RF ROCKWOOL Foundation Berlin

BERLIN Institute for the Economy and the Future of Work (RFBerlin)

DISCUSSION PAPER SERIES 007/26

Seasonal Allergies and Accidents

Mika Akesaka, Hitoshi Shigeoka

www.rfberlin.com JANUARY 2026




Seasonal Allergies and Accidents

Authors

Mika Akesaka, Hitoshi Shigeoka

Reference

JEL Codes: 112, J24, Q51, Q53, Q54
Keywords: Seasonal allergies, pollen, accidents, cognition, avoidance behaviors, climate change

Recommended Citation: Mika Akesaka, Hitoshi Shigeoka (2026): Seasonal Allergies and Accidents. RFBerlin Discussion Paper No.
007/26

Access

Papers can be downloaded free of charge from the RFBerlin website: https://www.rfberlin.com/discussion-papers

Discussion Papers of RFBerlin are indexed on RePEc: https://ideas.repec.org/s/crm/wpaper.html

Disclaimer

Opinions and views expressed in this paper are those of the author(s) and not those of RFBerlin. Research disseminated in this dis-
cussion paper series may include views on policy, but RFBerlin takes no institutional policy positions. RFBerlin is an independent re-
search institute.

RFBerlin Discussion Papers often represent preliminary or incomplete work and have not been peer-reviewed. Citation and use of
research disseminated in this series should take into account the provisional nature of the work. Discussion papers are shared to
encourage feedback and foster academic discussion.

All materials were provided by the authors, who are responsible for proper attribution and rights clearance. While every effort has
been made to ensure proper attribution and accuracy, should any issues arise regarding authorship, citation, or rights, please con-
tact RFBerlin to request a correction.

These materials may not be used for the development or training of artificial intelligence systems.

Imprint RFBerlin Gormannstrasse 22, 10119 Berlin
ROCKWOOL Foundation Berlin — Tel: +49 (0) 151143 444 67 RF
Institute for the Economy E-mail: info@rfberlin.com

and the Future of Work Web: www.rfberlin.com BERLIN


https://ideas.repec.org/s/crm/wpaper.html

Seasonal Allergies and Accidents®

Mika Akesaka' Hitoshi Shigeoka*

Kobe University University of Tokyo,
Simon Fraser University,
174 and NBER

First Draft: December 2023
This version: December 2025

Abstract

Seasonal allergies affect over 400 million people globally, yet the
broader economic consequences of pollen exposure remain
understudied. Evidence from Japan’s ambulance records suggests
that high-pollen days are associated with increases in accidents,
including traffic accidents and work-related injuries, which may
reflect impaired cognitive performance. Retail scanner data and
cellphone mobility records indicate that individuals already engage
in avoidance behaviors, such as purchasing allergy products and
limiting outdoor activities on weekends. This suggests that relying
on individual self-protection may be insufficient to offset these
risks, and thus greater government intervention may be warranted
to mitigate pollen-related harm.
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1. Introduction

“Hay fever,” also known medically as seasonal allergic rhinitis (SAR), is a common chronic
disease triggered by exposure to airborne allergens, such as pollen and dust. These allergens
cause various allergic symptoms, including a runny nose, nasal congestion, sneezing, and itchy
eyes. It is estimated that up to 30% of the population in developed countries suffers from SAR,
with approximately 400 million sufferers worldwide (Greiner et al. 2011). For instance, in 2021,
1 in 4 adults and 1 in 5 children in the U.S. experienced seasonal allergies (CDC 2023).!

The number of SAR sufferers is expected to rise as a warming climate accelerates pollen
production, increasing pollen concentrations. From 1990 to 2018, pollen concentrations in the
US increased by 21%, with the pollen season starting 20 days earlier than in 1990 and lasting 8
days longer (Anderegg et al. 2021). Figure 1 illustrates a strong positive correlation between
pollen counts and maximum temperature (panel A) and the number of hot days above 30°C
(panel B) during the previous summer in Japan—our study area. This suggests that human-
induced climate change may exacerbate the potential damage caused by pollen production.

Despite its widespread and increasing global prevalence, there is limited understanding of
how pollen exposure affects outcomes beyond the obvious adverse health effects. Given the non-
acute and less life-threatening physiological nature of SAR symptoms, people may have
overlooked the potential negative consequences and costs of pollen exposure. Clinical studies
have shown that pollen exposure can detrimentally affect cognitive performance—reducing
attention span and increasing reaction time, suggesting that any daily activity requiring normal
cognitive alertness and decision-making abilities may be affected. However, little is known about
whether such cognitive stress translates into negative economic consequences, such as reduced
labor productivity, in field settings.

To address this gap in the literature, we conduct the first investigation of the effects of acute
and short-term pollen exposure on the incidence of accidents. These include traffic accidents and
work-related injuries, which are arguably some of the most extreme consequences of cognitive
impairment. Traffic accidents are the leading cause of accidental deaths globally, and hence, any
factor influencing the risk of traffic accidents is of great relevance to social welfare.? Work-
related injuries also warrant investigation, as they result in substantial productivity losses in the

labor market. Furthermore, these accidents can cause negative externalities for individuals not

! Media coverage of seasonal allergies is on the rise. See, for example, Ramirez (2023) “Your pollen allergies are
overwhelming? This might be why” in CNN, Agrawal (2024) “Spring allergy season is getting worse. Here’s what
to know” in the New York Times, and Jarvis (2024) “You’re not imagining it. Your allergies are getting worse” in
Bloomberg Opinion.

2 Traffic accidents are the second leading cause of accidental death (after asphyxia), with an average of more than
4,000 deaths and 700,000 injuries per year for the period 2008 to 2019 (MHLW 2009; NPA 2022), in a total
population of 127 million in Japan.



suffering from seasonal allergies but involved in the accidents.

Our analysis is facilitated by a comprehensive database we have compiled, which combines
pollen counts, accidents, public awareness of pollen exposure, consumption, and mobility. Our
primary data combines pollen counts with newly available administrative ambulance records,
covering all ambulance calls related to accidents that occurred in Japan from 2008 to 2019.
These accidents were particularly severe, requiring ambulance transport to hospitals. The dataset
includes a wealth of information about each accident, including its location, date and time of the
ambulance call, type and severity of injuries, and the age and gender of those involved. To
examine whether individuals engage in avoidance behaviors, we use retail scanner data on
allergy-related products and cellphone mobility records from 85 million users of Japan’s largest
mobile phone carrier.

Japan provides an ideal empirical setting for this study for several reasons. First, pollen
monitoring stations are densely distributed nationwide—an uncommon feature in most countries.
Second, pollen concentrations vary widely in space and time, allowing us to measure exposure
with high precision and investigate potential nonlinear dose—response relationships. Third, pollen
exposure in Japan is driven almost entirely by a particular species—Japanese cedar and hinoki
cypress—enabling clean identification based primarily on pollen intensity.> This feature is
important because individuals’ sensitivity to an allergen, their reactions to related allergens, and
their ability to develop tolerance all vary depending on the pollen source. By contrast, in
numerous other regions, including North America and Europe, a small number of taxa dominate
overall pollen counts (Lo et al. 2019), substantially limiting the usefulness of variation for
identification. Finally, unlike prior studies restricted to a few schools or neighborhoods near
monitoring sites, our analysis provides nationally representative estimates, alleviating concerns
about external validity. We leverage daily levels of spatial and temporal variation in pollen
counts of differing magnitudes to identify the effect of pollen on accidents.

There are five main findings. First, we present evidence that people are more likely to
experience seasonal allergy symptoms on high pollen days than on low pollen days. This is based
on data from internet search activity (Google Trends) and social media posts (Twitter data). We
find that people tend to search and tweet about symptoms using keywords such as “runny nose,”
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“nasal congestion,” “sneezing,” and “itchy eyes” as pollen levels increase. Similarly, we observe
results for keywords related to sleep, such as “having a hard time falling asleep” and “feeling
sleepy,” indicating the negative impact of SAR on cognitive performance.

Second, we find that high daily pollen counts are associated with increased accidents. A

3 The large-scale planting of Japanese cedar and hinoki cypress was initiated by the government to offset wartime
and postwar overharvesting and accommodate the sharp increase in timber demand during the post-World War 11
high-growth period. Consequently, the species now comprise approximately 70% of the nation’s 10.09 million
hectares of planted forests (Forest Agency 2022).



100% increase in the daily pollen count leads to an increase in the number of daily accidents of
0.231 per million people. The relationship between pollen counts and the number of accidents is
concave, suggesting that even low levels of pollen—which occur more frequently than higher
levels—can have a significant negative impact on cognitive performance and thus on the
incidence of accidents.

Third, we explore how the effects may vary by type of accident, severity of accident, and
characteristics of the people involved. Interestingly, the effects are observed for all types of
accidents, including traffic accidents, work-related injuries, sports injuries, and fire accidents.
Using a unique measure of accident severity based on the initial clinical assessment by
physicians at the time of hospital admission, we find that while the effects are more pronounced
for less severe accidents, elevated pollen exposure also increases fatal accidents. Furthermore,
consistent with the widespread prevalence of SAR, the effects are nearly universal across all age
groups and both sexes.

These findings suggest that pollen exposure has a broad impact on “non-health” outcomes,
such as cognition, productivity, and activities of daily living. For example, an increase in
workplace injuries implies a detrimental effect on labor productivity and long-term earnings.*
Therefore, current estimates of the costs of exposure to airborne allergens, primarily based on
health outcomes, missed school days, and work absenteeism, may severely underestimate the
true costs to society.

Fourth, we find that people are actively engaging in avoidance behaviors to reduce the risk
of pollen exposure and alleviate allergy symptoms. Using retail scanner data, we show that
people increase their spending on products that protect against seasonal allergies, such as
medications, eye drops, and masks. Furthermore, using cellphone mobility records, we also show
that some people even limit outdoor activities on weekends to reduce the risk of outdoor pollen
exposure. To the extent that such behaviors are effective, we may be underestimating the true
magnitude of pollen-induced accidents.

These results suggest that the status quo of relying on individual self-protection is
insufficient to mitigate pollen-related harm. Considering the negative externalities of accidents
and substantial social costs, additional government intervention appears warranted. One practical
approach is a public information campaign, including a “pollen alert” system, that provides
timely guidance tailored to forecasted pollen levels and offers standardized recommendations for
the general public and firms. For the public, clear behavioral recommendations aligned with
pollen forecasts—such as wearing masks, using air purifiers, relying on public transportation, or

avoiding nonessential travel—could improve avoidance behavior. For firms, the guidelines could

4 Broten et al. (2022) find that workers who are injured on the job face an average earnings penalty of 8%, which
increases to 30% for those who are permanently disabled.



clarify when sick leave or remote work is appropriate for employees with severe seasonal
allergies, recognizing that many are willing to avoid high-pollen environments but face work-
related opportunity costs.

Finally, we combine our estimates of the impact of pollen on accidents with projections of
future climate and the temperature-pollen count relationship shown in Figure 1 to illustrate the
magnitude of the social costs of anthropogenic climate change. The “business-as-usual” scenario
of the Intergovernmental Panel on Climate Change (IPCC)—predicting a 4.1°C increase in
summer temperature in Japan from 2076 to 2095—would result in an additional 1,823 pollen-
induced accidents per year. By multiplying the resulting number of accidents by the average
accident cost, we obtain an expected annual social cost of pollen-induced accidents of about
$236 million. This estimated social cost is likely to be a lower bound because it does not include
minor cases that do not require ambulance transport to a hospital.

While much of the existing literature on climate change has focused on the effects of rising
temperatures on direct outcomes such as aggregate income, mobility, mortality, and agricultural
outcomes (Carleton and Hsiang 2016; Dell et al. 2014), the increase in the number of seasonal
allergy sufferers and the associated impairment in performance may be the indirect and
undiscovered cost of anthropogenic climate change. Consequently, any action to mitigate the risk
of'a warming climate could have substantial societal benefits by preventing temperature-driven
increases in airborne pollen.

It is important to note that the estimates presented here only begin to address the potentially
significant social costs associated with rising pollen levels. If pollen exposure impairs cognitive
function, it could significantly affect various daily human activities that require sustained
cognitive attention. This research represents a first step toward understanding the full societal
impact of pollen exposure, not just within a specific setting and country, but on a more global
scale.

The remainder of the paper is organized as follows: Section 2 briefly describes the
background, Section 3 describes the data, Section 4 presents the econometric model, Section 5
reports the main findings of this study, and Section 6 examines avoidance behavior. Section 7
reports the results of the projection of future climate change. Section 8 presents the discussion

and conclusions.

2. Background
2.1. Pollen and seasonal allergies
SAR, a common chronic condition, arises when an individual’s immune system reacts to
airborne allergens like pollen and dust. This reaction prompts the immune system to generate

antibodies, such as histamines and cytokines, to combat the perceived threat of pollen grains.



Consequently, the antibodies cause inflammation in the airways, leading to various allergic
symptoms like a runny nose, nasal congestion, sneezing, and itchy eyes (Greiner et al. 2011).

SAR poses a global health concern as it can affect otherwise healthy individuals. Prevalence
rates vary across countries, typically ranging between 10% and 30% in developed nations
(Greiner et al. 2011; Schmidt 2016). However, this figure likely underestimates the true
prevalence rate, as some individuals may not seek medical assistance for the condition. An
increasing prevalence is driven by factors such as urbanization, adoption of Western lifestyles,
and climate change (Schmidt 2016).

In Japan, the Japan Society of Immunology and Allergology in Otolaryngology has
conducted a comprehensive epidemiological survey every ten years among otolaryngologists
and their families since 1998. According to this survey, the prevalence rate of SAR has
increased by approximately 10 percentage points each decade, rising from 19.6% in 1998 to
29.8% in 2008 and 42.5% in 2019, slightly exceeding the 10-30% prevalence reported in other
developed countries. Although the prevalence rate peaks around middle age, a significant
number of both young and older individuals also suffer from SAR (Matsubara et al. 2020).°

Because SAR is relatively mild and chronic, its economic costs are often underestimated.

Apart from direct medical expenses such as medication and emergency room visits (Xing et al.
2023), as well as physician consultations and hospital admissions (Steinbach 2022), previous
studies indicate that pollen allergies significantly contribute to absenteeism from work and
school (Hellgren et al. 2010; Lamb et al. 20006).

Of particular relevance to this study, clinical research has demonstrated the adverse effects
of SAR on cognitive performance. These effects often manifest indirectly through decreased
sleep quality (Craig et al. 2004; Santos et al. 2006) and directly through the antibodies
themselves affecting brain function (McAfoose and Baune 2009). For instance, Wilken et al.
(2002) discovered that allergic adults randomly exposed to pollen exhibit poorer performance
across various cognitive measures compared to non-exposed individuals. These measures
include longer reaction times, reduced working memory, divided attention, and slower
calculation. Unfortunately, medical studies have indicated that allergy medications such as
antihistamines can also impair cognitive function due to side effects like drowsiness, dry mouth,
and lethargy (Jauregui et al. 2009; Kay 2000).

Previous studies examining the effects of seasonal allergies on non-health outcomes such as
cognition in real-world settings have primarily focused on their impact on children’s test
performance (Bensnes 2016; Marcotte 2015, 2017). However, it remains unclear whether the

negative effects of pollen on cognitive function extend to a substantially larger population of

3 The prevalence rates of SAR in 2019 are 30.1% (age 5-9), 49.5% (10-19), 47.5% (20-29), 46.8% (30-39), 47.5%
(40-49), 45.7% (50-59), 36.9% (60—69), and 20.5% (70-) (Matsubara et al. 2020).
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prime-aged adults and, importantly, whether this potential cognitive stress could lead to adverse
economic outcomes. This paper focuses on accidents, including traffic collisions and work-
related injuries, as they represent the most severe forms of performance impairment. For
instance, it is well-established that cognitive function is inversely correlated with the likelihood
of motor vehicle accidents (Anstey et al. 2005, 2012).¢ Vuurman et al. (2014) contend that the
impairing effects of allergic rhinitis on driving are comparable to those of a blood alcohol
content of 0.05%, the legal limit in many countries. Similarly, most workplace injuries result
from distraction (European Commission 2009). Nonetheless, we acknowledge that cognition is
not the sole underlying mechanism, as pollen exposure is also clinically associated with mood,
fatigue, and emotion (Dowlati et al. 2008; Kronfol and Remick 2000).

