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Directedness in Search∗

Rasmus Lentz† Jonas Maibom ‡ Espen Rasmus Moen§

January 15, 2026

Abstract

We present a tractable, hybrid framework that nests random and perfectly directed search,

in which workers are more likely to direct their search toward submarkets with higher returns,

while still searching in inferior submarkets with positive probability. The choice of submarket

is governed by a logit choice model with noise parameter µ ∈ [0,∞). In the respective limits,

search becomes either completely random or perfectly directed. We characterize the model

equilibrium and show that even the perfectly directed search limit is inefficient, in contrast to

its otherwise close cousin, competitive search.

We proceed to quantify the extent of directedness on Danish matched employer–employee

data. Identification relies on the insight that the two benchmark models differ qualitatively in

their implications for job-to-job worker reallocation. We find evidence of substantial directedness

in search. Finally, we study the implications for underinvestment due to holdup problems and

show that the observed degree of directedness substantially reduces underinvestment relative to

a setting with random search.

Keywords: Random search, directed search, partly directed search, structural estimation, efficiency

JEL classification: J62, J63, D83, D4

1 Introduction

In the search model literature, there is little consensus on how to model the search technology. One

approach is to model search as random, where agents of different types on the same side of the

market search in a common pool, thereby generating search externalities for one another. Another

option is to model search as directed, in which case agents of different types tend to be separated

∗This paper has benefited from numerous questions and comments from participants at several seminars,

conferences and workshops. Among them, Hector Chade, Philipp Kircher, Guido Menzio, and Laura Pilossoph

(discussant). A previous version of this paper has circulated under the title ”Competitive or Random Search?”.

We are grateful to the ECONAU project database (Department of Economics and Business Economics, Aarhus

University) for making their data available.
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into distinct submarkets. An example of random search is the canonical DMP model (Diamond

1982, Pissarides 1985, Mortensen 1982), but the Burdett–Mortensen (Burdett and Mortensen 1998,

Christensen et al. 2005) and Postel–Vinay and Robin (Postel-Vinay and Robin 2002) types of search

models also fall into this category. In Competitive Search Equilibrium, by contrast, firms divide the

market into submarkets through their wage advertisement policies and hence endogenously create

directed search. However, competitive search is not a prerequisite for directed search, as search

may also be directed if wages are determined ex post (after agents meet), for instance through

bargaining, although the definition of directed search in these cases is, in general, not as clearly

defined.

The extent to which search is directed has consequences for the welfare properties of search

equilibria. Acemoglu and Shimer (1999) show that if search is random and wages are determined

by bargaining, firms invest too little in capital, even if the rent-sharing rule satisfies the Hosios

condition. If search is directed, by contrast, so that firms that invest more in physical capital

search in separate submarkets, efficiency prevails. Similarly, Acemoglu and Pischke (1999) show

that with random on-the-job search, matches under-invest in general human capital even under

efficient bargaining, while Moen and Rosén (2004) show that under competitive search, efficiency

prevails.1

The extent to which search is directed also has consequences for the empirical predictions for

wages before and after a job-to-job transition. Garibaldi et al. (2016) point out that if search is

perfectly random, and a worker changes jobs whenever a new employer offers a higher wage than

the current one, then the distribution of the wage in the destination job wd is independent of the

origin job wage wo, conditional on being above it, wd > wo. In contrast, directed search implies

a positive dependence between the origin wage wo and the destination wage wd, and if perfectly

directed, the destination wage distribution is degenerate at a point. However, Godøy and Moen

(2013) document that this independence property between ante and post wages (or productivities)

cannot be found in Norwegian data.

The identification strategy in this paper exploits this difference in predictions from the random

and the directed search model to arrive at a search technology estimate that is neither perfectly

random nor perfectly directed. We develop a model of partly directed search. In our model,

firms differ in productivity, and workers search both on and off the job, gradually climbing a job

ladder. The contract space is sufficiently rich that an employee’s search behavior maximizes joint

(firm–worker) income.

Our starting point is a model in which search is directed but not competitive. Workers decide

which firm type to apply to. All firms of a given type and the workers searching for jobs in those

firms form a submarket, and workers choose among these different submarkets. When a match

