268 . Cov | (872, b55)7, ( N’fgw;)’“@‘
(M= wi )iep (M= wis )iep
As we consider marginal changes in &2, A¢4 is infinitesimal, so that (r)gg—y reduces to
8‘/ jod 7 A* A* ~ ~ T A.* é
—azr[f] — 20" . Cou |b, (”f’j; w;)’“e"‘ 261 Cov | (B4, BT, (Wf’j; w;)’“e"‘ +
Sir (Mij-w;+ B (Mij-wis )iep
268 . Cou (BAB BBB)T (Mg wi ) kea
’ "\ (5B A
(13- wis )ie

Noting that b = (644, 854)T + (b8 b5P)T, we can write

oV ar|p] A 7AA IBANT (m?‘*w'é)kefl
—— =2(0" + -C b b , v +

+2(6" 4+ £5) - Cov [(EAB bB5)T ((m?i*wzé)keA>

(Mfwi)ies

Hence, giving more accurate information to player i* is equivalent to reducing &+ if and

OV ar[p]
OAEA

only if £# > 0. In that case, disagreement in society decreases if > 0, which means

o - nA wA o - A w?
(0" + £4) - Cov | (™4, B54)T, (”jk]; w;)keA > — (0" +£8) - Cov | (BB, bBB)T, (”:Lij; w
(Mij-wis )iep My W

or, as the covariance Cov

¢ =0 = (0" +¢7) — Y
Cov | (bA4, bBA)T, <(( e

I
A

Cov (514]3751313)T7 (((ﬁ:b; i ;keA>
1+ Wix)ieB ) |
) :
)

A similar argument holds if i* € B. To conclude, if S is not empty, there exists a

threshold € such that targeting the agent i € C' with more accurate information decreases
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disagreement if and only if £ > €. This concludes the proof of Proposition 5. [ |

Proof of Proposition 6

Consider the updating rule with an upper—censorship threshold g > 6*. Censorship
removes the portion of any opinion exceeding i, so the stated opinion used by others is

fiit — [ftie — i)t In vector form, the censored dynamics are

s = Wi +w o0 —W [, — 1], (B-15)
Since p(W) < 1, the uncensored updating rule converges to a unique steady state. Cen-
sorship keeps opinions within a fixed range at each time t, limiting extremes without
creating new ones. Thus, the censored dynamics also converge to a unique steady state.
Let f1 := limy_,o0 ft;. Taking limits in (B-15) yields fr = Wi +w© 0 — W [jo — il]",

from which we obtain the implicit fixed-point representation
jr=M(w®o0)— MW [g— il]". (B-16)

Since the long-run opinion without censorship is = M (w ® ), substituting into (B-16)
yields equation (15).
To ensure that censorship applies only to agents in group A let explicitly write the censored

long-run opinions for the two groups

h A MAA pras) [waa was) [pA — it +
B L - MBA N[BB| |WBA VBB (B — il :

Therefore the long-run opinions of agents in group B satisfies
B = b~ (MBAWAA i MBBWBA) (A — il ]t — (MBAWAB n MBBWBB) (4P — i1, s]*.

Thus, the censorship does not bite on agents of group B if

maBX{IJ»B _ (MBAWAA +MBBWBA) [0t — ﬁlnA]+} <7
J€
The matrix K = — <MBAWAA + MBBWBA> has all positive entries, so that there

exists k& > 0 such that the sum each row’s entries are less than k. Hence, the vector

K[ — [11,4]" is bounded by k [maxeq pi* — ﬁr. Therefore, a sufficient condition to
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ensure that the censorship does not affect agents in group B is

+
B, I A = =
max iy + K [gl&xui u} < -

The censorship applies to agents in group A when max;ec4 it > ji. Thus the condition
for which the censorship affect only agents in A (and no agent in B) is
B | 7. A 7= _ = = A
rjrleaé(uj —i—krzneaxui kp<p and u<an€anuZ
max;ep 1 + kmaxiea pf

= k.= - < i < max .
1+k H ieAMz

Thus, when the condition is satisfied [t — 1] has positive entries only for agents in A.
Recall that M = (I—W)~' = D(I-W*)"'D, therefore MW = D(I-W*)"'"W+D,
which has the same block-sign structure as W.
Therefore, censorship reduces long-run opinions in group A and raises long-run opinions
in group B:

ft < pdt foralli € A, and ﬂf > uf for all j € B,

with strict inequalities whenever some agent in A is actually censored. Thus:

e Reducing i* moves it closer to §* if i* > 6%, and farther away if 74 < 6*. Thus,
censorship brings the average opinion of group A closer to the truth if and only if
A > 0r.

e Increasing ji® moves it closer to 0* if i® < 6*, and farther away if i > 6*. Thus,
censorship brings the average opinion of group B closer to the truth if and only if
-B *

e < 0.