2.2. Warming climate and pollen

Higher temperatures and carbon dioxide (CO») concentrations have been found to increase
pollen production, implying that climate change is expected to significantly affect pollen
concentrations and the duration of pollen seasons. Anderegg et al. (2021) tracked pollen trends at
60 pollen stations in the United States from 1990 to 2018. They found increases of 20.9% and
21.5% in annual and spring (February—May) pollen concentrations, respectively. The pollen
season started 20 days earlier and lasted eight days longer. Further, they conducted a model
selection analysis to identify the main drivers of pollen proliferation. They found that the mean
annual temperature is the strongest predictor of the above pollen metrics among eight climate
variables, which include temperature, precipitation, frost days, and CO> concentrations.
Increased pollen abundance, earlier onset of the pollen season, and longer duration of the pollen
season have also been observed in Europe (D’ Amato et al. 2007; Ziello et al. 2012; Hamaoui-
Laguel et al. 2015).

This pattern also appears in our Japan data. Using station-year observations from 120 pollen
monitoring stations (2008—2019), we find that higher maximum temperatures and more days
above 30°C in July and August of the previous summer correlate with higher average daily
pollen counts from February to May (Appendix Figure A1).”

Figure 1, mentioned in the introduction, shows the relationships between pollen counts and
temperatures in the previous summer using the same data. The binscatter plot exploits the
variation in pollen counts within the same pollen monitoring station over time by controlling for

station fixed effects (FEs). The linear slope of 167.4 (t-stats= 11.2) in panel A indicates that a

6 Smith (2016) shows that one hour of sleep loss increases the likelihood of being involved in a fatal drowsy driving
crash by 46%.

" For instance, the relatively cool summer of 2009 was followed by low pollen counts in spring 2010, whereas the
hot summer of 2010 preceded high counts in spring 2011.
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1°C increase in maximum temperature in the previous summer is associated with an additional

167 grains/m® of daily pollen on average in the following spring. As the mean and median daily
pollen counts of 120 stations in the same period are 955 and 712 grains/m>, respectively, such an
increase can be sizable. Similarly, the slope in panel B is 23.7 (t-stats= 11.2), indicating that ten
more hot days above 30°C in the previous summer could increase the daily pollen count by 237
grains/m’ in the following spring.

In summary, the evidence to date suggests that human-induced climate change has increased
the intensity of pollen seasons in different parts of the world. Expected temperature increases due
to global warming are likely to amplify and accelerate this trend in the coming decades (Ziska et
al. 2019). For example, Zhang and Steiner (2022) project that climate change will further
accelerate the arrival of the pollen season (by up to 40 days), increase the duration of the pollen
season (by about 19 days), and consequently increase the total annual pollen load (from 24% to
40%) in the United States.

3. Data

We have assembled a comprehensive dataset to examine the impact of pollen exposure on
accident rates. In our primary analysis, we merge daily airborne pollen counts with newly
available ambulance records documenting accidents that occurred between 2008 and 2019 in
Japan. To our knowledge, this is the first study to use this dataset in economic research. For
greater clarity, supplementary data used to examine symptoms (Google Trends and Twitter data,
detailed in Section 5.1) and avoidance behaviors (retail scanner data and cellphone mobility
records, discussed in Sections 6.2 and 6.3) will be described later. For more information on the

data sources, see Appendix H.

3.1. Airborne pollen

We obtain airborne pollen data from the Japanese Ministry of Environment’s pollen
monitoring system, known as “Hanako-san.” This system provides hourly measurements of
pollen counts (grains/m?) for Japanese cedar and hinoki cypress. Pollen season calendars for
major plant species (Appendix Figure A2) indicate that most pollen is released between February
and May, when these two species constitute the dominant sources. Comprehensive pollen count
data have been available since 2008, published on the Ministry of the Environment’s website.
Moreover, during the pollen season, weather forecasts in Japan routinely include information on
pollen levels alongside temperature and precipitation. Television broadcasts typically report both
current-day and weekly pollen forecasts; an example is provided in Appendix Figure A3. Thus,

the cost of accessing such information is nearly negligible.



Throughout Japan, there are a total of 120 pollen monitoring stations. Panel A of Figure 2
displays the locations of all monitoring stations as of 2019.® On average, each of the 46
prefectures has two to three monitoring stations, primarily situated in urban areas with high
population densities (Wakamiya et al. 2019).° The number of pollen monitoring stations is
remarkably high considering the country’s size. For instance, the United States, which is 26
times larger than Japan, only has 74 pollen monitoring stations nationwide.

Panel B of Figure 2 plots the cumulative distribution of the distance from the nearest pollen
station to the centroid of each emergency response unit, our regional unit of analysis, as
described in Section 3.2. The mean and median distances from pollen stations are 25.4 and 17.5
kilometers, respectively. Even with a conservative threshold of 48 kilometers (30 miles) for
pollen measurements to be valid (Chalfin et al. 2019), 90.2% of all units fall within this
threshold. '

The high density of stations across the country enables us to: (i) accurately measure pollen
exposure, (ii) provide nationally representative estimates of pollen exposure (unlike previous
studies limited to a few schools or districts near pollen stations), and (iii) include the continuous
variable of pollen exposure at various levels as a regressor to examine potential nonlinearity in
the dose-response (unlike previous studies that only included a dichotomous variable defining
high pollen days).

Pollen counts are monitored from February to May each year to cover the blooming season
of Japanese cedar and cypress (as shown in Appendix Figure A2). The exception is Hokkaido
Prefecture in the far north, where monitoring occurs at four stations and the observation period is
delayed by one month, from March to June. We aggregate the monitor readings to obtain the
daily level by summing the hourly observations to calculate the accumulated number of pollen
grains counted within 24 hours. Additionally, weather covariates from nearby weather stations
are included in the same dataset. Specifically, hourly temperature, precipitation, and wind speed
are recorded. Likewise, we aggregate these variables to obtain daily levels.

As pollen in Japan typically disperses over 100 kilometers and remains airborne for more
than 12 hours, nearly all regions, including sparsely forested cities, can be contaminated by
airborne pollen (Yamada et al. 2014). Figure 3 illustrates the average pollen counts by

municipality for the period 2008 to 2019. The figure demonstrates that while the entire country is

8 The number of pollen stations has remained at 120 since 2008, so our estimates are not affected by changes in the
number of stations. The movement of stations is limited to a handful of stations, and the distance of movement is
minimal.

% Okinawa prefecture, the southernmost remote island in Japan with a different climate than the rest of the country,
has no pollen station because little pollen is observed. We exclude Okinawa from the entire analysis.

10 Chalfin et al. (2019) examine the effect of pollen on crime in US cities using criminal records from stations within
30 miles (48 kilometers) of the city center, while the National Allergy Bureau suggests that pollen measurements are
valid within a 20-mile (32 kilometers) radius of each station.
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exposed to pollen, there is considerable spatial variation across the nation, even within narrowly

defined areas. The source of the identifying variation is discussed in detail in Section 4.2.

3.2. Ambulance records

Our comprehensive administrative data on accidents and injuries are sourced from the Fire
and Disaster Management Agency (FDMA) of the Ministry of Internal Affairs and
Communications, Japan. This dataset encompasses all ambulance calls, except those from the
Tokyo metropolitan,'! from 2008 to 2019 that required ambulance transport. Registration of all
ambulance records in the FDMA’s online system became mandatory in 2008. Because
ambulance service in Japan is free for the public, there is no differential sample selection based
on socioeconomic status, unlike in countries such as the United States, where ambulance use
varies by health insurance status (Meisel et al. 2011).

In total, 14.7 million accidents were recorded between 2008 and 2019, averaging 1.2 million
accidents annually.'? The dataset provides detailed information for each accident, including the
accident’s location, the date and time of the ambulance call, the accident type, the severity of
injuries, and the age and gender of the individuals involved.

Two features of this dataset are particularly valuable for our study. First, it records the type
of accident involved, including traffic accidents, work-related injuries, sports injuries, and fire
accidents. Second, it provides information on the severity of the injuries sustained. This measure
is highly reliable because it is based on the initial clinical assessment conducted by physicians
upon the patient’s admission to the hospital. Injury severity is classified as fatal or near-fatal,
severe, moderate, or minor, where “severe” cases require more than three weeks of
hospitalization and treatment, “moderate” cases require less than three weeks, and “minor” cases
do not require hospitalization.

Ambulance records offer two key advantages over vital statistics: they capture non-fatal but
severe injuries that vital statistics may miss, and they record accidents on the exact day they
occur, avoiding the measurement error associated with the reporting delays sometimes present in
vital statistics.

The geographical unit in ambulance records is an emergency response unit (referred to as

“unit”), which constitutes the primary level of ambulance service in Japan. While many units

" Tokyo is excluded from the sample because (i) metropolitan Tokyo (23 wards of central Tokyo and most cities in
Tokyo) falls under a single ambulance operating system (the Tokyo Fire Department), which is likely to introduce
substantial measurement error in assigning pollen counts, and (ii) data from metropolitan Tokyo are only publicly
available from 2016 onwards. Nevertheless, we later include data from Tokyo for the period 20162019 to verify
that our results are robust to its inclusion in Table 3.

12 Ambulance records also include medical emergencies (72.3% of all records). As our focus is on accidents, we
extract data on five types of accidents from the ambulance archives: traffic accidents, work-related injuries, sports
injuries, fire accidents, and other accidents, which account for 25.9% of all records. The remaining records are self-
injury, assault, drowning, natural disasters, and other categories (1.8%).
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represent municipalities themselves, some small municipalities combine to form a unit,
enhancing the efficiency of ambulance service. As of 2019, 1,700 municipalities (equivalent to
counties in the United States) across 46 prefectures (equivalent to states in the United States)
form 705 units. We aggregate accident records to the unit-day level by adding hourly

observations within the units. '3

3.3. Sample construction and summary statistics

To form our primary sample, we merge ambulance records by unit-day with corresponding
pollen counts from nearby monitoring stations, recorded on the same day. Consequently, the
primary sample encompasses records from February to May, the peak pollen seasons, for all
prefectures except Hokkaido, in which records span from March to June, covering 2008 to 2019.

Table 1 presents summary statistics for our primary estimation sample, comprising 970,309
unit-day observations. On average, there are 33 daily accidents per million people. Traffic
accidents emerge as the most prevalent type, constituting 37.6% of all incidents, followed by
work-related injuries (3.5%), sports injuries (2.6%), and fire accidents (0.5%). Other accidents,
not categorized within these categories, account for more than half of all incidents (55.8%).'*
The average daily concentration of airborne pollen is 984 grains/m?, with a standard deviation of
2,135.1°

4. Econometric model
4.1. Estimating equation
We estimate the effect of short-term pollen exposure on accident rates, net of any

potentially confounding factors:

Yie = Blog (Pollen;e) +yX;, + a; + @pime + &, [1]

where the dependent variable Y;; represents the number of accidents per million people in unit i
on date t. Taking the logarithm of pollen counts aligns with the nonlinearity observed in clinical

studies (Erbas et al. 2007) and addresses the right skewness of pollen count distributions.'® Later,

13 The timestamp of each accident reflects the time it was reported to emergency response units, not the actual time it
occurred. This may introduce some measurement error with respect to the hour (more likely) than the date.
Consequently, we aggregate accidents at the daily level, following the approach used in literature (e.g., Park et al.
2021).

!4 These accidents range from minor to major and include: (i) slipping and falling on a step, (ii) slipping and falling
on a snowy road, (iii) spilling a pot and getting burned, and (iv) slamming a finger in a screen door.

15 We truncated the pollen counts at the 99.9" percentile (55,104 grains/m®) to account for outliers.

16 Appendix Figure A4 presents a histogram of daily pollen counts and their logged values for the period 2008—
2019. We add one to account for zero pollen counts (0.83%) before taking the log. In Table 3, we show that our
results are robust to dropping these observations and taking the log without adding one. Bensnes (2016) and
Marcotte (2017) also take the log form of pollen counts.
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we present results from alternative specifications, such as level-level or “dose-response,” and
estimate the Poisson model to explicitly accommodate the non-negative discrete nature of
accident counts and to gauge the sensitivity of our findings to zero observations. The parameter
of interest, 8, quantifies the change in the outcome associated with a 100% increase in pollen
counts. The unit FE (a;) controls for geographic disparities in health and pollen concentrations.
The high granularity of our data enables us to incorporate multiple sets of high-dimensional

time FEs (@¢me). The baseline specification includes prefecture-by-month (@,,), month-by-year
(@my), and day-of-week FEs (Deryugina et al. 2019). Prefecture-by-month FE controls for any

seasonal correlation between pollen counts and accidents, allowing this correlation to vary across
prefectures. Month-by-year FE flexibly controls for nationwide time-varying shocks during our
sample period. Finally, day-of-week FEs account for within-week variation in accidents. This
approach enables us to compare days within the same month and unit that differ in pollen
concentration across years, thereby mitigating concerns that other seasonal trends in accidents
might bias the results.

The X;, flexibly controls for daily variations in weather covariates. We include seven
indicators for 5°C intervals of daily average temperatures, ranging from 0°C or less to 25°C or
more. For daily precipitation, we include four indicators (no rain, less than 1 mm of rain, 1 mm
to 2 mm of rain, and more than 2 mm of rain). We also control for the average wind speed and
duration of darkness, the time between dusk and dawn, which is an important factor for traffic
accidents (Biinnings and Schiele 2021). Finally, we control for the logged population, which is
related to population density and congestion (once with the unit FE included), potentially
affecting the risk of accidents (Abouk and Adams 2013).

We cluster all standard errors at the pollen monitoring station (N= 120)—the level of
underlying variation in our treatment variable (Abadie et al. 2023)—to account for possible serial
correlation and weight all estimates by the relevant population in cases where the dependent

variable is expressed in per capita terms.

4.2. Identifying variation

We leverage daily variations in pollen counts to identify the impact of pollen on accidents.
The underlying assumption for 8 in equation [1] to reflect the causal impact of pollen is that the
temporal, seasonal, and geographic variations in daily pollen counts, net of confounding factors,
would be considered exogenous. While it is not feasible to directly test this assumption, it is
broadly plausible, as discussed below. First, we demonstrate that there remains substantial
residual variation in pollen concentrations even after controlling for location and time FEs, along
with comprehensive sets of weather controls. Subsequently, we discuss the arguably

“exogenous” determinants of such daily pollen count variations.
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We start with documenting significant spatial and temporal variation in pollen counts even
within relatively narrow regions and periods (i.e., after controlling for prefecture-by-month and
month-by-year FEs). As an example, Figure 4 displays the daily pollen counts from 2017 to 2019
at three monitoring stations in Ibaraki Prefecture, located northeast of Tokyo (part of the Kanto
region, as depicted in Appendix Figure A2). Temporal variations in pollen exposure occur within
each station, along with spatial variations across the three stations within the short time window.
Furthermore, this pattern is not systematic; while Station C recorded the highest pollen counts in
most months in 2017 and 2018, Station A recorded the highest pollen counts in 2019.!7 This
observation illustrates that areas experiencing high pollen exposure in certain years encounter
low pollen exposure in others, suggesting substantial idiosyncratic variation in pollen across
areas over time.

Obviously, such patterns could be partially explained by contemporaneous local weather
conditions. Therefore, adequate control for weather covariates, as in equation [1], is important to
mitigate concerns that “naturally occurring” processes of pollen production may contribute to
accidents independent of pollen counts. For example, car accidents increase on rainy days, and
rain is clearly negatively correlated with pollen counts, potentially introducing downward bias in
our estimates. However, pollen counts are only weakly correlated with local weather covariates;
a regression of the logged pollen counts on granular weather controls included in the main
specification (temperature, precipitation, wind speed, and darkness) yields an R-squared value of
only 14.5%,'® and adding the aforementioned location and time FEs raises it to at most 40.1%.

Why do these “intuitive” weather covariates have limited explanatory power for daily
pollen variations? According to the Ministry of Environment in Japan (MOE 2022), cedar pollen
becomes more abundant about 7 to 10 days after it begins to shed. About four weeks after that is
the peak pollen period, and within this period, pollen levels are particularly high when the
weather is warm, dry, and windy, while pollen levels are low when the weather is rainy and/or
cool. To visualize these relationships, Figure 5 extracts data from Station A in 2019 from Figure
5, adds the average temperature, and indicates days with any precipitation. The figure shows that
pollen concentrations are high on warm days and low on rainy days during the peak season,
while this relationship is much weaker during the off-peak season, partly explaining the low R-

squared value.

17 This observation is not specific to this particular prefecture. The same pattern of reversal can be observed in
another example from Niigata Prefecture, as depicted in Appendix Figure AS.