1More broadly, while the random search model equilibrium can be socially efficient when the appropriate version
of the Hosios condition is satisfied, in the event that Hosios is not satisfied, optimal policy prescriptions are subject to
second-best considerations that depend on the estimates of matching and bargaining technology parameters. Optimal
policy design analyses often make the sensible assumption of disregarding the second-best considerations through the
imposition of the Hosios condition, but the mechanisms by which the economy would itself arrive at the Hosios
condition are murky at best.
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forms, wages are determined through bargaining, with the net present value of joint income in

the previous job as the worker’s outside option. If the worker was previously unemployed, the

outside option is the value of unemployment. We assume that workers’ bargaining power satisfies

the Hosios condition, which ensures efficiency in a search market in which workers and firms are

identical. Note that employment contracts are not advertised publicly by firms but negotiated ex

post after a match has taken place, as in the standard DMP model, but with the modification that

the outside option is as in Dey and Flinn (2005) and Cahuc et al. (2006). Furthermore, the division

into submarkets is not determined by firms’ wage advertisement policies, but rather by firm types

and workers’ choices of which firms to approach. As a result, the equilibrium in our model has a

much simpler structure than in a Competitive Search Equilibrium and, in our view, captures the

core elements of directed search with bargaining.

Although workers direct their search, we allow the technology for doing so to be imperfect. As

a result, the submarket in which a worker ends up is partly determined by random factors. We

use a logit model to describe this noisy choice process.2 Hence, a given worker may search in any

of the existing submarkets, but the probability of entering a particular submarket depends on the

expected return to search there relative to other submarkets. The more sensitive these probabilities

are to relative returns, the more directed the search process.3 This sensitivity is governed by a logit

parameter µ, ranging from zero (perfectly sensitive) to infinity (completely insensitive). In the

latter case, search is completely undirected, and workers are assigned to submarkets in accordance

with the relative size (relative number of job openings) in that submarket. In the former case,

search is perfectly directed, in the sense that workers only search in their preferred submarkets.

Maybe surprisingly, we find that the perfectly directed search equilibrium is not equal to the

competitive search equilibrium; a firm that is allowed to advertise a wage would advertise a lower

wage than the wage it pays in equilibrium in our model. Relatedly, although welfare improves as

directedness increases, the equilibrium allocation with perfectly directed search is not efficient, even

though the Hosios condition is satisfied. The reason is that workers, although equally productive,

create different match surpluses when matched with a firm of a given productivity. When a worker

enters a submarket, this generates a positive externality for the firms in the market, and this

externality is stronger the more productive the firms in that submarket are. Furthermore, it creates

a negative externality for the workers already searching in that market, and this externality is lower

the higher the submarket is, since the workers in the higher submarket are currently employed in

higher-productivity firms, so that their gain from search is lower. Since workers do not internalize

these effects, they join submarkets with too low productivity compared to what is socially optimal.

Hence, even with perfectly directed search, submarkets with high-productivity firms attract too few

applicants. In Competitive Search Equilibrium, by contrast, firms govern workers’ choices through

2Our analysis does not require us to take a stand on the particular microfoundation, but one interpretation is that
of costly precision in decisions used in Matějka and McKay (2015) and Cheremukhin et al. (2020).

3An alternative interpretation of the noise process, which we do not pursue, is that workers have preferences over
more aspects of a job than wages, such as amenities, which are unobservable to the econometrician. The choice of
interpretation matters for our welfare analysis, but not for the predictive properties of the model.

3



their wage-posting policies, and these externalities are internalized.

Given our model, we identify the degree of directedness in the Danish labor market for the

period 1995-2005. Specifically, we use the administrative matched employer–employee spell data

that allow us to credibly observe job-to-job transitions and the productivities of both the destination

and origin jobs associated with them. As argued above, directedness manifests directly in these

observed mobility patterns.

To this end, we first derive theoretical predictions for how transition patterns associated with

job-to-job transitions differ between directed and random search. With random search, all firms

meet workers at the same rate. If there is some direction in search, submarkets with high-

productivity firms attract more workers, which reduces the job-finding rates in these markets.

In isolation, this reduces their attractiveness, and more so for workers at the low end of the job

ladder with low current incomes. Let firm productivity be increasing in firm type, and consider

a searching worker employed in a firm of type i. Denote by ĥi,k the probability that this worker

searches in submarket k > i, conditional on searching in a submarket k or higher. A fundamental

property of directedness is that this probability is higher the lower the firm type i that the worker

is currently in. The reason is that as long as there is some directedness in search, jobs in submarket

k are easier to get but pay less than in higher submarkets, and this makes submarket k relatively

more attractive the lower the current income of the worker. Therefore, ĥi,k is an important moment

to target when estimating the model.

As the submarkets form a ladder, we can identify them following the revealed preference

argument used in both Sorkin (2018) and Bagger and Lentz (2019). Similarly to Bagger and

Lentz (2019), we use the poaching rank index. In a higher submarket, a greater fraction of its

inflow comes from other firms relative to unemployment. With this, we can then immediately

measure the ĥi,k statistics, which provide the core of the identification strategy. Combined with

other statistics, we estimate the model using a standard simulated minimum distance estimator.