This concludes the proof of Proposition 6. [ |

C Ring Network Example

Network Structure and Weights Consider the six-agent ring in Figure 1, with groups
A=1{1,2,3} and B = {4,5,6}, and parameters af = —° =1 and w’ = w for all i € C,
C € A, B. Agents’ total attention is normalized to one. In these examples, we assume that
agents allocate attention equally across their own past opinion, the opinions of their two
neighbors, and—when present—the external signal. Each agent has two neighbors and a
self-loop. When no external source is present (wS = 0), attention is divided among these
three channels, so each receives a weight of 1/3. When an external source is introduced

(wf > 0), there is an additional information channel, and attention is divided equally
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across four channels. Thus every interpersonal link, the self loop, and the external source
of information all receive a weight of 1/4.

In the parameterization used in the main text, where the external weight is denoted
w, this corresponds to assigning (1 —w)/3 to each interpersonal link and w to the external

source, as shown in Figure 1.

Matrix Representations and Leontief Inverses The social-interaction and identity-
interaction matrices can be explicitly written as follows. When no external source is
present (w = 0):

110 0 0 1] 1 1 0 0 0 —1]
111000 1 11 0 0 0
w_ollpr ool G 1o 11 -10 0
3001 110 310 0 =1 1 1 0
000111 0 0 0 11
1000 11 10 0 0 1 1

The resulting matrix W is a signed matrix, with negative entries reflecting antagonistic
interactions across groups, and it is structurally balanced in the sense that each agent’s

positive and negative ties are arranged in accordance with with group membership.
When an external source is present (w = 1):

110 0 01 1 1 0 0 0 -1
1110 00 1 1 1 0 0 O

W:l 011100 ’ W:} 0 1 1 -1 0 O
410 0 1. 1 1 0 410 0 -1 1 1 0

0 00111 0 0 0 1 1
100 0 11 -1 0 O 0 1 1

The corresponding Leontief inverses, M = (I - W)~" and M = (I — W)~ are:

(1.8 07 03 02 03 0.7] (18 07 03 —02 —03 —0.7
0.7 1.8 07 03 02 03 07 18 07 -03 —02 —03
Mo |03 07 18 07 03 02 o 03 07 L8 07 —03 —02
02 03 07 1.8 07 0.3 02 -03 -07 18 07 03
0.3 02 03 07 18 0.7 03 -02 -03 07 18 07
0.7 03 02 03 07 18 0.7 03 -02 03 07 18

Multiplying these matrices by the vector (1/4) - 1 gives the Katz-Bonacich centralities b
and b.

Social and Identity Centralities Table C-1 reports Katz-Bonacich and eigenvector

centralities for the ring network. Under the social-interaction matrix W, all agents have
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identical values because the network is perfectly symmetric: each agent interacts with
two neighbors and themselves. This uniformity disappears when considering the identity-
interaction matrix W, which introduces negative links to capture out-group antagonism.

These negative links reduce the effective influence of agents exposed to the opposing
group, creating variation in b. Agents 2 and 5, connected only to in-group neighbors,
have higher centralities, while agents 1, 3, 4, and 6—linked to out-group members—have
lower values.

Eigenvector centralities 7t also reflect alignment with group identity, highlighting how
identity-based interactions reshape both the distribution and interpretation of influence

compared to standard social networks.

’ Nodes ‘ b(W) ‘ b(W) ‘ m(W) ‘ (W) ‘

1 1 0.4 0.16 -0.16
2 1 0.6 0.16 -0.16
3 1 0.4 0.16 -0.16
4 1 0.4 0.16 0.16
D 1 0.6 0.16 0.16
6 1 0.4 0.16 0.16

Table C-1: Katz-Bonacich and eigenvector centralities for both the social interaction matrix W and the
(signed) identity-interaction matrix W of ring network of six agents of Figure C-1.

Long-Run Opinions The structure of the identity-interaction matrix W, which incor-
porates antagonistic out-group links, generates heterogeneity in long-run opinions even in
a symmetric social network.

In case (7), with no external information, each group converges to an internal consen-
sus. The disagreement between groups reflects the combination of initial opinions and the
structure of identity-interaction matrix, as encoded in 7.

In case (77), with an unbiased external source, we have disagreement but no ideological
polarization across groups. Agents less exposed to out-group interactions (2, 5) are closer
to the truth, creating within-group disagreement. Because the social network is symmetric
across groups, both groups display the same degree of internal disagreement and the same
average opinion.

Case (iii) considers biased external sources. When biases align across groups (£ =
¢B = 0.5), long-run opinions converge closer to the truth than in (ii). When biases are
opposed (é4 = —¢B = —0.5), out-group antagonism amplifies divergence and the degree

of ideological polarization and disagreement is high.
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(c) Same-sign biases (¢4 = ¢8 = 0.5) (d) Opposite-sign biases (¢4 =
—¢B = —0.5)

Figure C-1: Long-run opinions for the ring network of Figure 1, beginning from (u;0)ica = 0 and
(1i0)ie = 2. Group A is depicted in Red and Group B is depicted in Blue. The green dotted line
represents the true state of the world, 6* = 1.
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