18 This low R-squared does not result from how precipitation and temperature are coded. For example, changing
both to dummies for deciles of precipitation and temperature changes it to 16.8%, and further interacting these
temperature and precipitation dummies increases it only to 17.4%. Moreover, it is not attributable to long distances
between weather stations and pollen monitoring stations, as presented in Table 3.
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The natural question that follows is what factors determine the peak of the pollen season.
Pollen studies have historically been popular in Japan, and there is accumulated scientific
evidence to guide us in answering this question. It is widely documented that the peak of the
pollen season is influenced by the preceding winter temperature (e.g., Kishikawa 1988). This
makes biological sense because summer temperature determines the growth of pollen-bearing
trees and, thus, pollen quantity, as shown in Figure 1, while winter temperature determines the
timing of pollen onset and peak shedding. '

Indeed, we find a clear negative relationship between winter temperatures and the timing of
the pollen season peak. Specifically, warmer January temperatures are associated with fewer
days from the start of the year until the first day when pollen counts exceed 5,000 grains/m?
(approximately the 96th percentile), after controlling for monitoring station FEs (Appendix
Figure A6). This pattern indicates that warm winters trigger earlier pollination and accelerate the
seasonal peak.

Therefore, the interaction of the peak determinant and daily weather fluctuations, even
conditional on very granular daily weather controls, can be a source of plausibly exogenous
variation in daily pollen counts that is not correlated with other time-varying local determinants
of accident risk. Another exogenous source of pollen variation is daily wind patterns (Iwaya et al.
1995). Because pollen can travel long distances (Yamada et al. 2014), wind direction on a given
day provides us with nonlocal pollen variation that can be used to identify the effect of pollen
exposure independent of local weather conditions.*

In summary, factors determined long before the start of the pollen season (i.e., winter
temperature) that interact with contemporaneous weather conditions, as well as a component of
contemporaneous local weather conditions that drives the idiosyncratic movement of pollen (i.e.,
wind direction), are some (but of course not all) of the sources of exogenous variation that we
exploit to credibly identify a causal effect of pollen on accidents. We also illustrate the
robustness of our results by estimating alternative specifications that include more or less
stringent FEs to ensure that our results cannot be explained by specific unobserved seasonal or

regional patterns, as well as stricter controls for weather conditions.

19 Already in 1988, Kishikawa (1988) wrote: “The sum of these pollen counts correlated with the mean temperature
in July of the previous year (r = 0.878, p<0.001) and the beginning of the pollination season correlated with the
mean temperature in January (r =-0.765, p<0.001).”

20 To minimize measurement error due to Jocal pollution transport (e.g., from traffic or local power plants),
Deryugina et al. (2019) restrict the influence of wind directions (their instrumental variable) on pollution to be the
same for all monitors within the same geographic regions, mainly to exploit variations in nonlocal pollution from
other regions. We do not adopt this approach because 1) the variation in pollen concentrations is mainly due to
nonlocal transport (i.e., pollen-emitting trees in the mountains), while the monitors are mostly located in urban areas
with high population densities, 2) technically, with only 120 pollen monitors across the country, the geographic
regions containing multiple monitors become too large to adequately capture even nonlocal transport, and 3) more
fundamentally, the wind directions affect the levels of pollen and pollution simultaneously.
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To directly visualize the identifying variation underlying the baseline specification, we
display the distribution of residuals from a regression of logged daily pollen counts on all the
controls in equation (1), namely unit, month-by-year, month-by-prefecture, and day-of-week
FEs, as well as weather covariates (precipitation, temperature, wind speed), darkness, and logged
population. We summarize this residual variation using the interquartile and interdecile ranges
across prefectures and years (Cabral and Dillender 2024). Both measures indicate substantial
within-prefecture and within-year variation, confirming that our estimates are not driven by any

single prefecture or any particular year (Appendix Figure A7).

5. Main results
5.1. Symptoms of seasonal allergies

Before presenting our main findings, we first examine whether individuals are more prone
to experiencing seasonal allergy symptoms on high pollen days than on low pollen days. This
analysis is based on data sourced from both Internet search activity (Google Trends) and social
media posts (Twitter data).

We use publicly available Google Trends data focusing on two broad categories: (1) pollen-
related keywords and (2) symptom-related keywords spanning from 2016 to 2019 at the
prefecture-day level (N=21,551). The Google search index reflects the popularity of search
terms, ranging from 0 to 100 within a given prefecture and on a specific day, relative to the total
searches within the specified period.?!

Figure 6 illustrates the outcomes for symptom-related keywords such as “runny nose,”

99 ¢¢

“nasal congestion,” “sneezing,” and “itchy eyes” (see Appendix Table B1 for the comprehensive
list of search terms employed). Panel A shows the time series of the Google search index for
these keywords alongside the daily pollen counts (grains/m?), using data from 2018 as an
example. These variables exhibit close alignment over time. Panel B confirms this positive
relationship in the binscatter plots, which show the relationship between logged daily pollen
counts and the search index after adjusting for prefecture-by-month, month-by-year, and day-of-
week fixed effects, as well as weather covariates, darkness, and logged population. A 100%
increase in daily pollen counts leads to a 3.6-point rise in the search index on a scale of 0100,
with a mean of 30.4 (p-value<0.01). Similar patterns are observed for pollen-related keywords,

99 ¢¢

such as “pollen,” “pollen allergy,” and “Japanese cedar pollen,” as displayed in Appendix Figure
B1.

We replicated the relationship between pollen counts and keywords using public Twitter

21 The 2016 cutoff is motivated by data completeness and the fact that Google changed its data collection system on
January 1,2016. We follow Brodeur et al. (2021) to construct Google Trends data at the daily level over multiple
years, using overlapping periods of daily and weekly data.
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data spanning from 2016 to 2019 at the prefecture day level.?? The sole distinction from the
previous analysis is that the dependent variable now represents the number of tweets containing
the same two keyword sets. Individuals tend to tweet these keywords more frequently on days
with high pollen levels (Appendix Figure B2).

An advantage of Twitter data compared to Google Trends data is that, while the sample is
biased towards younger cohorts, individuals often express emotional states in tweets (Baylis
2020; Burk et al. 2022). Therefore, we collected data on sleep-related tweets (Heyes and
Mingying 2019), specifically those mentioning “having a hard time falling asleep” and “feeling
sleepy,” to gauge decreased sleep quality and daytime sleepiness. Individuals seem to encounter
more sleep-related issues as pollen levels rise (Appendix Figure B3). This “first-stage” evidence
suggests that individuals are experiencing typical seasonal allergy symptoms, and some are

evidently aware of their exposure.

5.2. Basic results

Figure 7 displays binscatter plots illustrating the relationship between logged daily pollen
counts (grains/m?) and the number of accidents per million people. It encompasses all accidents
(panel A), followed by specific accident types by frequency, excluding “other” accidents: traffic
accidents (panel B), work-related injuries (panel C), and other accidents (panel D). These plots
account for unit, prefecture-by-month, month-by-year, and day-of-week FEs, alongside weather
covariates (precipitation, temperature, wind speed), darkness, and logged population. Each figure
presents a generally linear relationship with logged pollen counts, with a slight flattening at very
high pollen concentrations. This simple plot demonstrates a robust connection between pollen
concentration and accident occurrences, a relationship we formally examine below.

Table 2 presents the key estimates from equation [1]. Column (1) shows that a 100%
increase in daily pollen count is associated with a 0.231 increase in daily accidents per million
people. This result is precise and highly statistically significant (p-value<0.001, t-stats= 14.0).
Relative to the average daily accident rate of 33.03, this represents a 0.7% increase, implying an
elasticity of 0.0070 (= 0.231/33.03). To contextualize our findings, Sager (2019) reports that the
elasticity of road traffic accidents with respect to PM s in the UK is about 0.06. While a direct
comparison requires considerable caution, as Sager (2019) includes all traffic crashes with any
personal injury (not always associated with ambulance transport), our elasticity is approximately
one-tenth of that figure.?> As shown in the heterogeneity analysis in Section 5.4, our elasticity is

even higher for severe accidents (e.g., 0.033).

22 We assign a prefecture based on the location at the time of the tweet.
2 If we focus only on traffic accidents, column (2) of Table 2 shows that the elasticity is 0.0063 (0.079/12.41),
which is very similar to the overall elasticity.
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Columns (2)—(5) of Table 2 demonstrate that, although the magnitude varies by accident
type, elevated pollen concentration is associated with increased occurrences across all types. For
instance, the rise in the incidence of work-related injuries, albeit constituting a small share
(3.5%), underscores the substantial health risk pollen exposure poses to workers and its potential
adverse impact on labor productivity. We discuss the monetary values of pollen-induced
accidents in Section 7, where we project potential damages from climate change.

Importantly, our estimates provide a lower bound on pollen’s impact on accidents because
the ambulance records analyzed exclude minor accidents that do not require ambulance transport.
Furthermore, injury severity is evaluated upon hospital admission, potentially leading to an
underestimation of eventual fatalities.>*

Dose-response—. We also examine dose responses more flexibly by estimating a
nonparametric binned regression in which the logged daily pollen counts in equation [1] are
replaced with indicator variables for each decile of the daily pollen /evels. The estimates reveal a
clear concave relationship, indicating that even relatively low pollen levels—substantially more
common than extreme levels—can meaningfully affect the incidence of accidents (Appendix
Figure C1). Importantly, this concave dose-response pattern also highlights the potential benefits
of reducing pollen concentrations, even in countries/settings where overall pollen levels are
lower than those observed in our study. Furthermore, the shape of the function explains why the

level-log specification in equation [1] fits the data well.

5.3. Robustness

Our findings regarding the impact of pollen on accidents remain robust to a battery of
specification checks. These checks include variations in location and time FEs, different ways of
constructing regressors and outcomes, alternative specifications, and placebo exercises.

Robustness—. Table 3 presents the results of robustness checks and extensions. Our
findings remain robust across various ways of constructing pollen concentration measures
including an inverse distance-weighted average of three nearby stations (columns 2 and 3),
incorporating pollution covariates (SO, NO,, CO, OX, PM) as potential confounders (column

4),% and introducing the full interaction of temperature and rain dummies to further control for

2 For example, the number of work-related injuries, including injuries of all severity levels, captured by our
ambulance records in 2019 is 50,578, while the total number of work-related injuries resulting in either death or at
least four days of absence from work reported to the Ministry of Health, Labour and Welfare (MHLW) is 125,611
(MHLW 2020). Similarly, the number of traffic accidents captured by our ambulance records in 2019 is 368,680,
while the total number of traffic accidents resulting in death or injury reported to the National Police Agency (NPA)
in the same year is 464,990 (NPA 2022). Thus, approximately 40% and 80% of all work-related injuries and traffic
accidents, respectively, are captured by our ambulance records.

2 Pollen seems to exert an independent effect from pollution, as the correlation between pollen counts and other
pollutants is extremely low (0.02—0.12). This is likely because pollen grains are relatively large (=30 um) compared
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weather influence (column 5). Columns (6) and (7) address potential measurement errors in
pollen counts—our key regressor—and in weather variables, which serve as key controls. Our
results remain robust when the sample is restricted to units located within 48 kilometers of pollen
monitoring stations, minimizing measurement error due to spatial misalignment between
measurement points and exposure locations (column 6). Likewise, restricting the sample to
observations linked to pollen stations located within 8 kilometers (0.5 miles) of weather stations
(column 7) addresses concerns that weak correlations between weather and pollen may arise
from greater station distance.?® Our results remain robust when including data from Tokyo for
the years 2016-2019 (column 8). The unweighted OLS estimates are larger than those from the
weighted OLS specification (weighted by population in each emergency response unit),
suggesting that the effects are stronger in less populated and rural regions (column 9).

To address the possibility that the effect of pollen may appear with a lag or temporal

displacement, we estimate the following distributed lag model:

Yie = Xkex B log (Pollen; ;) + YXip T Qi + Crime + &, [2]

where we include logged pollen counts and weather covariates (precipitation, temperature, wind
speed) for the observation date and adjacent days within the time horizon K to mitigate concerns
about autocorrelation. Our parameter of interest is the sum of coefficients (= Y ek Bx) from
equation [2] with varying windows from K = 0 to 14.?’

We find that the same-day effect (K = 0) effectively captures the bulk of the overall impact,
with cumulative effects remaining relatively stable when the window is extended up to two
weeks (Appendix Figure C3). This pattern is unsurprising and consistent with the short-lived
nature of pollen-induced symptoms: although allergic reactions can occur within minutes of
exposure, their effects typically last no longer than four to eight hours (Skoner 2001). Another
approach to capturing dynamic effects is to temporally aggregate data at coarser intervals (Burke
et al. 2018). Column (10) of Table 3 reports estimates using data aggregated to the weekly level
to capture pollen effects that may persist over the week, such as those arising from deteriorated
sleep quality. It is reassuring that this estimate closely aligns with the baseline estimate in

column (1).

with pollutants such as PM o, which are approximately 10 um. Further, we examine the interaction of pollen with
the arguably most harmful pollutant (PMo). We find minimal evidence substantiating that pollen’s effect is
amplified on days with higher air pollution, likely because pollution levels in Japan are relatively low (Appendix
Table C1 and Figure C2). Note that PM..s data are available only from 2014 onward, and the results are robust to
replacing PMio with PM..s (not shown), as the two measures are highly correlated (correlation = 0.84).

26 Owing to the dense network of weather stations across the country (over 840 weather stations compared with 120
pollen monitoring stations), the distance between the two types of stations is generally short: Over 78% are located
within 8 kilometers (0.5 miles) of each other.

%7 This approach is econometrically similar to a widely used alternative specification in the literature that estimates
equation [1] with an extension of the outcome window to subsequent days (e.g., Deryugina et al. 2019).
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We find that our estimates are robust to alternative specifications with more or less stringent
FEs, including date FEs, ensuring that our results are not driven by specific unobserved seasonal
or regional patterns (Appendix Figure C4). Additionally, our conclusions remain unchanged
under different clustering choices, including two-way clustering by monitoring stations and dates
to additionally account for potential spatial correlation, clustering at the broader prefecture level
(46 prefectures) rather than only at pollen monitoring stations (120 stations), and the use of
spatially clustered standard errors following Conley (1999) (Appendix Table C2). The results
likewise remain stable under alternative functional-form assumptions: Both a log—log
specification and a Poisson pseudo-maximum likelihood (PPML) model, which accommodates
the count nature of accident outcomes, yield estimates consistent with the baseline (Appendix
Table C3).%8

Placebo—. We conduct two placebo exercises to assess whether unobserved seasonal or
regional patterns drive our results. First, when pollen counts are falsely assigned to the same
calendar day in the previous or subsequent year, the resulting estimates become substantially
smaller and statistically insignificant (Appendix Table C4). Second, when we relate logged daily
pollen counts to the daily number of emergency ambulance transports for cancer cases—a
condition unrelated to short-term pollen exposure—we find no discernible pattern (Appendix
Figure C5).%° Collectively, these exercises reinforce that our main findings are not driven by
specific unobserved seasonal or regional trends.

Replication—. Traffic accidents are recorded separately in police records, encompassing
those causing personal injury, and reported to the National Police Agency from 2019 to 2020
(see Appendix D for data specifics). We compare mortality estimates from traffic accidents using
ambulance records—our main data source—with estimates based on police records and find that
the two are similar in magnitude (Appendix Table D1). Although the estimate using police data
appears slightly larger, they are not statistically distinguishable from each other.>° This
underscores the robustness of the pollen effect across various samples gathered by distinct
government agencies with differing crash definitions, thereby strengthening the internal validity
of our findings. Furthermore, this suggests that selection into the ambulance records—arising

from factors such as distance to hospitals, or individuals’ preferences—may not be substantial.

5.4. Heterogeneity

Severity—. Figure 8 illustrates the estimates along with a 95% confidence interval for each

28 PPML estimate converted to the level is similar to the baseline estimate, reassuring us that our results are not
sensitive to zeros in the outcome.

2 Ambulance records include detailed diagnostic information (equivalent to ICD10) starting in 2015.

39 One possible reason for this observation is that police records include all deaths from traffic accidents within 24
hours, unlike ambulance records, which only include deaths occurring at hospital admission.
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severity level. The estimates diminish as the severity level rises, yet remain positive and
statistically significant across all levels, including death/fatality. The estimates for more severe
accidents exhibit a larger magnitude relative to the lower baseline compared to those for less
severe accidents, indicating higher elasticities for more severe accidents. Specifically, the
elasticity for death/fatality (0.013) is roughly double that of minor accidents (0.006).

Other heterogeneity—. The ambulance records contain additional details regarding the
accidents and the individuals involved. Figure 9, using all accident samples, investigates the
heterogeneous treatment effects apart from severity. Panels A and B explore demographic
heterogeneity, focusing on age and gender. Across all age groups and genders, statistically
significant effects are observed, with magnitudes relatively similar to the means shown on the far
right of the figure. The only deviation is a slightly larger effect observed in the elderly (>65),
even when compared to the high baseline mean. This observation aligns with the heightened
vulnerability of the elderly to environmental externalities, such as the relationship between heat,
cold, pollution, and mortality (Carleton and Hsiang 2016; Cohen and Dechezleprétre 2022; Jia
and Ku 2019; Barwick et al. 2024).