A particular virtue of the estimation is its implicit recognition that the poaching rank submarkets

identify the submarkets with some classification error, which affects the inference the model draws

from the ĥi,k mobility patterns. This corrects a bias that would otherwise have been present had

we adopted an alternative such as the commonly used two-step strategy where submarkets or firm

types are classified in a first step and then treated as data in the second step.

The magnitude of the model parameter that governs the degree of directedness, µ, is subject

to the measurement unit choices in the model. As such, the particular estimated value is, by itself,

not all that informative about the degree of directedness in the estimated model. We proceed to

provide three different perspectives on its magnitude.

First, as an interpretable measure of the degree of directedness, we construct a welfare-based

index of directedness. Welfare is measured as the net present value (NPV) of utility for an

unemployed worker; as shown by Pissarides (2000), this provides an appropriate welfare metric

in search models. Using our estimated parameter values (except for µ), let welfare under perfectly

directed search (µ = 0) be denoted by SP , and welfare under random search by SR. Finally, let
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SO denote welfare evaluated at our estimated value of µ. The degree of directedness, dr, is then

defined as

dr =
SO − SR

SP − SR
.

Our estimation indicates that dr is approximately 0.41. That is, the estimated economy realizes

about 41 percent of the welfare difference between an economy with a perfectly directed search

technology and one in which search is entirely random.

Second, we provide an elasticity measure of how sensitive submarket tightnesses are to changes in

match values. Here, we are contrasting the two extremes, perfectly random and perfectly directed

search. The random search model is an ordinal model, where only firm type ranks matter for

mobility patterns, whereas the directed search model is cardinal, so that productivity differences

between firms also matter. Therefore, if search is entirely random, submarket tightness elasticities

are zero. In the perfectly directed search model, they are infinite. For a receiving submarket with

average tightness, a one percent increase in the search flow value relative to top-firm productivity

increases tightness by 2.5 times the relative size of the sending market.

Third, we adopt another welfare-related perspective; in this case, we consider the interaction

between directedness and investment incentives. Specifically, we consider the possible hold-up

problem associated with ex ante capital investment, as studied in, for example, Acemoglu and

Shimer (1999) and Card et al. (2014). We evaluate how much ex ante underinvestment in capital

we see in a simplified version of the estimated model in which only unemployed workers search, in

which case the perfectly directed search model is efficient. We compare the perfectly random and

perfectly directed economies. Again, we are leveraging a sharp contrast between the two models:

In the perfectly directed search model, ex ante capital investments are efficient. As search gets

less directed, the capital underinvestment problem becomes worse. Similar to above, we state the

degree of directedness in terms of the degree to which the estimated economy realizes the efficiency

gains of the perfectly directed search model relative to the perfectly random model. In this case,

we obtain a measure of 85 percent.

The paper proceeds as follows: In Section 2 we set up our model. In Section 3 we discuss

the equilibrium properties of our model in the two extremes (completely random and perfectly

directed search). In Section 4 we discuss the general efficiency properties of the directed search

equilibrium in our model. We further show that the version with perfectly directed search is not

efficient. In Section 5 we set up our empirical exercise and define an extended version of our model

(adding bells and whistles). We also discuss estimates and model fit. In Section 6 we discuss

the overall implications of our estimates regarding directedness in search and consequences for

underinvestment. Finally, we conclude.

2 Model

In this section, we present the basic model. Some extensions are added later for estimation purposes.

The model is set in continuous time. The economy is populated by a continuum of risk-neutral
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workers and firms with a common discount rate r. All workers are identical, infinitely lived, and

search both on and off the job. The measure of workers in the economy is exogenous and normalized

to one. The measure of firms is endogenously determined by entry.

Unemployed workers receive an exogenous net income of y0 that also includes the monetary

equivalent of the disutility of that state. Entrepreneurs incur a cost K to open a firm. After K is

sunk, but before production starts, the “type” j of the firm is drawn, j = 1, ...J . The probability

of drawing type j is τj , with
∑J

j=1 τj = 1. The type determines the productivity yj of the firm,

y0 < y1, ... < yJ−1 < yJ . All firms have a constant-returns-to-scale technology in labor.

Each firm is equipped with a search technology. We adopt the “fishing line” hiring interpretation

where each firm has one vacancy, which is reposted immediately every time a worker is hired. All

matches dissolve with a Poisson rate δ. Workers have one unit of search capacity they can exert at

no cost.

The search market is divided into J submarkets. All firms in submarket j are of type j. In

each submarket j, the flow of new matches is given by a concave and constant returns to scale

matching function x(ñj , vj), where ñj and vj denote the aggregate measure of searching workers

and vacancies in the submarket, respectively. The submarket-specific job finding rates and worker

finding rates are denoted pj = p(θj) and qj = q(θj), respectively, where θj = vj/ñj .