Panel C of Figure 9 investigates heterogeneity by accident location. Accidents at home are
also increasing, indicating the challenge of completely avoiding outdoor pollen, which can cling
to clothing (e.g., wool coats) and easily enter indoor spaces. This may also reflect the prolonged
impact of outdoor pollen exposure. Panel D illustrates that pollen’s effect is more pronounced on
weekends compared to weekdays. While individuals have greater flexibility to stay home and
evade exposure on weekends by postponing non-essential trips, those going out might be less
experienced drivers who typically refrain from weekday commutes or individuals taking
recreational trips to unfamiliar destinations, rendering them potentially more susceptible to
heightened pollen exposure risks. Our findings suggest that the latter scenario outweighs the
former in this context.

Over time—. Finally, we divide the 12-year sample period (2008-2019) into four three-year
intervals. Panel E of Figure 9 reveals a slight decrease in sensitivity to pollen-related accidents in
the later periods compared with the earlier ones, likely reflecting advances in medication, as
newer seasonal allergy drugs cause less drowsiness®! and may, therefore, mitigate the risk of
unsafe driving (Appendix Table Al). Nevertheless, the magnitude of this decline is small, and

none of the estimates across the four intervals are statistically distinguishable from one another.

31 Consequently, manufacturers appear less likely to include driving-related restrictions—such as “Driving not
allowed”—a trend that is evident among medications introduced from 1994 to 2017 (Appendix Table A1l).
Consistent with this trend, retail scanner data indicate a substantial rise in the proportion of spending on allergy
drugs that do not prohibit driving—from 25.2% in 2012 to 45.6% in 2019 (Appendix Figure A9).
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6. Avoidance behaviors

Following the persistent negative effect of pollen on accidents discussed in the previous
section, the next natural question is whether this effect already reflects people’s engagement in
avoidance behavior. If people do indeed engage in avoidance behavior and if such behavior
proves effective, we may be understating the true magnitude of pollen-induced accidents, which
would have occurred in the absence of such behavioral responses.

During our sample period, both forecasts and real-time pollen information were widely
available via television, newspapers, and various mobile phone apps, giving people ample
information and time to adopt avoidance behaviors if they wished. Several inexpensive and
effective methods to reduce the risk of temporary pollen exposure and alleviate allergy
symptoms are frequently mentioned on television and in other media. These methods include
wearing particle-filtering masks and glasses, washing hands, avoiding clothing that easily attracts
pollen, taking medication, and refraining from going outdoors (Japan Society of Immunology

and Allergology in Otolaryngology 2021).

6.1. Conceptual framework

Here, we present a simple framework for considering the role of avoidance behaviors. Let
us assume that Accidents = f(Sick, Avoid), where the number of accidents is a function of
sickness level (Sick) and avoidance behaviors (Avoid), or what Deschénes et al. (2017) refer to
as “defensive investment.” Given that the sickness level is influenced by ambient pollen
concentration (Pollen) and avoidance behavior, i.e., Sick = g(Pollen, Avoid),*? substituting it
yields the following equation:

Accidents = f(Pollen, Avoid)

Then, the total derivative can be written as follows (Moretti and Neidell 2011; Neidell 2009;
Deschénes et al. 2017):

dAccidents _ dAccidents 0dAccidents 0Avoid 2]
dPollen ~  dPollen dAvoid OPollen’
) )

L )\ \
T | T

“behavioral” effect “biological” effect effectof avoidance behaviors

where the “behavioral” effect (what we have estimated so far) of pollen on accidents consists of
the “biological” effect of pollen (the first component of the right-hand side (RHS) variable) and

the effect of avoidance behavior (the second component of the RHS variable). The latter is the

32 More precisely, the level of sickness is a function of the dose of pollen one is exposed to, Sick = g(Dose), and
the dose is determined by the ambient pollen concentration (Pollen) and avoidance behavior (Avoid), i.e., Dose =
h(Pollen, Avoid). Substituting this into the first equation gives Sick = g(Pollen, Avoid), as shown in the main
text.
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dAccidents

SAvoid | < 0) and the magnitude of

product of the marginal return to avoidance behavior (

dAvoid
dPollen

avoidance behavior in response to pollen levels ( > O). Because the second component of

the RHS variable is supposed to be negative, the total derivative, which already incorporates
avoidance behavior, is smaller (i.e., underestimated) than the desired partial derivative.>*

Among the many avoidance behaviors, we specifically examine two types that can be
observed using existing data, as complete data on these behaviors are typically not available
(Deschénes et al. 2017). First, using retail scanner data, we examine the purchase of products that
protect against seasonal allergies, such as medications and masks. Second, using cellphone
mobility records, we examine whether people, including allergy sufferers, curtail outdoor
activities, which mainly reduces the risk of outdoor accidents. Further, staying indoors limits the
possible infiltration of pollen and thus simply averts the onset of symptoms; because pollen
grains are relatively large (=30 wm) compared to much smaller particles, such as PM; s, they are

less likely to enter homes if windows and doors are properly closed. In the following, we

dAvoid
dPollen

investigate the extent of these two types of selective avoidance behavior ( ) in our

context.>*

6.2. Purchase of allergy products

Data—. We use retail scanner data, referred to as the “Quick Purchase Report” (QPR),
provided by Macromill, Inc., a marketing firm that possesses one of the largest research panels
on consumer purchasing behavior in Japan (Kuroda 2022). The QPR collects data from
approximately 30,000 monitors to construct a nationally representative panel dataset.’® These
monitors scan all bar-coded items they purchase daily, providing information on the name and
code, price, and quantity of products bought. Additionally, it incorporates certain demographic
details about the monitors, such as zip code, age, gender, family structure, and income category,
which are updated annually. We compare the key features of the widely used Nielsen Homescan
Panel for the United States with those of the QPR and find that the two datasets are highly

comparable (Appendix Table E1). Both are nationally representative household-level consumer

33 For example, Neidell (2009) finds that the “reduced form” effect of ozone for the elderly and children is 40% and
160% smaller, respectively, than the purely “biological” effect.

34 Purchasing allergy products corresponds to the Avoid term in Sick = g(Pollen, Avoid), which lowers the level
of illness and thus indirectly reduces the risk of accidents. By contrast, limiting outdoor activities mainly
corresponds to the Avoid term in Accidents = f(Sick, Avoid), which directly reduces the likelihood of outdoor
accidents (Heft-Neal et al. 2023).

35 QPR monitors are selected in each region to represent the gender, age group, and family structure (marital status
and presence of cohabitants) of the country. To maintain data quality, if unusual scans are detected or if scans are
not observed for several weeks, the monitor is replaced by another monitor with similar characteristics. Thus, the
number of active QPR monitors at any given time is maintained at approximately 30,000, and the total number of
unique QPR monitors during our sample period is 70,795.

22



panels collected using Homescan technology and contain similar purchase information, including
online transactions.>

We extract purchase records for three items: allergy-related medications, allergy-related eye
drops, and masks.” The dataset comprises over 28 million individual-day observations,
encompassing days both with and without purchases, spanning from February to May for the
years 2012 to 2019. To accommodate the potential for stockpiling these products, we aggregate
the data to the person-week level.*® See Appendix Table E2 for the sample’s summary statistics.

Several limitations of this dataset merit acknowledgment. First, while we monitor purchases
of over-the-counter (OTC) medications (e.g., antihistamines and decongestants), prescription
medications are not tracked.*® Second, individuals may purchase these goods in advance of the
pollen season or use leftover medication from prior seasons. Last, information regarding actual
usage is unavailable, a common issue across all retail scanner data.

Results—. We find that weekly spending on allergy-related products rises steadily with
higher average daily pollen levels. This pattern holds for both overall allergy spending and
specific categories, such as medications, eye drops, and masks, each demonstrating a roughly
linear relationship with logged pollen counts (Appendix Figure E1).

Table 4 reports estimates from a variant of equation [1] modified to weekly data. Column
(1) demonstrates that a 10% increase in pollen counts leads to an additional $4.40 (in 103$) in
weekly spending on allergy products. At the national level, this translates to $9.6 million (=
4.40x107%x120/7x127.4 million) per season, where 120 days represent a typical pollen season,
and 127.4 million is the total population of Japan. Columns (2)—(4), which describe individual
products, indicate that the largest increase (relative to the mean) comes from purchases of
medicines.*’

Supplementary analysis—. We also complement the above analysis by using Google
Trends/Twitter data containing the keywords “mask,” “air purifier,” and leading brand names of
allergy medications in Japan to examine whether people are searching for information about

specific protective products. Previous studies show that such searches closely track actual

36 The main differences concern product coverage and detail—while the Nielsen data include some manually
reported non-barcode items and coupon/deal flags, the QPR data cover only JAN-coded goods and lack coupon
information. However, because our analysis focuses on drug purchases, which are very likely barcode-based, the
two datasets can be regarded as essentially equivalent for our purposes.

37 While medications are intended to relieve symptoms (e.g., stop a runny nose), they may not always reduce the risk
dAccidents

dAvoid
38 The weekly analysis provides larger estimates than would be implied by a linear scaling of the daily estimate (not

shown).

39 According to the latest government statistics (MHLW 2022), expenditure on OTC drugs and prescription drugs
for allergies (including SAR) was $0.39 and $1.73 trillion, respectively, suggesting that OTC drugs account for
about 20% of the total expenditure on allergy drugs. An exchange rate of 100 yen/$ is used for simplicity.

40 These results are consistent with previous studies documenting a similar relationship between pollen counts and
OTC allergy medication sales in New York City, United States (Ito et al. 2015) and Japan (Kuroda 2022).

of accidents because they cause drowsiness in some people (i.e., the sign of is unclear for them).
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purchases (Goel et al. 2010). Compared to purchase data, these measures are more likely to
capture contemporaneous behavior, which should be more directly affected by daily fluctuations
in pollen counts. Consistent with this expectation, we find a strong positive relationship between
pollen counts and both search activity and tweet volume for these keywords (Appendix Figure
F1).

6.3. Avoiding going out

Data—. We use cellphone mobility records, referred to as “Mobile Spatial Statistics”
(MSS), provided by NTT DOCOMO, Inc., Japan’s largest mobile phone carrier. MSS provides
hourly population estimates for 500x500-meter mesh cells across Japan, based on location data
from approximately 85 million NTT DOCOMO users (as of March 2022), out of Japan’s total
population of 127 million (Terada et al. 2013).*! While physical mobility data have received
considerable attention in the social sciences since the onset of the COVID-19 pandemic (e.g.,
Google’s COVID-19 Community Mobility Reports), such data have not yet been extensively
utilized for studying avoidance behavior in response to environmental stressors (see Burke et al.
2022).

One potential concern is whether population estimates derived from cell-phone data
accurately reflect actual human mobility. To evaluate this, following Neidel (2009), we obtain
daily admission data from 2008—2019 for three major zoos operated by the Tokyo Metropolitan
Government—namely, Ueno Zoo, Tama Zoological Park, and Inokashira Park Zoo—and
compare these counts with cell-phone—based population estimates for the 500x500-meter mesh
cells adjacent to each zoo’s entrance.*> Across all three facilities, the logged daily attendance is
highly positively correlated with the logged daily population estimates from cellphone mobility
records, indicating that the cell-phone—based measure closely tracks real movement (Appendix
Figure G1).4

Our primary mobility metrics capture the estimated population of a mesh with the highest
number of customer service establishments in the municipality, aiming to identify bustling areas
(e.g., business districts, shopping, and dining areas) that are more likely to reflect the population

engaged in outdoor activities. We opt for the estimated population at 2 p.m. as commercial area

4l Given the sample’s representativeness and the long-time span, this dataset has been widely used, especially for
measuring human mobility during the COVID-19 pandemic (e.g., Kondo 2021; Kuroda et al. 2025).

42 To ensure consistency with the subsequent analysis, we employ the mobility data measured at 2 p.m.

43 Although geographical variation is limited because all three facilities are located within Tokyo, we find that
admissions decline on days with higher pollen levels. However, these results should be interpreted with caution,
considering the limited spatial variation in exposure (based on three monitoring stations) and the limited
representativeness of the sample (Appendix Figure G2 and Table G2).
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populations typically peak around this time (Seike et al. 2015).** We collapse the estimated
population at the emergency response unit level by averaging across all municipalities within the
unit for the period from February 2014 to May 2019. We consider this measure a proxy for
engaging in outdoor activities, termed “outdoor population” hereafter. See Appendix G for
details on the data construction of our mobility metrics.*

Before examining the relationship between pollen load and mobility metrics, we aim to
verify the effectiveness of limiting outdoor activities in reducing the risk of accidents.*¢
Specifically, we regress the number of accidents (our primary outcome) on our mobility metric
using the same FEs and controls as in equation [1] (excluding the logged number of pollen
counts). We find that outdoor population is highly positively correlated with the number of

accidents, indicating that reducing outdoor activity can meaningfully lower accident risk

dAccidents

( Saoid 0), consistent with Heft-Neal et al. (2023), as presented in Appendix Table G2.

Results—. We find no clear association between logged pollen counts and logged outdoor
population on weekdays; however, on weekends, the relationship becomes modestly negative,
suggesting that individuals engage in some avoidance behavior by staying indoors when pollen
levels are high (Appendix Figure G3).

Table 5 presents estimates from equation [1], with the outcome being the logged outdoor
population. Columns (1) and (2) indicate negligible and statistically insignificant estimates for all
days and weekdays. By contrast, column (3) reveals that people tend to avoid crowded areas on
high pollen weekends when they have more flexibility in canceling or rescheduling non-urgent
trips. The elasticity of outdoor population with respect to pollen counts appears non-trivial: —
0.0021 (p-value<0.01), indicating that a 10% increase in pollen concentration results in a 0.021%
decrease in outdoor population.*’

We examine heterogeneity using two key demographic characteristics—namely, age and
sex—and find minimal differences by gender (Appendix Table G4). By contrast, older
individuals do not seem to reduce outdoor activities even on weekends, consistent with the larger

pollen-related effects on accidents observed in Figure 9. This pattern suggests scope to promote

4 We also explore alternative methods for constructing measures of outdoor mobility, specifically focusing on the
disparity between the daytime (2 p.m.) and nighttime (4 a.m.) populations, as well as the ratio of daytime to
nighttime populations. The results are qualitatively similar (not shown), primarily because nighttime population
remaining relatively stable over time, therefore adds little information after controlling for unit fixed effects.

45 As in other studies of physical activity, we cannot distinguish between two possibilities for staying indoors:
people may be extremely ill and need to stay home, or they may show some form of avoidance.

46 Similarly, we cannot test whether the purchase of allergy products effectively reduces accidents because the
regional sampling units in the retail scanner data are only ten divisions (albeit nationally representative) and do not
correspond to the detailed regional units in the ambulance records (N= 705).

47 Estimates for other weather covariates align with expectations: Outdoor population rises with higher temperatures
and falls with stronger winds and longer duration of darkness (Appendix Table G3).
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avoidance behaviors within this subgroup.*®

In summary, our findings suggest that people indeed engage in avoidance behaviors by
purchasing allergy products and limiting outdoor activities, particularly on weekends. These
behaviors might lead to an underestimation of the true impact of pollen-induced accidents if they

prove effective.

7. Projecting damages due to climate change

This section projects the estimated effects forward to predict increases in allergy-induced
accidents under future climate change.*’ Table 6 summarizes the projected damages based on the
“business as usual” scenario (RCP 8.5), which predicts a 4.1°C increase in summer temperatures
in Japan from 2076 to 2095 (MEXT and JMA 2020). According to the relationship between
summer temperature and pollen counts (panel A of Figure 1), this temperature rise could result in
an additional daily pollen count of 686 grains/m? (= 167.4x4.1), corresponding to a 0.529
increase in logged pollen counts from the mean of 984 grains/m>. We then multiply the estimates
from panel A of Figure 8 for each severity level by 0.529, then by 120 (days per pollen season),
and finally by 127.4 (the total population) to calculate the additional annual accidents, as shown
in row (1). Row (1) indicates that a 4.1°C increase in the mean summer temperature is expected
to raise the number of pollen-induced deaths/fatalities, severe, moderate, and minor accidents by
30, 216, 541, and 1,036, respectively, totaling 1,823 additional annual accidents.

We convert additional accidents into monetary terms by multiplying the resulting accident
counts in row (1) by the average accident costs from Biinnings and Schiele (2021) in the United
Kingdom, as reported in row (2).>° Row (3) displays pollen-induced accidents resulting in fatal,
severe, moderate, and minor injuries, corresponding to actual monetary costs of $96.3 million,
$79.1 million, $20.6 million, and $39.6 million, respectively. This results in a total annual
societal cost of $236 million, as shown in row (4).°! Interestingly, this figure far exceeds the

budget for the Japanese Forestry Agency’s pollen reduction program, which is currently $1.1

48 By contrast, when examining the purchase of allergy products, we find no meaningful differences in pollen’s
effect across age or gender groups (Appendix Table E3).

4 We acknowledge that we are making two strong assumptions here: (i) the level of protective technologies remains
the same; (ii) the marginal treatment effect of an unanticipated “weather” shock documented so far is identical to the
marginal effect of an anticipated “climate” shift. Previous studies have taken a similar approach when projecting the
impact of these gradual changes on income (Deryugina and Hsiang 2014), mortality (Deschénes and Greenstone
2011), amenity values (Baylis 2020), and other outcomes.

50'We determine the expected additional costs to be $3.2 million for fatal accidents (those resulting in death),
$365,000 for accidents resulting in serious injury, and $38,000 for accidents resulting in both moderate and minor
injuries (Biinnings and Schiele 2021). For simplicity, an exchange rate of 1.5 $/£ is used. Unfortunately, to the best
of our knowledge, there are no appropriate estimates of accident costs at each severity level in Japan.

51 Panel B of Table 6, which uses the number of days with temperatures above 30°C in the previous year (panel B of
Figure 1), yields estimates of social costs that are about 40% larger than those in panel A of Table 6, which uses
maximum temperature.
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million (Forest Agency 2021).%2

We acknowledge that our simple damage projection calculation is likely a conservative
estimate because (i) we exclude potential extension of the pollen season driven by hotter
summers, (ii) we limit the analysis to approximately four months of peak pollen season, (iii) we
cannot capture accidents occurring at both extremes of severity (i.e., minor cases not requiring
ambulance transport and immediate deaths), and (iv) we use a relatively conservative value of a
statistical life (Biinnings and Schiele 2021) rather than a more commonly used value.>?

Finally, to the extent that expenditures on allergy products can be considered defensive
expenditures rather than just another health expenditure (i.e., a transfer from individuals to
firms), such expenditures should be included in the social cost (Deschénes et al. 2017). Based on
the calculation in Section 6.2, a 0.529 (instead of 0.1) increase in recorded pollen counts because
of elevated temperatures leads to $50.8 million (= $9.6 million x0.529/0.1) in additional
spending on allergy products. This figure is not trivial compared to the $236 million associated
with pollen-induced accidents calculated above, suggesting the empirical importance of

defensive spending.

8. Discussion and Conclusion

This study represents the first assessment of the impact of pollen exposure on accident
likelihood, using Japanese archived ambulance records spanning from 2008 to 2019. We find
that exposure to heightened pollen levels escalates the incidence of all accident types. Our
findings align with established clinically based studies, which have documented the adverse
cognitive effects of pollen exposure. The long-term implications of these effects have not been
previously evaluated in real-world settings, except in the realm of children’s academic
performance. Moreover, the nearly ubiquitous effect of pollen exposure across various observed
demographics, coupled with its relatively enduring effects over time, suggests a potentially
generalizable underlying mechanism linking pollen exposure to accidents across contexts.

Our analysis of internet search activities and social media posts for pollen-related topics
indicates that individuals have a good awareness of daily pollen levels. Additionally, further
analysis of retail scanner data and cellphone mobility records reveals that people actively engage
in avoidance behaviors. These behaviors include purchasing products like medications and
masks to safeguard against seasonal allergies, and in some cases, curtailing outdoor activities

during weekends to mitigate the risk of pollen exposure and associated allergy symptoms.

52 Because of the growing demand for government intervention, the current administration has decided to increase it
to $61 million in fiscal year 2024.

53 For example, the central estimate of the value of statistical life used by the Environmental Protection Agency in
the United States is $9.8 million in 2021, and Smith (2016) similarly uses $4 million to $10 million per fatality, both
of which are larger than the $3.2 million figure we use.
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These results suggest that reliance on individual self-protection alone may fall short of
mitigating pollen-related harm. This study is, to the best of our knowledge, the first to document
a causal relationship between pollen exposure and accident risk in a real-world setting; hence,
individuals may not fully appreciate this risk or incorporate it into their decision-making,
resulting in suboptimal avoidance behavior.>* Accordingly, clearly disseminating information
about these risks—including the evidence presented in this study—constitutes a critical first step,
particularly considering the abundance of pollen-related information already available in various
forms in Japan.>’

Furthermore, considering the negative externalities associated with accidents and the
substantial social costs of pollen-induced incidents, additional government involvement may be
warranted. Broadly, government interventions can be classified into the following two types: ex-
post interventions (adaptation) and ex-ante interventions (mitigation). Ex-post measures aim to
reduce individuals’ exposure to pollen or lessen the harm associated with exposure, whereas ex-
ante measures target the source of pollen “production,” such as trimming pollen-emitting trees or
replacing them with low-pollen-emitting varieties.

A feasible, rapidly implementable ex post intervention is the provision of medication
subsidies. Although recently released allergy medications tend to contain fewer ingredients that
cause drowsiness (Appendix Table A1), time-series patterns of spending on seasonal allergy
drugs (Appendix Figure A8) reveal that such medications accounted for less than 50% of total
allergy-related expenditures in 2019. This suggests substantial scope for increasing the use of
less drowsy medications by offering subsidies or reducing prices.>®

Another promising ex-post strategy is to launch a public information campaign to reduce
exposure to high pollen levels, for example, by issuing pollen alerts to notify the public when
pollen dispersal is high. On days with an active alert, the government could provide standardized
guidance to firms and the public on appropriate responses. For the public, this guidance might
include behavioral recommendations, such as wearing masks, using air purifiers, taking public
transportation, and avoiding nonessential outdoor activities. As older adults—who are at greater

risk of pollen-related accidents—are less likely to engage in avoidance behaviors, providing

54 Thus, the current state of protective behavior is unlikely to reflect people’s revealed preferences, which already
incorporate potential risk (Leard and Roth 2019).

55 This distinction is important for policy design. When access to information is limited, governments should focus
on expanding the dissemination of pollen information (Barwick et al. 2024; Jha and Nauze 2022). When access is
already widespread, as in our setting, the challenge instead lies in capturing attention. In such cases, policy should
emphasize more effective ways to raise awareness of risks and encourage behavioral change. Prior studies show that
smog and ozone alerts can successfully induce precautionary behaviors that reduce exposure (e.g., Anderson et al.
2022; Cutter and Neidell 2009).

56 For example, Kohou Logistics (Tokyo), a transportation firm, has distributed over-the-counter tablets and other
medications at no cost to truck drivers affected by hay fever since fiscal year 2019 (Yomiuri Shimbun 2023). See
also Inuma and Lee (2024) “Japan’s answer to seasonal allergies: A subsidized tropical escape” in the Washington
Post.
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timely alerts along with clear recommendations seems to be a particularly effective way to
reduce accidents.

Furthermore, governments may issue guidelines encouraging firms to implement adaptive
measures for their employees, thereby helping mitigate productivity losses associated with pollen
exposure. For example, on days when a pollen alert is in effect, firms could allow temporary
remote work or grant short-term sick leave to employees with clinically significant symptoms.
Our findings indicate that individuals substantially curtail outdoor activities only on weekends,
suggesting a latent willingness to avoid high-pollen environments during weekdays as well. The
primary barrier may be the opportunity cost of missing work, highlighting the importance of
employer-supported flexible work arrangements in enabling effective adaptation.

Ex-ante interventions instead aim to curb pollen production at the source.’’” A negative
externality emerges when pollen-producing trees are planted for industrial or commercial reasons
by decision-makers who do not bear the resulting health damages. This misalignment provides a
clear rationale for government intervention. One approach is to mandate the use of low-pollen
tree species and levy a surcharge on planting agents and landowners who do not comply, thereby
inducing them to internalize the social costs of pollen emissions.*

In sum, noteworthily, the social costs that we estimate likely represent only the tip of the
iceberg of the broader societal burdens associated with rising pollen counts. Although we remain
agnostic regarding the underlying mechanisms, to the extent that pollen exposure impairs
cognitive function, any daily activity requiring normal cognitive alertness and decision-making
capabilities may be affected. Therefore, quantifying these potential damages is essential for
developing a comprehensive understanding of the full social costs associated with elevated

pollen concentrations.

57 However, implementing these measures may take considerable time and entail costs associated with reductions in
forests” water conservation functions, including water storage, flood mitigation, and water purification.
Consequently, ex-post interventions can function as effective second-best remedies in the short run.

58 For example, Germany has issued guidelines encouraging the use of low-allergenic tree species (Bergmann et al.
2025)
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Figure 1—Pollen count and temperature from the previous summer
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Notes: The sample comprises station years (N=1,440) from all pollen monitoring stations (N=120) over the period 2008 to
2019 (12 years). The graphs display binscatter plots illustrating the relationship between the average (24-hour cumulative)
daily pollen counts (grains/m*) from February to May (on the x-axis) and the average maximum temperature (in °C) in panel
A, and the number of days the temperature exceeded 30°C in July and August of the previous summer in panel B (on the x-
axis). These relationships are shown after controlling for the fixed effects of the pollen monitoring stations. In panel A, the
slope is 167.4 (t-stats=11.16), indicating that a one-degree increase in the maximum temperature in the previous summer
corresponds to a 167.4 grains/m? increase in daily pollen counts. Similarly, in panel B, the slope is 23.7 (t-stats=11.18),
suggesting that for every ten additional hot days above 30°C in the previous summer, daily pollen counts increase by 237
grains/m>. The mean and median daily pollen counts from February to May during 2008 to 2019 across 120 monitoring stations
are 955.6 and 712.5 grains/m?, respectively.

Figure 2—Pollen monitoring stations
A. Location of pollen monitoring stations B. Distance to the pollen monitoring stations
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Notes: Panel A displays the locations of all pollen monitoring stations as of 2019. Japan hosts 120 pollen stations. On average,
each of Japan’s 46 prefectures has 2 to 3 stations, except for Okinawa. Due to its distinct climate, Okinawa, the southernmost
prefecture, lacks any monitoring stations as pollen is not observed there. Panel B illustrates the cumulative distribution of the
distance from the centroid of the units (N=705) to the nearest pollen monitoring station (N=120). The vertical dotted line
represents 48 km (30 miles), a distance referenced by Chalfin et al. (2019). Notably, 90.2% of the stations (636 out of 705)
fall within this threshold.
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Figure 3—Spatial variation in pollen counts
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Notes: This figure presents the average pollen counts (grains/m?) from 2008 to 2019 across municipalities. Notably,
Okinawa Prefecture, the southernmost island in Japan with a distinct climate, lacks a pollen station due to minimal pollen
observed.
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Figure 4—Temporal variation in pollen counts from Ibaraki Prefecture
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Notes: The graphs show daily variations in pollen counts (grains/m®) from 2017 to 2019 at three monitoring stations
in Ibaraki Prefecture, located northeast of Tokyo within the Kanto region (see Appendix Figure A2).
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Figure 5—Daily pollen counts and weather conditions
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Notes: This figure extracts data from Station A in 2019 from Figure 4, supplements it with the average temperature,
and color-codes days with any recorded precipitation.

Figure 6—Pollen and symptom-related Google search index
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Notes: The sample is derived from Google Trends data, with observations at the prefecture-per-day level. Panel A
illustrates time-series patterns of average daily pollen counts (grains/m*) and the Google search index for symptom-
related keywords in 2018 on a national scale. Symptom-related keywords include “runny nose,” “nasal congestion,”
“sneezing,” and “itchy eyes.” June is omitted because only 4 stations in Hokkaido (Japan’s northernmost island) were
still active in June. Panel B displays binscatter plots illustrating the relationship between logged daily pollen counts
(grains/m?, on the x-axis) and the Google search index for the mentioned keywords (on the y-axis), after controlling
for month-by-year, month-by-prefecture, and day-of-week fixed effects, alongside weather covariates (precipitation,
temperature, wind speed), darkness, and logged population. Estimates are weighted by the population in each
prefecture per year. See Appendix Figure B1 for similar plots regarding pollen allergy-related keywords, exhibiting
similar patterns.
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Figure 7—Pollen and the number of accidents
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Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per
day level (N=970,309). A total of 705 units are available. The graphs display binscatter plots illustrating the
relationship between logged daily pollen counts (grains/m?, on the x-axis) and the daily cases per million people for
all accidents (panel A) and specific accident types in panels B to D (on the y-axis): traffic accidents (panel B), work-
related injuries (panel C), and other accidents (panel D), after controlling for unit, month-by-year, month-by-
prefecture, and day-of-week FEs, alongside weather covariates (precipitation, temperature, wind speed), darkness,
and logged population. The shares of traffic accidents (panel B), work injuries (panel C), and other accidents (panel
D) are 37.6%, 3.5%, and 55.8%, respectively. Estimates are weighted by the population in each unit.
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Figure 8—Treatment effects by severity
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Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per
day level (N=970,309). A total of 705 emergency response units are available. The plots exhibit estimates and 95%
confidence intervals of treatment effects of logged daily pollen counts from equation [1]. Standard errors are clustered
at the pollen monitoring station level. The dependent variables are the number of daily cases per million people
categorized by severity level. Severity is assessed by physicians upon hospital admission, with “severe” accidents
requiring over three weeks of hospitalization and treatment, “moderate” necessitating hospitalization under three

weeks, and “minor” not requiring hospitalization. The mean represents the daily accident cases per million population.

Elasticity (x100) measures the change in outcome associated with a 100% increase in pollen counts divided by the
mean times 100. Estimates are weighted by the population in each unit.
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Figure 9—Other heterogeneous treatment effects
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Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per
day level (N=970,309). A total of 705 emergency response units are available. The plots exhibit estimates and 95%
confidence intervals of heterogeneous treatment effects of logged daily pollen counts from equation [1]. Standard
errors are clustered at the pollen monitoring station level. The dependent variables are the number of daily accident
cases per million people using all accident data. The mean represents the daily cases per million population. Elasticity
(x100) measures the change in outcome associated with a 100% increase in pollen counts divided by the mean times
100. Estimates are weighted by the population in each unit.
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Table 1—Summary statistics

Share
Variables within Obs Mean Std.dev. Min Max
category

A. Outcomes (per 1,000,000 per day)
All accidents 970,309 33.03 28.23 0 5,091
Type: Traffic accidents 37.6% 970,309 12.41 16.09 0 5,091
Type: Work-related injuries 3.5% 970,309 1.15 3.87 0 1,367
Type: Sports injuries 2.6% 970,309 0.86 3.24 0 1,195
Type: Fire accidents 0.5% 970,309 0.17 2.10 0 2,612
Type: Other accidents 55.8% 970,309 18.44 17.77 0 2,447
Severity: Death/Fatal 0.9% 970,309 0.30 2.11 0 943
Severity: Severe 6.2% 970,309 2.05 6.07 0 1,572
Severity: Moderate 27.4% 970,309 9.05 11.90 0 1,958
Severity: Minor 65.4% 970,309 21.58 20.65 0 4,570
Ages: 0-24 years 20.5% 970,309 6.34 9.44 0 2,112
Ages: 2544 years 15.0% 970,309 4.61 7.64 0 2,186
Ages: 45—64 years 18.8% 970,309 5.81 8.90 0 2,637
Ages: 65 years and older 45.7% 970,309 14.09 15.98 0 2,695
Gender: Male 53.3% 970,309 15.88 17.55 0 4,769
Gender: Female 46.7% 970,309 13.91 15.82 0 2,366
Location: Roads 44.9% 970,309 8.73 12.66 0 198
Location: Home 34.0% 970,309 6.61 9.90 0 82
Location: Public space 18.1% 970,309 3.51 5.73 0 51
Location: Workplace 3.0% 970,309 0.58 1.14 0 58

B. Regressors (per day)
Pollen counts (grains/m?) 970,309  984.34 2135.26 0 55,104
Logged (Pollen counts) 970,309 0.16 0.43 0 10
Precipitation (mm) 970,309 11.90 6.14 0 28
Average temperature (‘C) 970,309 2.93 1.39 0 16
Average wind speed (m/s) 970,309 10.48 1.28 7 13
Darkness (hours) 852,948 2.20 2.16 0 521
SOz (ppb) 846,719 6.14 10.07 0 307
NO:2 (ppb) 846,659 15.11 9.60 0 88
CO (0.1ppm) 848,798 4.02 1.84 0 61
OX (ppb) 850,847 36.76 11.51 0 120
PMo (ug/m?) 850,577 20.04 11.14 0 299

Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per
day level. A total of 705 emergency response units are available, with population weights applied. The sum of shares
within each category should equal 100%. Pollution data have been available since 2009.
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Table 2—Main results: Accidents