As is common in the competitive and directed search literature, we assume efficient contracting

between the worker and the firm.4 This implies that (1) the worker searches to maximize the joint

income of the worker–firm pair, (2) only jobs that yield a higher joint net present value (NPV)

are accepted, (3) meetings with inferior firms do not lead to a wage increase, and (4) the previous

firm provides full rent extraction as a bargaining position for the worker in the new job. Several

contractual arrangements can support this outcome, the simplest being that the worker buys the

job up front. Note that (3) eliminates rent extraction from the current employer as a motivation

for on-the-job search, consistent with the assumption that the worker searches to maximize joint

surplus.

Wages are determined by Nash bargaining. The firm’s outside option in the bargaining game is

zero.5 The worker’s outside option is the joint income in the previous job, as specified in (4) above.

The worker and the firm split the surplus according to the Hosios sharing rule, implying that the

worker’s share of the surplus, β, satisfies β = −θq′(θ)/q(θ).6

At any point in time, the worker chooses which submarket to enter. With perfectly directed

search, all workers end up searching in the submarket that contributes the most to the joint value

of the current worker–firm pair. In the general case, the return to search for a worker in a given

4Similar assumptions regarding efficient contracting are made in Lentz (2010, 2015), Bagger and Lentz (2019),
Moen and Rosén (2004), Garibaldi et al. (2016), and Menzio and Shi (2011).

5This follows from the assumption that the firm continuously searches, so that a worker does not fill a slot that
otherwise could have been filled by another worker.

6This is the same type of wage determination and job acceptance rule as in Dey and Flinn (2005) and Cahuc
et al. (2006), except that we do not allow for renegotiation within the job. However, this differs from the wage-
setting mechanism in the canonical on-the-job search model of Pissarides (1994), where the worker’s outside option
in bargaining with the new employer after a job switch is unemployment.
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search market influences the probability that the worker searches in that market, but not fully, as

noise or other random factors may disturb the search process. We denote the probability that a

worker employed in a firm of type i searches in submarket j by πij .

In transitions, we will generally refer to the sending firm’s type by i and the receiving firm’s

type by j. We will refer to a worker employed in a firm of type i as an i-worker. Let Mi denote

the joint value of a worker–firm pair when the firm is of type i. As stated above, a worker accepts

a job offer from a firm of type j if and only if Mj > Mi, which in turn holds if and only if j > i.7

We assume that randomization over the markets in which a worker searches occurs continuously.

It follows that Mi is independent of the submarket in which the worker happens to be searching at

any given moment. Hence, we have

rMi = yi − δ(Mi −M0) + β
∑
j

πijp(θj) (Mj −Mi)
+ , (1)

where (Mj −Mi)
+ ≡ max (Mj −Mi, 0). The NPV of the unemployed worker is

rM0 =y0 + β
∑
j

π0jp(θj) (Mj −M0)
+ .

Next, we determine πij . To that end, and as part of the technology underlying the workers’

choice of submarket, define the perceived value of search for an i-worker searching in market j, mij ,

as

mij = yi − δ(Mi −M0) + βp(θj) (Mj −Mi)
+ − p(θj) (Mi −Mj)

+ . (2)

The first three terms in (2) are identical to the first three terms in (1), and together they constitute

the flow value of searching in submarket j for an i-worker. The last term in (2) is absent in (1).

Since workers are free to reject offers, there are no costs associated with receiving inferior offers

(offers that will be rejected). As such, there is no difference in value between directing search toward

different inferior submarkets. However, when building a theory of how workers direct their search,

it is appealing to assume that workers also perceive an ordering among the inferior submarkets.

The last term achieves this through a thought experiment in which the worker cannot refuse the

offer and must bear the entire cost of doing so. A benefit of this construct is that workers in high

submarkets are, to a lesser extent, crowding the lowest submarkets with jobs they would never

accept.

We are now ready to define πij , the probability that an i-worker searches in submarket j. We

7Given the ordering of yj , this follows directly. In a more general model with more dimensions of heterogeneity
across submarkets, order the submarkets so that Mj > Mi ⇔ j > i.
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define it by the logit expression

πij =
τj exp

(
mij

µ

)
∑J

j=1 τj exp
(
mij

µ

) . (3)

If µ = 0, we have

πij = 0, if mij < max
j

mij ,

πij ∈ [0, 1], otherwise. (4)