B. By type
aéti(iﬂts Traffic :Vel(:l?gc-l Sports Fire Other
accidents injuries injuries accidents  accidents
©) 2) A3) “4) ©) (6)
In(pollen counts) 0.231%** 0.079%**  0.012***  0.007**  0.006***  0.127***
(0.020) (0.012) (0.002) (0.003) (0.002) (0.016)
R-squared 0.46 0.24 0.06 0.08 0.00 0.37
N 970,309 970,309 970,309 970,309 970,309 970,309
N of units 705 705 705 705 705 705
N of clusters 120 120 120 120 120 120
Mean of dep. var 33.03 12.41 1.15 0.86 0.17 18.44
Elasticity (x100) 0.70 0.64 1.04 0.81 3.53 0.69
Share 100% 37.6% 3.5% 2.6% 0.5% 55.8%
Unit FE X X X X X X
Day-of-week FE X X X X X X
Month-by-year FE X X X X X X
Prefecture-by-month FE X X X X X X

Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per
day level (N=970,309). A total of 705 emergency response units are available. The dependent variable is the number
of daily cases per million people for each type of accident. Estimates from equation [1] are reported along with
standard errors clustered at the pollen monitoring station level in parentheses. In addition to the fixed effects listed
in the table, weather covariates (precipitation, temperature, wind speed), darkness, and logged population are
included. Estimates are weighted by the population in each unit. The mean represents the number of daily accident
cases per million population. Estimates are weighted by the population in each unit. Elasticity (x100) measures the
change in outcome associated with a 100% increase in pollen counts divided by the mean times 100. Significance
levels: *** p<0.01, ** p<0.05, * p<0.10.
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Table 3—Robustness: Accidents

(1) ) 3) “4) 6] (6) (7 (®) ©) (10)
Pollen measures Additional controls Measurement errors Others
. Limit
Weighted . . Collapse
average of  Drop zero ()+Add Units stations Add 2016- data at the
. (1)*Add temperature within 48  within 8 . Kkl
Baseline nearby pollen . . 2019 Unweighted weekly
. pollution & rain km of km of level
three observations . . : Tokyo cve
. Interactions stations weather
stations .
stations
In(pollen counts) 0.231%** 0.234%** 0.249%** 0.220%**  (.205%** 0.229%**  ().233%** 0.216%** 0.402%** 0.213%**
(0.020) (0.021) (0.021) (0.022) (0.020) (0.020) (0.024) (0.023) (0.066) (0.036)
R-squared 0.46 0.46 0.46 0.47 0.46 0.48 0.37 0.46 0.33 0.85
N 970,309 970,309 962,255 814,578 970,309 872,227 733,552 970,789 970,309 147,066
Unit FE X X X X X X X X X X
Day-of-week FE X X X X X X X X X
Month-year FE X X X X X X X X X
Month-prefecture FE X X X X X X X X X
Year-prefecture FE X
Week-unit FE X

Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per day level. A total of 705 emergency response units are
available. Estimates from the variant of equation [1] are reported along with standard errors clustered at the pollen monitoring station level in parentheses. Column (1)
replicates the results from Table 2 (baseline) for ease of comparison. Column (2) employs daily pollen counts constructed by the inversely weighted average of three nearby
stations as the main regressor. Column (3) excludes zero pollen counts (0.83%) and takes a logarithm without adding 1. Column (4) introduces air pollution covariates (SO,
NO,, CO, OX, PM ) for the period spanning April 2009 to April 2019, if such data are available, and column (5) includes the full interaction of temperature and precipitation.
Column (6) limits to units located within 48 kilometers of pollen monitoring stations. Column (7) limits the sample to observations linked to pollen stations located within 8
kilometers of weather stations. Column (8) includes data from Tokyo for the years 2016-2019. Column (9) employs unweighted ordinary least squares (OLS). Column (10)
aggregates the data to the weekly level. All specifications include unit, month-by-year, month-by-prefecture, and day-of-week fixed effects, weather covariates (precipitation,
temperature, wind speed), darkness, and logged population, except for column (10), which includes year-by-prefecture and week-by-unit fixed effects. Estimates are weighted
by the population in each unit. Significance levels: *** p<0.01, ** p<0.05, * p<0.10.
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Table 4—Avoidance behaviors: Purchasing allergy products

B. By category
A. Total
Medications  Eye drops Masks
1) ) A3) “4)
In(pollen counts) 44.002%** 24,521 %** 13.143%%* 6.429%**
(2.545) (1.428) (0.969) (0.824)
R-squared 0.006 0.004 0.003 0.002
N 4,303,417 4,303,417 4,303,417 4,303,417
N of individuals 70,795 70,795 70,795 70,795
Mean of dep. var (in 107$) 295.78 109.94 103.41 82.52
Share 100% 37% 35% 28%
Municipality FE X X X X
Year-prefecture FE X X X X
Week FE X X X X

Notes: The sample is derived from retail scanner data from February to May for the period 2012 to 2019, with
observations at the person per week level (N=4,303,417). The dependent variable is the weekly expenditure (in 10
$) for each allergy product. An exchange rate of 100 yen/$ is applied. Estimates from the variant of equation [1] are
reported with standard errors clustered at the pollen monitoring station level in parentheses. In addition to the fixed
effects listed in the table, weather covariates (precipitation, temperature, wind speed), and darkness are included.
Significance levels: *** p<(0.01, ** p<0.05, * p<0.10.
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Table 5—Avoidance behaviors: Avoiding going out

Outcome: logged outdoor population

A. All B. By type of day
Weekdays Weekends
(1) () 3)
In(pollen counts) -0.0005 0.0000 -0.0021*%**
(0.0006) (0.0006) (0.0007)
Rainfall (base: no rainfall)
<1l mm -0.0061 *** -0.0059%** -0.0047%*
(0.0013) (0.0011) (0.0019)
I mm< & <2 mm -0.0167%** -0.0144%** -0.0208***
(0.0035) (0.0024) (0.0080)
>2 mm -0.0167%** -0.0150%** -0.0249%x**
(0.0045) (0.0041) (0.0082)
R-squared 0.98 0.99 0.99
N 478,853 343,454 135,399
Unit FE X X X
Day-of-week FE X X X
Month-by-year FE X X X
Prefecture-by-month FE X X X

Notes: The sample is derived from cellphone mobility records from February to May for the period 2014 to 2019,
with observations at the unit per day level. See Appendix G for the data construction. A total of 705 emergency
response units are available. Estimates from equation [1] are reported along with standard errors clustered at the
pollen monitoring station level in parentheses. The dependent variable is the logged daily outdoor population at 2
p-m. In addition to the FEs and weather covariates in the table, we include mean wind speed, darkness, and logged
population. Estimates are weighted by the population in each unit. See Appendix Table G3 for estimates of all other
weather covariates. Significance levels: *** p<0.01, ** p<0.05, * p<0.10.
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Table 6—The impact of climate change under the “business as usual” scenario

A. Maximum temperature

B. Number of days above 30 C

(+4.1°C) (+48.6 days)
Severity level Death/fatal ~ Severe = Moderate  Minor Death/fatal ~ Severe =~ Moderate  Minor
(1) Increase in accidents per year 30.1 216.3 540.5 1,036.5 44.1 316.8 791.6 1,518.1
(2) Social cost per case (in $) 3,196,383 365,453 38,177 38,177 3,196,383 365,453 38,177 38,177
(3) Social cost per year (in million $) 96.34 79.06 20.63 39.57 141.11 115.79 30.22 57.95
(4) Total social cost per year (in million $) 235.6 345.1

Notes: Panel A uses the relationship between pollen counts and maximum temperature (panel A of Figure 1), while panel B employs the relationship between
pollen counts and the number of days with a temperature above 30°C (panel B of Figure 1). The total social cost per year in row (4) for panel A is calculated as
follows: A 4.1°C increase in mean temperature from the “business as usual” scenario (RCP 8.5) results in a daily increase in pollen counts of 686.3 (calculated as
167.4x4.1), where 167.4 is derived from panel A of Figure 1. This leads to a logged increase in pollen counts of 0.529 from the mean (calculated as log(984.34 +
686.3) - 10og(984.34)). Row (1) is the product of each severity level estimate from Figure 8 and 0.529, then multiplied by 120 days (February to May) of the typical
pollen season in Japan, and finally multiplied by 127.4, which represents the average population (in millions) in Japan during the period 2008 to 2019. The values
in row (2) are sourced from Biinnings and Schiele (2021) in the United Kingdom, using an exchange rate of 1.5 $/£. Row (3) is the product of row (1) and row
(2). Row (4) is the summation of row (3) across all severity levels. Similarly, for panel B, increasing the number of days with a temperature above 30°C by 48.6
days from the “business as usual” scenario (RCP 8.5) leads to a daily increase in pollen counts of 1151.8 (calculated as 23.7x48.6), where 23.7 comes from panel
B of Figure 1. This results in a logged increase in pollen counts of 0.775 (calculated as log(984.34+1151.8)- log (984.34)). The calculations for rows (1), (3), and
(4) follow the same procedure.
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Appendix A: Additional figures and tables

Figure A1—Time series of pollen counts and maximum temperature
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Notes: The graphs illustrate the relationship between the average daily pollen counts (grains/m?) from February to May
and the average maximum temperature (in ‘C) in panel A and the number of days the temperature exceeded 30°C in panel
B during July and August of the preceding summer. Data were collected from 120 pollen monitoring stations for the
period 2008 to 2019.

Figure A2—Pollen season calendar in Japan
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Notes: The figure displays the pollen dispersal season in Japan, for five selected pollen types: Japanese cedar, cypress,
white birch, Poaceae, and ragweed—across six regions (Hokkaido, Tohoku, Kanto, Tokai, Kansai, and Kyushu). The
height of the bars signifies the average pollen quantity.
Source: Kishikawa, R., E. Koto, C. Oshikawa, N. So, A. Sugiyama, A. Saito, et al. 2020. “Pollen Calendar of Important
Allergenic Airborne Pollen in Japan.” Japanese Journal of Palynology, 65(2): 55-66.

A2



Figure A3—Pollen forecast for the current day and week
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Notes: The graphs display pollen levels as reported on television and a website (https://tenki.jp/) on a typical day during
Japan’s pollen season. Panel A illustrates the current day’s pollen levels at various locations, while panel B presents the
forecasted pollen levels for the week (March 1 to March 6, as of February 28, 2021) at different locations from south to
north Japan, indicating varying magnitudes. We have obtained permission to translate the original Japanese content into
English.

Sources: Japan Weather Association (2022). https://tenki.jp/ (in Japanese)

Figure A4—Distribution of the daily pollen counts
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Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per day
level (N=970,309). A total of 705 emergency response units are available. Panel A displays the daily pollen counts, while
panel B illustrates their logged values (grains/m?). To accommodate zero pollen counts, we add one (0.83%) before taking
the logarithm in panel B. In panel A, any daily pollen count exceeding 6,000 (3.06%) is excluded from the graph.
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Figure AS—Temporal variation in pollen counts from Niigata Prefecture
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Notes: The graphs display the daily variation in pollen counts (grains/m®) for the period 2017 to 2019 at three
monitoring stations in Niigata Prefecture, situated on the northern coast of Honshu, the main island of Japan.
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Figure A6—Winter temperature and the peak of pollen seasons
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Notes: The sample encompasses all pollen monitoring stations from 2008 to 2019. The figure displays binscatter plots
illustrating the relationship between the number of days from January 1st to the peak of the pollen season (on the y-axis)
and the average maximum temperature (in “C) in January of each year (on the x-axis), after controlling for the pollen
monitoring station fixed effects. The peak is determined as the initial day of the year when pollen counts exceed 5,000
grains/m?3, roughly corresponding to the 96th percentile of pollen counts.
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Figure A7—Identifying variation in pollen counts
A. Residual variation in logged daily pollen counts, by prefecture
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B. Residual variation in logged daily pollen counts, by year
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Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per day
level (N=970,309). A total of 705 emergency response units are available. The graphs display the interquartile range and
interdecile range of residual variation in logged daily pollen counts (grains/m?) by prefecture (panel A) and by year (panel
B). With a total of 46 prefectures (excluding Okinawa Prefecture, lacking a pollen monitoring station), residuals are
computed after regressing logged daily pollen counts on all controls in equation (1), including unit, month-by-year,
month-by-prefecture, and day-of-week fixed effects, alongside weather covariates (precipitation, temperature, wind
speed), darkness, and logged population. Estimates are weighted by the population in each unit.
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Figure A8—Time series of expenditures for seasonal allergy medications (by type)
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Notes: The sample is derived from retail scanner records from February to May for the period 2012 to 2019. The figure
displays the weekly expenditure (in 107 $) per individual for two categories of seasonal allergy medications: “No specific
mention of driving” and “Driving not allowed,” showcased on the left y-axis. Concurrently, the proportion of the former
type is illustrated on the right y-axis throughout the period from 2012 to 2019. See Appendix Table A1 for the subsets
corresponding to the two drug types. An exchange rate of 100 yen/$ is applied.

Table A1—List of medications for seasonal allergies

Brand name Brand name Year of Mention of driving

in Japanese in English release

TLOFY Alesion 1994 Driving not allowed
I/NRTIL Evastel 1996 Driving not allowed
DILTVY Zyrtec 1998 Driving not allowed

F)A Talion 2000 Driving not allowed

TLIS Allegra 2001 No specific mention of driving
rroyy Allelock 2001 Driving not allowed

92)F Claritin 2002 No specific mention of driving
HAHIL Xyzal 2010 Driving not allowed
TA4LTS Dellegra 2013 No specific mention of driving
ES/7 Bilanoa 2016 No specific mention of driving
THLYIAX  Desalex 2016 No specific mention of driving
WINDq Rupafin 2017 Driving not allowed

Notes: The table presents brand names of allergy medications utilized for seasonal allergy treatment, indicating the year
of release and any special advisories regarding driving post-medication consumption. Medications shaded in gray lack
explicit instructions regarding driving. Note that our accident data primarily covers the period from 2008 to 2019.

A7



Appendix B: Symptoms of seasonal allergies

Figure B1—Daily pollen counts and Google Trends

A. Time series B. Binscatter plot
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Notes: The sample is derived from Google Trends data, with observations at the prefecture-per-day level. Panel A
illustrates the time-series patterns of average daily pollen counts (grains/m*) and Google search index for pollen allergy-
related and symptom-related keywords in 2018 on a national scale. See Appendix Table B1 for the list of search terms
within each category. June is omitted because only four stations in Hokkaido (the northernmost island of Japan) were
still active in June. Panel B presents the binscatter plots illustrating the relationship between logged daily pollen counts
(grains/m?, on the x-axis) and the Google search index for the same keywords (on the y-axis), after controlling for month-
by-year, month-by-prefecture, and day-of-week fixed effects, alongside weather covariates (precipitation, temperature,
wind speed), darkness, and logged population for the period 2016 to 2019 (N= 21,551). Estimates from the variants of
equation [1], where unit fixed effects are replaced by prefecture fixed effects, are reported in the box. Standard errors
clustered at the prefecture level are reported in parentheses. Estimates are weighted by the population in each prefecture
per year. Significance levels: *** p<0.01, ** p<0.05, * p<0.10.
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Figure B2—Daily pollen counts and tweets

A. Time series B. Binscatter plot
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Notes: The sample is derived from Twitter data, with observations at the prefecture-per-day level. Panel A presents the
time series patterns of the average daily pollen counts (grains/m?) and the number of tweets for pollen allergy-related
and symptom-related keywords in 2018 on a national scale. See Appendix Table B1 for the list of search terms within
each category. June is omitted because only four stations in Hokkaido (the northernmost island of Japan) were still active
in June. Panel B displays the binscatter plots illustrating the relationship between logged daily pollen counts (grains/m?,
on the x-axis) and the number of tweets for the same keywords (on the y-axis), after controlling for month-by-year,
month-by-prefecture, and day-of-week fixed effects, alongside weather covariates (precipitation, temperature, wind
speed), darkness, and logged population for the period 2016 to 2019 (N=21,551). Estimates from the variants of equation
[1], where unit fixed effects are replaced by prefecture fixed effects, are provided in the box. Standard errors clustered at
the prefecture level are enclosed in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.10.
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Figure B3—Binscatter plot of pollen counts and tweets: Sleep-related
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Notes: The sample is derived from Twitter data for the period 2016 to 2019, with observations at the prefecture per day
level (N=21,551). The graphs display binscatter plots illustrating the relationship between logged daily pollen counts
(grains/m?, on the x-axis) and the frequency of tweets containing the terms “Hard time falling asleep” and “Feeling sleepy”
(on the y-axis), after controlling for month-by-year, month-by-prefecture, and day-of-week fixed effects, alongside
weather covariates (precipitation, temperature, wind speed), darkness, and logged population. See Appendix Table Bl
for the categorized list of search terms. Estimates from the variants of equation [1], where unit fixed effects are replaced
by prefecture fixed effects, are provided in the box. Standard errors clustered at the prefecture level are enclosed in
parentheses. Significance levels: *** p<(0.01, ** p<0.05, * p<0.10.

Table B1—List of search terms for symptoms

Category #  Categories Japanese English
Common for Google Trends and Tweets

1 Pollen allergy Vi sal Pollen
TERIE Pollen allergy
A XAERy Japanese cedar pollen

2 Symptoms K Runny nose
SEB3FY Nasal congestion
<L Sneezing
H DI Itchy eyes

Only for Tweets (sleep-related)
3 Sleeplessness BT, ol n Having a hard time

G, LR falling asleep
RNV, Rie/gn
4 Sleepiness ARV, Fageud Feeling sleepy
IR7-vy, ade/zwn
IRT XD, RiedTED
Notes: The table lists the keywords for each category in both Japanese and English (for reference).
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Appendix C: Ambulance records
Figure C1—Dose responses
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Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per day
level (N= 970,309). A total of 705 emergency response units are available. The plots exhibit estimates and 95%
confidence intervals of the treatment effects of daily pollen counts (in levels), using a variant of equation [1] where the
logged daily pollen is replaced by dummies for each decile of daily pollen levels (grains/m?). The dependent variable is
the number of daily cases per million people. Standard errors are clustered at the pollen monitoring station levels. All
specifications include unit, month-by-year, month-by-prefecture, and day-of-week fixed effects, alongside weather
covariates (precipitation, temperature, wind speed), darkness, and logged population. Estimates are weighted by the
population of each unit. The histogram at the bottom displays the distribution of daily pollen counts (grains/m?).

Figure C2—Pollen and the number of accidents by the level of PMio
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Notes: The sample is derived from ambulance records for the period 2009 to 2019, with observations at the unit per day
level (N=1806,839). A total of 705 emergency response units are available. The figure displays binscatter plots illustrating
the relationship between logged daily pollen counts (grains/m?, on the x-axis) and the number of daily cases per million
people for all accidents (on the y-axis), categorized as below and above the daily median of PM,, after controlling for
unit, month-by-year, month-by-prefecture, and day-of-week fixed effects, alongside weather covariates (precipitation,
temperature, wind speed), darkness, and logged population. Estimates are weighted by the population of each unit.
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Figure C3—Varying window for the sum of coefficients in the distributed lag model
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Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per day
level (N= 970,309). A total of 705 emergency response units are available. The plots depict the estimates and 95%
confidence intervals of the sum of coefficients (= Y.xcx Bx) in the distributed lag model derived from equation [2], with
varying windows of up to 14 days. The dependent variable is the daily number of cases per million people. All
specifications include fixed effects for unit, month-by-year, month-by-prefecture, and day-of-week. Additionally, logged
pollen counts and weather covariates (precipitation, temperature, wind speed) for the days preceding and following the
observation date within the specified time horizon are included. Estimates are weighted by the population of each unit.
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Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per day
level (N= 970,309). A total of 705 emergency response units are available. The plots display estimates and 95%
confidence intervals of treatment effects on logged daily pollen counts from equation [1] under various specifications
with high-dimensional unit and time fixed effects. Standard errors are clustered at the pollen monitoring station level.
The dependent variables are the number of daily cases per million people. The baseline model includes fixed effects for
unit, month-by-year, month-by-prefecture, and day-of-week. All specifications additionally include weather covariates
(precipitation, temperature, wind speed), darkness, and logged population. Estimates are weighted by the population of
each unit.
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Figure C5—Pollen counts and emergency ambulance transports due to cancer
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Notes: The sample is derived from ambulance records for the period 2015 to 2019, with observations at the unit per day
level (N=407,463). A total of 705 emergency response units are available. These ambulance records encompass detailed
diagnosis information, equivalent to ICD10, starting from 2015. The figure displays binscatter plots illustrating the
relationship between the logged daily pollen counts (grains/m?, on the x-axis) and the frequency of daily emergency
ambulance transports due to cancer per million people (on the y-axis), after controlling for unit, month-by-year, month-
by-prefecture, and day-of-week fixed effects, alongside weather covariates (precipitation, temperature, wind speed),
darkness, and logged population. Estimates are weighted by the population of each unit.

Table C1—Pollen and pollution interactions

(1) (2)
In(pollen counts) 0.230%%** 0.267%**
(0.021) (0.027)
1(PMi1o> median) 0.068
(0.222)
In(pollen) X 1(PMjo> median) -0.053
(0.036)
R-squared 0.46 0.46
N 806,839 806,839
Unit FE X X
Day-of-week FE X X
Month-by-year FE X X
Prefecture-by-month FE X X

Notes: The sample is derived from ambulance records for the period 2009 to 2019, with observations at the unit per day
level (N=806,839). Pollution data are available starting from 2009. A total of 705 emergency response units are available.
The dependent variable is the daily number of cases per million people for all accidents. Column (1) replicates the
baseline estimates presented in Table 2 for the subset with available pollution data. Column (2) presents estimates derived
from the variation of equation [1], where a dummy variable, which takes a value of 1 when the daily PM ¢ level exceeds
the median, and 0 otherwise, and its interaction with logged pollen counts is also included. Standard errors clustered at
the pollen monitoring station level are reported in parentheses. In addition to the fixed effects listed in the table, weather
covariates (precipitation, temperature, wind speed), darkness, and logged population are included in the estimation.
Estimates are weighted by the population of each unit. Significance levels: *** p<0.01, ** p<0.05, * p<0.10.
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Table C2—Different levels of clustering

Clustering variables N of clusters SE
0.231

Monitoring stations (baseline) 120 (0.020) Hx*
Monitoring stations and date 120 + 1,796 (0.028) H*x*
Monitoring stations and month-year 120 + 60 (0.030) H*
Unit 705 (0.019) ***
Unit and date 705 + 1,796 (0.028) ***
Unit and month-year 705 + 60 (0.031) H*
Prefecture 47 (0.016) ***
Prefecture and date 47 + 1,796 (0.025) H*
Prefecture and month-year 47 + 60 (0.028) H**
Conley (50 km) - (0.018) H*
Conley (100 km) - (0.019)
Conley (150 km) - (0.020) Hx*

Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per day
level (N=970,309). A total of 705 emergency response units are available. The dependent variable is the number of daily
cases per million people. Estimates from equation [1] are reported. All specifications include unit, month-by-year, month-
by-prefecture, and day-of-week fixed effects, alongside weather covariates (precipitation, temperature, wind speed),
darkness, and logged population. The numbers of pollen monitoring stations, units, and prefectures are 120, 705, and 46,
respectively. The last three rows present spatially clustered standard errors following the methodology outlined in Conley
(1999), employing distance cutoffs of 50, 100, and 150 km, respectively. Estimates are weighted by the population in
each unit. Significance levels: *** p<0.01, ** p<0.05, * p<0.10.

Table C3—Alternative specifications

(1) (2) 3)
Poisson
level-log pseudo-
OLS l(gg; gg maximum
(Baseline) likelihood
(PPML)
In(pollen counts) 0.231%** 0.0054 % 0.030%**
(0.020) (0.0006) (0.003)
R-squared 0.46 0.90 -
N 970,309 970,309 970,309
Unit FE X X X
Day-of-week FE X X X
Month-by-year FE X X X
Prefecture-by-month FE X X X

Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per day
level (N=970,309). A total of 705 emergency response units are available. Column (1) reports the results from Table 2
(baseline) for ease of comparison. Column (2) reports estimates from the variant of equation [1], wherein the dependent
variable takes the logarithm of the number of daily cases per million people. Estimates are weighted by the population
in each unit in columns (1) and (2). Column (3) reports the marginal effect of Poisson pseudo-maximum likelihood
(PPML) using the dydx command in Stata. The estimate in column (3) can be converted to 0.222 cases per million people
(= 0.030/0.135), where 0.135 is the average population in a million, which is comparable to the baseline estimate in
column (1). The standard errors clustered at the pollen station level are reported in parentheses. Significance levels: ***
p<0.01, ** p<0.05, * p<0.10.
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Table C4—Placebos

(D 2) 3)
Assigning last  Assigning next
Baseline year’s pollen year’s pollen
counts counts
In(pollen counts) 0.231#** 0.008 0.021
(0.020) (0.022) (0.022)
R-squared 0.46 0.47 0.46
N 970,309 879,777 881,226
Mean of dep. var 33.03 33.21 32.89
Unit FE X X X
Day-of-week FE X X X
Month-by-year FE X X X
Prefecture-by-month FE X X X

Notes: The sample is derived from ambulance records for the period 2008 to 2019, with observations at the unit per day
level. A total of 705 emergency response units are available. The dependent variable is the number of daily cases per
million people. The estimates from equation [1] are reported. All specifications include fixed effects for unit, month-by-
year, month-by-prefecture, and day-of-week, alongside weather covariates (precipitation, temperature, wind speed),
darkness, and logged population. Column (1) replicates the estimates from Table 2 (baseline) for ease of comparison.
Columns (2) and (3) falsely assign the pollen levels of the corresponding day from the previous and subsequent years,
respectively (for instance, for March 3, 2018, in unit X, columns (2) and (3) assign the pollen levels of March 3, 2017,
and March 3, 2019, within the same unit X). Estimates are weighted by the population in each unit. Significance levels:
*xE p<0.01, ** p<0.05, * p<0.10.
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Appendix D: Police records

The police records encompass all 690,415 traffic accidents (or 106,533 during the pollen season)
occurring between 2019 and 2020. These data are compiled at the individual accident level, detailing
information such as location, date, and time of occurrence. Unlike the ambulance service, which operates at a
unit level (N=705), the police service is administered at the municipal level (N=1,700). Consequently, we
aggregate casualty figures to the municipal-day level by consolidating hourly observations within
municipalities.

Figure D1 illustrates the binscatter plots depicting the relationship between the logged average daily
pollen count (grains/m>) and the number of traffic fatalities per million people, while controlling for
municipality, month-by-year, month-by-prefecture, and day-of-week fixed effects, alongside weather
covariates (precipitation, temperature, wind speed), darkness, and logged population. The figure clearly
demonstrates the positive relationship between these variables.

Table D1 presents the estimates from equation [1], wherein the unit fixed effect is replaced by the
municipality fixed effect. For ease of comparison, column (1) shows the death/fatal estimates for traffic
accidents recorded between 2008 and 2019, sourced from ambulance records. Column (2) displays the
mortality estimates derived from the 2019 to 2020 police records. The estimate of 0.0040 (p-value <0.01) in
column (2) surpasses the 0.0026 estimate from column (1), suggesting a potential underestimation of the
impact of pollen exposure on traffic accident fatalities.! However, at conventional levels, the two estimates
are not statistically distinguishable.

! One plausible explanation for this observation is that police records encompass all deaths resulting from traffic accidents
within 24 hours, unlike ambulance records, which solely encompass deaths occurring upon hospital admission. Notably, the
count of traffic accidents resulting in death recorded in our ambulance records for 2019 is 1,771, whereas the corresponding
figure reported to the National Police Agency (NPA) is 3,215 (NPA 2022).
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Figure D1—Pollen and mortality due to traffic accidents (police records)
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Notes: The sample is derived from police records for the period 2019 to 2020, with observations at the municipality per
day level (N= 399,749). A total of 1,700 municipalities exist. The figure displays binscatter plots illustrating the
relationship between logged daily pollen counts (grains/m?, on the x-axis) and the number of deaths per million people
within 24 hours resulting from traffic accidents (on the y-axis), after controlling for municipality, month-by-year, month-
by-prefecture, and day-of-week fixed effects, alongside weather covariates (precipitation, temperature, wind speed),
darkness, and logged population.

Table D1—Mortality due to traffic accidents
(ambulance records vs. police records)

Ambulance Police
records records
1) 2)
In(pollen counts) 0.0026%** 0.0040%**
(0.0007) (0.0015)
R-squared 0.01 0.01
N 970,309 399,749
N of unit/municipality 705 1,700
N of clusters 120 120
Mean of dep. var 0.077 0.125
Unit/municipality FE X X
Day-of-week FE X X
Month-by-year FE X X
Prefecture-by-month FE X X

Notes: The sample for column (1) is derived from ambulance records for the period 2008 to 2019, while the sample for
column (2) is derived from police records for the period 2019 to 2020. The level of observation is units per day for
column (1) and municipality per day for column (2). There are a total of 705 emergency response units and 1,700
municipalities. The dependent variable is the number of deaths due to traffic accidents per million people. Estimates from
equation [1] are reported along with standard errors clustered at the pollen monitoring station level in parentheses. In
addition to the fixed effects listed in the table, we include weather covariates (precipitation, temperature, wind speed),
darkness, and logged population. Estimates are weighted by the population in each unit in column (1) and by the
population in each municipality in column (2). Significance levels: *** p<0.01, ** p<0.05, * p<0.10.
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Appendix E: Avoidance behavior from retail scanner data

Figure E1—Pollen count and weekly expenditure on allergy products
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Notes: The sample is derived from retail scanner data from February to May for the period 2012 to 2019, with
observations at a weekly per-person level (N=4,303,417). The graphs display binscatter plots illustrating the relationship
between logged daily mean pollen counts (grains/m?, on the x-axis) and weekly expenditure per person (in 10$, on the
y-axis) for all allergy products in panel A, and individually for each product in panels B to D: medications (panel B), eye
drops (panel C), and masks (panel D), after controlling for municipality, month-by-year, month-by-prefecture, and day-
of-week fixed effects, alongside weather covariates (precipitation, temperature, wind speed), darkness, and logged
population. The shares of medications (panel B), eye drops (panel C), and masks (panel D) are 35%, 37%, and 28%,
respectively. An exchange rate of 100 yen/$ is applied.
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Table E1—Nielsen Panel Data vs. Quick Purchase Report

Nielsen Homescan Panel

Quick Purchase Report (QPR)

Feature (U.S) by Macromill
Country United States Japan
Unit of Observation Household Household
Method Homescan Homescan

+ manual report (partly)

Target Product UPC-coded packaged goods

+ some non-barcode items
(manual report)

Coverage Period 2004-
Sample Size 40,000-60,000
Panel Structure Yes
Nationally Representative Yes

Information Included:

Purchase Date Yes
Retailer/Channel Type Yes
Online Purchase Yes
Price Paid Yes
Coupon/Deal Flag Yes

JAN-coded packaged goods

2011-
Approximately 35,000
Yes
Yes

Yes
Yes
Yes
Yes
No

Sources:

Nielsen: https://www.chicagobooth.edu/research/kilts/research-data/nielseniq?utm_source=chatgpt.com

Macromill: https://www.e-stat.go.jp/bigdataportal/dataintro/253
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Table E2—Summary statistics of retail scanner data
Variables Obs Mean Std. dev. Min Max

A. Outcomes (weekly per person in $10-3)

Spending: Total 4,303,417 295.78 2343.95 0 2,141,620
Spending: Medications 4,303,417 109.94 1528.34 0 227,200
Spending: Eye drops 4,303,417 103.41 1018.20 0 104,000
Spending: Masks 4,303,417 82.52 1324.56 0 2,141,620
B. Individual characteristics
Ages: 0-24 4,303,417 0.13 0.33 0 1
Ages: 2544 4,303,417 0.38 0.48 0 1
Ages: 45-64 4,303,417 0.38 0.49 0 1
Ages: 65 years and older 4,303,417 0.11 0.32 0 1
Female 4,303,417 0.50 0.50 0 1
Student 4,303,417 0.11 0.31 0 1
Household head 4,303,417 0.46 0.50 0 1
Have kids 4,303,417 0.55 0.50 0 1
Own house 4,303,417 0.58 0.49 0 1
Annual salary category 4,303,417 2.61 2.22 1 13
C. Regressors (daily average in a week)
Pollen counts (grains/m?) 4,303,417 843.2 1337.4 0 22,812
Logged (Pollen counts) 4,303,417 0.1 0.2 0 3.9
Precipitation (mm) 4,303,417 12.0 6.0 -8 26
Average temperature ("C) 4,303,417 2.8 0.9 0 11.6
Average wind speed (m/s) 4,303,417 10.5 1.3 7 13

Notes: The sample is derived from retail scanner data from February to May for the period 2012 to 2019, with
observations at a weekly per-person level. Expenditure is measured in units of 10~ $. An exchange rate of 100 yen/$ is
applied.