Note that the probabilities are scale-dependent. To be more specific, let mij = m̄ijk, where k is

a scaling factor. It follows directly from (3) that an increase in k has the same effect as an increase

in the inverse of µ and is invariant to a proportional change in k and µ.8

The stochastic nature of the workers’ choice of submarkets may be given different interpretations;

see, for example, Anderson et al. (1992). In one interpretation, it reflects genuine noise. In our

setting, this may represent noise in the search process: workers aim to direct their search toward

the submarkets that yield the highest return to search, but frictions imply that they are only partly

successful. They may, for instance, misjudge the wage or productivity of firms, or the likelihood of

obtaining the jobs they offer. A related interpretation is that of Sims (1998) and Sims (2003), where

the cost of concentrating a choice distribution around particular choices is based on its divergence

from uniformity. As used in Matějka and McKay (2015) and Cheremukhin et al. (2020), if the

cost is the Kullback-Leibler divergence, one obtains the logit form. Thus, workers may end up

in submarkets other than the optimal one, yet with a higher probability of landing in the more

attractive submarkets.9

The notion that agents tremble while deciding on actions, and that other agents take this

into account, is similar to the underlying logic of the Quantal Response Equilibrium (QRE); see

McKelvey and Palfrey (1995). Under this interpretation, it is implicitly assumed that workers learn

the true submarket type at some point prior to making their acceptance or rejection decision.

Another interpretation is that the stochastic choice of submarkets reflects unobserved heterogeneities

associated with different jobs or search markets that influence their attractiveness. Examples

include amenities (as in Taber and Vejlin 2020), geographic location, or changes in preferences over

job characteristics that lead to lower wages, and so on. Hence, the observed wage is only a noisy

measure of the attractiveness of a submarket; other aspects also play a role in determining the

overall desirability of a job or market. Under this interpretation, workers may in fact target their

search fully when choosing between submarkets, but because of these unobserved heterogeneities,

their choices appear random to the econometrician. In this case, workers may accept job offers

8The choice probabilities are unaltered if all values of mij increase with a constant.
9As an abstraction, we may introduce a “market maker” that allocates workers and firms to submarkets. Within

this abstraction, our assumption is that the market maker “trembles” when allocating workers across submarkets,
but not when allocating firms, possibly because firms are larger. We conjecture that allowing for two-sided trembles
would qualitatively yield the same results.
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in submarkets below their current rank, provided that the amenities are associated with the jobs

themselves (in contrast to our assumption regarding job switches). If the amenities are instead

associated with the search process, they would not.

Which interpretation one adopts is critical for how the observed randomness in workers’ search

behavior should be understood. If it reflects genuine noise, it points to randomness in the search

process itself, in the sense that workers are not fully able to direct their search. If it reflects

unobserved heterogeneities, it merely indicates that wages are a noisy measure of a job’s overall

attractiveness. We adopt the “noise” interpretation. Hence, when a worker directs search toward a

submarket that does not maximize her monetary payoff, her NPV utility is reduced and a welfare

loss arises. We treat this randomness as an integral and exogenous component of the search

technology, consistent with the interpretation of the matching function in Petrongolo and Pissarides

(2001).

Even though workers do not accept inferior jobs, their presence when searching in the associated

submarket crowds the market. The tightness of submarket j is therefore given by

θj =
τjk∑J−1

i=0 πijNi

, (5)

where Ni is the measure of i-workers and N0 is the unemployment rate.

The value of a fishing line to a firm in submarket j is

rVj = q(θj)(1− β)
∑
i

(Mj −Mi)
+ fij , (6)

where fij is the conditional probability that a meeting is with an i-worker. By definition,
∑

i fij = 1.

This probability is defined by

fij =
πijNi∑
i≥0 πijNi

. (7)

In equilibrium, the total number of firms (equal to the total number of vacancies) is given by the

free entry condition,

E [V ] =

J∑
j=1

τjVj = K. (8)

Balanced-flow equations

Turning to the steady state, the numbers of i-workers have to satisfy a set of flow-balance equations

for i = 0, . . . , N . The equations are given by
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N0

∑
j

π0jp(θj) = δ(1−N0) (9)

Ni

δ +
∑
j>i

πijp (θj)

 = p (θi)
∑
j<i

πjiNj , i = 1, . . . , N. (10)

Equation (9) combines the balance of flows in and out of unemployment with the normalization of

population size at unity.

We are now ready to define equilibrium:

Definition 1 (Equilibrium). A steady-state equilibrium with wage bargaining is a vector of net

present values Mj , j = 0, . . . , J , a matrix of perceived flow values mij , i = 0, . . . , J , j = 1, . . . , J , a

matrix of choice probabilities πij , i = 0, . . . , J−1, j = 1, . . . , J , a vector of labor market tightnesses

θ = (θ1, . . . , θJ), a number of firms k, and an allocation of workers over unemployment and firm

types N = (N0, . . . , NJ), such that:

1. The value functions Mi and mij satisfy equations (1) and (2).

2. The choice probabilities πij are given by (3) when µ > 0, and by (4) when µ = 0.

3. The vector of labor market tightnesses (θ1, . . . , θJ) satisfies (5).

4. The number of firms k is determined by (6) and the free-entry condition (8).

5. The allocation of workers across firm types and unemployment N is determined by the flow-

balance equations (9)–(10).