Table E3—Purchasing allergy products: Heterogeneity

A. By age groups B. By gender
Non-elderly Elderly Male Female
@) 2) A3) “4)
In(pollen counts) 46.686%** 43.916%** 38.994 #:* 49.415%**
(3.122) (3.417) (2.325) (3.604)
R-squared 0.008 0.005 0.008 0.007
N 3,147,182 934,660 2,137,760 2,165,657
Mean of dep. var (in 102 $) 306.88 316.50 248.98 341.97
Municipality FE X X X X
Year-prefecture FE X X X X
Week FE X X X X

Notes: The sample is derived from retail scanner data from February to May for the period 2012 to 2019, with
observations at a weekly per-person level. The dependent variable is the weekly expenditure (in 102 §) on all allergy
products, using an exchange rate of 100 yen/$. Estimates from the variant of equation [1] are reported along with standard
errors clustered at the pollen monitoring station level in parentheses. In addition to the fixed effects listed in the table,
weather covariates (precipitation, temperature, wind speed), and darkness are included. The elderly category comprises
individuals aged 60 years and older, while the non-elderly category encompasses everyone else. Significance levels: ***
p<0.01, ** p<0.05, * p<0.10.
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Appendix F: Avoidance behavior from Google Trends/Tweets

Figure F1—Pollen and Google Trends/Tweets
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Notes: The samples are derived from Google Trends data for panel A and Twitter data for panel B for the period 2016 to
2019. The level of observation is at the prefecture level per day. The graphs display binscatter plots illustrating the
relationship between logged daily pollen counts (grains/m?®, on the x-axis) and the Google search index in panel A, and
the number of tweets in panel B for keywords related to medications (on the y-axis), masks, and air purifiers, after
controlling for month-by-year, month-by-prefecture, and day-of-week fixed effects, alongside weather covariates
(precipitation, temperature, wind speed), darkness, and logged population. See Appendix Table F1 for the list of search
terms within each category. Estimates from the variant of equation [1], wherein unit fixed effects are replaced by
prefecture fixed effects, are presented in the box. Standard errors, clustered at the prefecture level, are reported in
parentheses. Estimates are weighted by the population in each prefecture per year. Significance levels: *** p<0.01, **
p<0.05, * p<0.10.
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Table F1—List of search keywords

Category # Categories Japanese English

1 Medications TV Alesion
(product name of .
popular allergy TVT7 Allegra
medications) 77 VF Claritin

2 Mask ~ A7 Mask

3 Air purifier 28RV Air purifier

Notes: The table lists the keywords for each category in both Japanese and English (for reference).
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Appendix G: Avoidance Behavior from Cellphone Mobility Records

Our geolocation data, referred to as “Mobile Spatial Statistics” (MSS), is provided by NTT
DOCOMOQO, Inc., Japan’s largest mobile phone carrier. MSS utilizes the location information of 85
million NTT DOCOMO users (as of March 2022) to provide population estimates at a 500500 meter
mesh on an hourly basis across Japan. For detailed procedures on constructing these population
estimates, see Terada et al. (2013).

Our dataset on mobility measures is structured as follows: Firstly, for each municipality, we select
a 500x500 meter mesh with the highest number of establishments in the customer service industry
(e.g., accommodations, restaurants, and entertainment) based on information from the 2016 Economic
Census (MIC 2019).2 This choice of the service industry aims to capture bustling areas such as
business districts, shopping, and dining areas, which are more likely to represent the population
engaged in outdoor activities. Secondly, we provide the list of these meshes to NTT DOCOMO, Inc.,
which returns the estimated population at each mesh for the period from February 2014 to May 2019.
Thirdly, we aggregate the estimated population at the unit level by calculating the average across all
municipalities within the unit. We specifically use the estimated population at 2 p.m. as the daily
population in commercial areas tends to peak around this time (Seike et al. 2015). This measure serves
as a proxy for engaging in outdoor activities, hereafter referred to as the “outdoor population,” which
we analyze to examine avoidance behavior.

Finally, we briefly discuss the advantages and disadvantages of this dataset. There are two types
of geolocation data in Japan: the first originates from the leading smartphone mapping application in
Japan, “Docomo Chizu NAVI,” which collects GPS coordinates of each smartphone device whenever
the device is turned on. A notable feature of this application is its ability to effectively track individuals
over time (albeit only for recent years). Researchers can identify individuals’ “home” locations as the
most frequent locations of geographically contiguous stays (Miyauchi et al. 2021) and measure whether
individuals leave their homes. However, the drawback is that the sample is limited to individuals who
have granted permission to share their location information, leading to selection biases in both
application users and those who consent, resulting in a relatively small sample size (545,000 users as of
2019). The second type of data, including ours, is based on the transmission of information from each
mobile terminal (in our case, 85 million users) to base stations when mobile devices are turned on. This
type of data offers a more nationally representative sample with broad spatial coverage of the entire
country, albeit providing only hourly estimated population data for each area.

Given that the primary objective of this study is to provide nationally representative estimates of
the effects of pollen exposure on accidents and corresponding avoidance behaviors over an extended
period, we have chosen to analyze the latter dataset. Due to its representativeness and the extensive
time span covered by the sample, this dataset has been widely utilized, particularly for measuring
people’s mobility during the COVID-19 pandemic (e.g., Kondo 2021; Kuroda et al. 2022).

2 Due to budgetary constraints, our dataset comprises one mesh per municipality. Nevertheless, we affirm that our mobility
measure effectively encompasses overall daytime outdoor activity, utilizing the 2019 data, wherein we possess outdoor
population statistics for all meshes. Notably, our mobility measure derived from the representative mesh exhibits a
correlation as high as 0.889 with the summary measure, which aggregates data from all meshes hosting at least one service
establishment.
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Figure G1—Actual Zoo attendance and
population estimate from cellphone mobility records
A. Ueno Zoo B. Tama Zoological Park C. Inokashira Park Zoo
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Notes: The sample is derived from attendance records from the three major zoos operated by the Tokyo Metropolitan
Government and corresponding population estimates from cellphone mobility records for the period 2014 to 2019, with
observations at the zoo per day level. The graphs display scatter plots illustrating the relationship between the logged
daily attendance from admission records (on the x-axis) and the logged daily number of cell-phone—based population
estimates at 2 p.m from location data (on the y-axis). Panels A—C present results for Ueno Zoo, Tama Zoological Park,
and Inokashira Park Zoo, respectively. The correlations between the two variables in Panels A—C are 0.839, 0.756, and

0.673, respectively.

Figure G2—Pollen and zoo attendances in Tokyo
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Notes: The sample is derived from admission records from the three major zoos operated by the Tokyo Metropolitan
Government (Ueno Zoo, Tama Zoological Park, and Inokashira Park Zoo) for the period 2008 to 2019, with observations
at the zoo per day level. The graphs display binscatter plots illustrating the relationship between the logged daily pollen
counts (grains/m>, on the x-axis) and the logged daily attendance (on the y-axis). The specification control for zoo and
date fixed effects, alongside weather covariates (precipitation, temperature, wind speed), darkness, and the logged
average daily admissions for each zoo. Estimates are weighted by the average daily admissions in each zoo.
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Figure G3—Pollen and avoiding going out
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Notes: The sample is derived from cellphone mobility records for the period 2014 to 2019, with observations at the unit
per day level (N= 343,454 for panel A and 135,399 for panel B). There are a total of 705 emergency response units.
The graphs display binscatter plots illustrating the relationship between the logged daily pollen counts (grains/m?, on
the x-axis) and the logged daily number of people outdoors at 2 p.m. (on the y-axis). Panels A and B examine weekdays
and weekends, respectively, controlling for month-by-year, month-by-prefecture, and day-of-week fixed effects,
alongside weather covariates (precipitation, temperature, wind speed), darkness, and logged population. Estimates are
weighted by the population in each unit.
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Table G1—Avoid attending zoos

(1) () 3) “) )

All Weekdays Weekends Paid Free
In(pollen counts) -0.0332%** -0.0222* -0.0473%** -0.0175 -0.0705%***

(0.0095) (0.0120) (0.0130) (0.0161) (0.0124)

R-squared 0.95 0.95 0.96 0.90 0.93
N 3,474 2,333 1,141 3,425 3,474
Zoo FE X X X X X
Date FE X X X X X

Notes: The sample is derived from admission records from the three major zoos operated by the Tokyo Metropolitan
Government (Ueno Zoo, Tama Zoological Park, and Inokashira Park Zoo) for the period 2008 to 2019, with observations
at the zoo per day level. The dependent variable is the logged daily attendance. Column (1) encompasses all days, while
Columns (2) and (3) separately report estimates for weekdays and weekends. Columns (4) and (5) distinguish between
paid and free admissions. The specification control for zoo and date fixed effects, alongside weather covariates
(precipitation, temperature, wind speed), darkness, and the logged average daily admissions for each zoo. The average

daily admissions in each zoo weight estimate. Robust standard errors are reported in parentheses. Significance levels:
*** p<0.01, ** p<0.05, * p<0.10.

Table G2—Avoiding going out and accidents

All Weekdays Weekends

) 2 3)
In(outdoor population) 0.960** 0.465 2.007**

(0.418) (0.441) (0.775)

R-squared 0.49 0.48 0.51
N 478,853 343,454 135,399
Unit FE X X X
Day-of-week FE X X X
Month-by-year FE X X X
Prefecture-by-month FE X X X

Notes: The sample is derived from the ambulance records for the period 2014 to 2019, which are matched with “Mobile
Spatial Statistics” data provided by NTT DOCOMO, Inc. at the unit-day level (N= 478,853). A total of 705 emergency
response units are available. We present estimates from regressing daily accidents per million people (our primary
outcome) on the logged outdoor population, employing the same sets of fixed effects and controls as in equation [1],
except for the logged number of pollen counts. Standard errors clustered at the pollen monitoring station level are reported
in parentheses. Columns (2) and (3) restrict the samples to weekdays and weekends, respectively. Estimates are weighted
by the population in each unit. Significance levels: *** p<0.01, ** p<0.05, * p<0.10.
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Table G3—Avoiding going out with full covariates

Outcome: logged outdoor population

A.All B. By type of day
Weekdays Weekends
(@) ) 3)
In(pollen counts) -0.0005 0.0000 -0.0021%***
(0.0006) (0.0006) (0.0007)
Rainfall (base: no rainfall)
<1 mm -0.0061*** -0.0059%** -0.0047**
(0.0013) (0.0011) (0.0019)
I mm< & <2 mm -0.0167*** -0.0144%** -0.0208***
(0.0035) (0.0024) (0.0080)
>2 mm -0.0167*** -0.0150%** -0.0249%**
(0.0045) (0.0041) (0.0082)
Mean temperature (base: <0 “C)
[0,5)C 0.0018 0.0068** 0.0096
(0.0033) (0.0034) (0.0064)
[5,10)C 0.0111%%* 0.0139%*%** 0.0189***
(0.0036) (0.0037) (0.0067)
[10,15) C 0.0089%** 0.0120%** 0.0160**
(0.0043) (0.0043) (0.0070)
[15,20) C 0.0061 0.0094* 0.0172%*
(0.0045) (0.0049) (0.0068)
[20,25) C 0.0120%** 0.0165%** 0.0200%**
(0.0043) (0.0046) (0.0069)
>25C 0.0273%** 0.0264*** 0.0319%**
(0.0057) (0.0066) (0.0079)
Mean wind speed -0.0022%** -0.0021*** -0.0023%**
(0.0005) (0.0005) (0.0007)
Darkness -0.0084*** -0.0090%** -0.0073%**
(0.0014) (0.0012) (0.0023)
In(population) 1.3108%** 1.2630%** 1.4497%**
(0.1975) (0.1997) (0.2074)
R-squared 0.98 0.99 0.99
N 478,853 343,454 135,399
Unit FE X X X
Day-of-week FE X X X
Month-by-year FE X X X
Prefecture-by-month FE X X X

Notes: The sample is derived from cellphone mobility records from February to May for the period 2014 to 2019, with
observations at the unit per day level. There are a total of 705 emergency response units. Estimates from the variant of
equation [1] are reported along with standard errors clustered at the pollen monitoring station level in parentheses. The
dependent variable is the logged daily outdoor population at 2 p.m. Estimates are weighted by the population in each
unit. Significance levels: *** p<(0.01, ** p<0.05, * p<0.10.
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Table G4—Avoiding going out: Heterogeneity

Outcome: logged outdoor population

A. Weekdays B. Weekends
Non-elderly Elderly Male Female Non-elderly Elderly Male Female
(1) () 3) “4) ®) (6) (M ®)
In(pollen counts) -0.0007 0.0005 -0.0005 -0.0000 -0.0029%** -0.0013 -0.0025%** -0.0025%**
(0.0007) (0.0006) (0.0007) (0.0006) (0.0009) (0.0009) (0.0008) (0.0009)
Rain (base: no rain)
<1 mm -0.0050%**  -0.0121%** -0.0026** -0.0104%** -0.0032 -0.0111%** -0.0019 -0.0086%**
(0.0011) (0.0016) (0.0011) (0.0013) (0.0020) (0.0027) (0.0019) (0.0023)
I mm< & <2 mm -0.0089%**  -(0.0283%** -0.0051%* -0.0220%** -0.0170%* -0.0365%** -0.0115 -0.0317%**
(0.0020) (0.0040) (0.0023) (0.0027) (0.0077) (0.0122) (0.0073) (0.0094)
>2 mm -0.0095%* -0.0334%** -0.0043 -0.0271%** -0.0162%* -0.0466%** -0.0144%* -0.0332%**
(0.0042) (0.0057) (0.0041) (0.0048) (0.0086) (0.0095) (0.0072) (0.0100)
R-squared 0.97 0.97 0.98 0.98 0.97 0.97 0.98 0.98
N 341,433 340,495 341,093 341,343 134,450 134,140 134,409 134,387
Unit FE X X X X X X X X
Day-of-week FE X X X X X X X X
Month-by-year FE X X X X X X X X
Prefecture-by-month FE X X X X X X X X

Notes: The sample is derived from cellphone mobility records from February to May for the period 2014 to 2019, with observations at the unit per day level.
There are a total of 705 emergency response units. Estimates from equation [ 1] are reported along with standard errors clustered at the level of pollen monitoring
station in parentheses. The dependent variable is the logged daily outdoor population at 2 p.m. In addition to the FEs and weather covariates outlined in the table,
average wind speed, darkness, and logged population are also included. The elderly category comprises individuals aged 60 years and older, while the non-elderly
category encompasses everyone else. Estimates are weighted by the population in each unit. Significance levels: *** p<0.01, ** p<0.05, * p<0.10.
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Appendix H: Data Appendix

Data

Ambulance
records

Police
records

Pollen

Temperature

Pollution

Google
Trends data

Twitter data

Retail
scanner data

Cellphone
mobility
records

Source

Years: 2008-2019 (detailed diagnosis information is available from 2015 onwards)

Data description: ambulance records archive

Source: Fire and Disaster Management Agency (FDMA) of the Ministry of Internal Affairs
and Communications

https://www.fdma.go.jp/en/post1.html

Years: 2019-2020

Data description: traffic accident records of accidents involving injuries or deaths
Source: National Policy Agency (NPA)
https://www.npa.go.jp/publications/statistics/koutsuu/opendata/index opendata.html

Years: 20082019

Data description: hourly pollen counts from 120 stations, as well as hourly rainfall,
temperature, wind speed, and wind direction from nearby weather stations during the
pollen season (February to May except for Hokkaido, where the pollen season is March to
June).

Source: Ministry of the Environment (MOE), Pollen Monitoring System “Hanako-san”
https://tenki.jp/pollen/

Note: MOE terminated data collection of pollen counts in 2021.

Years: 2008-2019

Data description: hourly temperature (outside of the pollen season)

Source: Japan Automated Meteorological Data Acquisition System (AMeDAS)
operated by the Japan Meteorological Agency (JMA)
https://www.data.jma.go.jp/obd/stats/etrn/

Years: 2009 April-2019 March

Data description: hourly SO, NO, NO, CO, OX, PMio
Source: National Institute for Environmental Studies
https://www.nies.go.jp/igreen/index.html

Years: 2016-2019

Data description: Google search index reflecting search term popularity for selected
keywords, ranging from 0 to 100 in a given prefecture and day, proportional to total
searches within the period.

Years: 2016-2019
Data description: the number of tweets that contain the selected keywords

Years: 2012-2019

Data description: called “Quick Purchase Report,” which is the daily panel of purchase
records from roughly 30,000 monitors

Source: Macromill, Inc
https://www.macromill.com/service/digital-data/consumer-purchase-history-data/ (in
Japanese)

Years: 2014-2019

Data description: called “Mobile Spatial Statistics” data, which are estimates based on the
location information of 85 million NTT DOCOMO cellphone users (as of March 2022)
Source: NTT DOCOMO, Inc

https://mobaku.jp/ (in Japanese)
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