Proposition 1. The equilibrium exists.

3 Equilibrium properties

In this section, we first discuss the limit properties of our equilibrium as µ approaches 0 and ∞,

before we derive a fundamental property of directed search.

3.1 Limit properties

Consider first the equilibrium of the model when µ → ∞. In this case, (3) implies that the

probability that a worker goes to submarket j is equal to
τj∑J
j=1 τj

= τj . Hence, the worker has

the same probability of meeting any vacancy, as in any model of random search.10 Consider then

10The equilibrium does not converge to the random search equilibrium if search is competitive, as in GMS, in
which case we conjecture that the Albrecht-Axell equilibrium would emerge; see Albrecht and Axell (1984). In the
Albrecht-Axell equilibrium, low-productivity firms offer a wage equal to the reservation wage of unemployed workers.
With sufficient dispersion in firm productivities, productive firms offer a wage exceeding the productivity of the
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the limit as µ → 0. In this limit, the transition probabilities are given by equation (4). Search is

perfectly directed, and a worker will enter submarket j only if this submarket maximizes his return

from search. It is instructive to compare this equilibrium with the Competitive Search Equilibrium

(CSE) concept as presented in Garibaldi et al. (2016), and we will establish results highlighting

both similarities and differences between the two equilibrium concepts.

We first point out the similarities. At a general level, workers in both models enter the submarket

or submarkets that maximize their return to search. Furthermore, in both models, the surplus is

shared according to the Hosios sharing rule–by assumption in the directed search model and as an

equilibrium outcome of a wage-posting game in the CSE model. Finally, in both models, there is

only one firm type in each submarket.

It is well known that in competitive search equilibrium, employed workers with a high current

wage search for firms offering a higher wage than employed workers with a lower current wage do;

see, for instance, Delacroix and Shi (2006) and Menzio and Shi (2010). Garibaldi et al. (2016)

go one step further and derive a maximum separation result, showing that workers with higher-

ranked current employers tend to search for higher-productivity firms. A similar result holds in

the perfectly directed search equilibrium. To be more precise, let Ii denote the set of submarkets

in which a worker currently employed at firm i searches. Then, for all j ∈ Ii, Mij = maxl Mil.

By definition, it follows that πij = 0 if and only if j /∈ Ii. If Ii contains a single element j∗, then

πij∗ = 1.

Proposition 2 (Maximum separation). Suppose i < i′. Then the highest firm type in Ii is smaller

than or equal to the lowest firm type in Ii′.

The proposition implies that the equilibrium leans toward a strict job ladder, and that workers

in two different firm types meet in at most one submarket. The higher the current state, the higher

the submarkets in which the agent searches.

In the appendix, we prove the proposition using a “revealed-preference” type of argument.

Workers who currently have a high wage are more willing to accept longer waiting time for high

wages than workers who currently have a low wage. To gain intuition, consider two workers who are

currently employed in firms of type i = l and i = l + 1, respectively, both searching in submarket

j (j > i). Their flow income (rMij) while searching in market j (equal to the perceived value of

search when search is perfectly directed) is

m(yi, yj) = yi + δ (M(yi)−M0) + β p(θj)
(
M(yj)−M(yi)

)
,

and the slope of their indifference curves in submarket j is given by

−dθj
dyj

=
p(θj)

p′(θj)
· M ′(yj)

M(yj)−M(yi)
. (11)

low-productivity firms so that workers employed in these firms would also accept a job offer. The reason why our
equilibrium does not converge to the Burdett-Mortensen equilibrium is that the worker’s job acceptance decision
in our model (in contrast with the Burdett-Mortensen model) is set so as to ensure efficient job transitions and is
therefore independent of the wage the firm pays.
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Since M(yi) is lower for i = l than for i = l + 1, it follows that the absolute value of the slope

of the indifference curve for the l worker is lower than for the l+1 worker, evaluated at (θj , yj) (or

at any point where the two curves intersect). First, this implies single crossing: the indifference

curves intersect at most once. Second, if worker l is indifferent between submarket l and submarket

i, then worker l + 1 will strictly prefer submarket l when i < l, and submarket i when i > l.

An important difference between perfectly directed search and competitive search concerns the

allocation of workers across submarkets. Under directed search, firms would prefer low-i workers

to join their submarkets, because such workers generate larger match surpluses, of which the firm

obtains a share through bargaining. However, since firms do not advertise wages, they have no

instrument with which to influence workers’ choice of submarkets. We now examine this difference

more closely. To that end, consider the perfectly directed search equilibrium, and then allow a

group of type-j firms (for arbitrary j) with measure zero to deviate by posting an NPV wage W

(hereafter simply referred to as a wage).

To avoid discreteness problems and to make calculus applicable, we study the limit properties

of the perfectly directed search equilibrium as the number of firm types converges to a continuous

distribution on [ymin, ymax]. Garibaldi et al. (2016) show that a competitive search equilibrium

exists with a continuum of types, and we conjecture that the same argument applies to the perfectly

directed search equilibrium. It follows from the maximum separation result that each submarket,

which we index by yj , attracts workers whose current employer is of exactly one type, which we index

by yi.
11 For each submarket, we can write the endogenous variables—NPV wages, tightness, and

sending-firm type—as functions of yj : W (yj), θ(yj), and yi(yj) (the productivity of the sending

firm). It follows that these functions are continuous and strictly monotone; a proof is available

upon request. Finally, let W denote the set of equilibrium wages in the perfectly directed search

allocation, i.e., the image of W (·).
If a deviating set of firms with measure 0 (hereafter, a deviating firm) advertises a wage W ∈ W,

workers will enter the resulting submarket up to the point at which they are indifferent between

searching in the new submarket and their best alternative submarket. In the appendix, we show that

this is equivalent to assuming that the deviating firm can choose which of the existing submarkets

to enter and pay the equilibrium wage in that submarket, independently of its own productivity.

Because W (·) is strictly increasing, it admits an inverse, so that yj = W−1(W ) for W ∈ W.

It follows that the tightness facing a deviating firm advertising a wage W ′ ∈ W is equal to the

tightness in the existing submarket that pays the equilibrium wage W ′, namely the submarket in

which the receiving firms have productivity y′j = W−1(W ′), with tightness θ(y′j).

Proposition 3. Consider the perfectly directed search equilibrium with a continuum of firm types.

Suppose that a set of measure zero of firms with productivity y′j are allowed to advertise wages as

11Suppose workers employed in both yi-firms and y′
i-firms, with y′

i > yi, entered submarket yj . The result that
the targeted submarket is non-decreasing in the searching worker’s value yi would still apply. Hence, all sending
submarkets in the interval [yi, y

′
i] would enter submarket yj , violating the maximum separation principle.
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described above, where yi(y
′
j) > ymin. Then the deviating firms will choose a wage that is strictly

lower than the NPV equilibrium income W (y′j) in the y′j-submarket.

The proof is given in Appendix A.2. To understand the result, note that both sides of the

market have preferences over both wages and the tightness in a submarket. In a given submarket,

wages are determined by bargaining under the Hosios condition, which ensures that positive and

negative externalities from search cancel out. Hence, in all submarkets, the indifference curves of

the workers in the market and the iso-profit curves of the firms in that market are tangent, so that

trade in the θ–W space is efficient given the identities of the agents in that submarket.

However, there are no analogous mechanisms that ensure an efficient allocation of workers of

different values yi across submarkets. As already mentioned, a firm would prefer to attract low-yi

workers, who have a weaker bargaining position, but has no instrument with which to attract them.

From a worker’s perspective, he cannot join a higher submarket and obtain the going wage in that

submarket, since his outside option in the bargaining game, and hence his wage, would be lower

than that of the (high-value) workers already populating that submarket (the choice set in (θ,W )

– space is worse for the low yi worker than for the high yi worker). As a result, the allocation of

workers across submarkets is inefficient, and this inefficiency is exploited by the deviating firms.

As the deviating firm lowers its wage, it attracts workers with a lower yi, who obtain a lower

wage partly because their bargaining position is weaker, that is, they are less able to extract rents

than their peers with a higher yi. These workers are therefore cheaper, and for small reductions in

W below W (yj), this manifests itself in a smaller increase in θ than if the firm were still attracting

the same workers.

When the deviating yj-firms reduce the wage, they deviate from the Hosios condition for these

workers, since they pay them less than the share β of the surplus. The deviating firms effectively

pay the same wage as less productive firms do in equilibrium, which in turn pay the Hosios wage.

However, this deviation from the Hosios condition has only a second-order effect on firms’ profits.

Hence, the deviating firms gain from reducing the wage somewhat.

3.2 A Fundamental Property of Directed Search

We now turn to the general case in which 0 < µ < ∞. In this case, workers direct their search to

some extent, yet all submarkets remain in the support in the sense that each is chosen with strictly

positive probability.

Define by hij the equilibrium transition probability for a worker who is currently employed at

a firm of type i and moves to a firm of type j. Furthermore, for any i < j, define

ĥij =
hij∑J
k=j hik

, (12)

which is the probability of moving to firm j, conditional on moving to submarket j or above, while

currently in i.

13



Proposition 4. ĥij defined by (12) is strictly decreasing in i as long as search is not completely

random (that is, for all µ < ∞). When search is completely random, ĥij is constant in i.

The proposition states that as long as search is at least to some extent directed, the probability

of transitioning to a given firm j > i (that is, to a firm with a higher type than the current

employer), conditional on moving to j or higher, is strictly lower the higher the type of the firm

the worker is currently employed in. We consider this a fundamental property of directedness in

search.

To build intuition for the result, consider first the case of completely random search. In this

case, the probability that a worker transitions to a firm of type j > i, conditional on transitioning

to a firm of type j or higher, is equal to the ratio of the number of vacancies posted by firms of

type j to the total number of vacancies posted by firms of type j or higher. This ratio is, of course,

independent of the current employer type i for all i < j.

This changes fundamentally when search is directed. Workers then face a trade-off between

obtaining a high job-finding rate and obtaining a high wage when a job is found. Moreover, how

a worker makes this trade-off depends on her current employer’s type. The better the current

employer, the more willing the worker is to give up a high job-finding rate in return for a higher

wage; see equation (11). Therefore, the higher the type of the current employer, the less attractive

it is to apply to firm j relative to more productive firms. Since the choice of submarkets is influenced

by their relative attractiveness, we therefore expect ĥij to be decreasing in i. Proposition 4 confirms

this expectation.

Intuitively, we would also expect the dependence of ĥij on the current employer’s type i to

be stronger the more directed search is (that is, the smaller is µ). Our simulations confirm this

intuition. We will use an empirical version of ĥij in our indirect inference setup for identification

of the model.

4 Efficiency properties of directed search equilibrium

In the µ → ∞ limit, where search is random, all submarkets have the same labor market tightness.

Consequently, job-filling rates are identical across firms. Efficiency would improve if more workers

entered the high submarkets at the expense of the low ones, thereby increasing tightness in the high-

productivity markets relative to the low-productivity ones. Directed search allows this reallocation

and therefore raises welfare. It is less clear, however, whether private and social incentives to enter

the various markets coincide, particularly in the case of perfectly directed search. Proposition 3

indicates that the perfectly directed equilibrium is not efficient, and below we confirm this formally.

For a given number of firms k, the welfare function can be written as

W =

∫ ∞

0

I∑
i=0

Ni(t)yie
−rt dt.

In the socially optimal allocation, W is maximized with respect to πij for i = 0, . . . , J − 1 and
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j = 1, . . . , J , subject to the dynamic constraints (9) and (10).

Perfectly directed search

In the social planner problem above, let λi be the adjoint variables associated with the law of

motion for Ni. Let λ̃j =
∑j−1

l=0 fljλl denote the average value of λ in submarket j. In Appendix

A.4, we show that λi can be written as

rλi = yi − δ(λi − λ0) + β
∑
j>i

πijp(θj)(λj − λi)− (1− β)
∑
j>i

p(θj)πij(λi − λ̃j). (13)

The second term on the right-hand side is zero if i = 0. The adjoint variable λi can be interpreted

as the value to the planner of an increase in Ni of one unit; see Seierstad and Sydsaeter (1986),

ch. 3.5. It is the social counterpart to Mi, the joint income of a worker–firm pair with firm type

i. The flow value rλi consists of the flow value of output yi, the flow loss from exogenous job

separation, and the flow gains from on-the-job search. Importantly, we show in the appendix that

the expression for λi gives the social value of employment in market i for any given (steady state)

allocation (θj)
J
j=1, not only at the optimal allocation.12

As a preliminary observation, note that if πij = 1 for some j, and πlj = 0 for all l ̸= i (i-workers

only search in submarket j while no other workers search in that market), then the last term in

(13) is zero, and we have

rλi = yi − δ(λi − λ0) + βp(θj)(λj − λi),

which is identical to the expression for Mi under the same conditions. This is as expected: if

a worker enters a search market, it reduces tightness in the market and crowds out some of the

matches that would otherwise have taken place in that market. For each match the worker creates,

(1−β) matches are crowded out, where β = −q′(θ)θ/q. If the match surplus of the new matches and

the crowded-out matches are equal, the social and private values of entering exactly balance when

workers obtain a share β of the match surplus, that is, when the Hosios condition is satisfied.13

With this observation in mind, note that the last term in equation (13) captures the additional

search externalities that arise because the match surpluses differ across searching workers depending

on their current status. We refer to this term as the net search externalities. In submarket j, the

match surplus between a firm and an i-worker is λj − λi. Hence, the higher is i, the lower is the

surplus. For each submarket j > i,

λi − λ̃j ≡
(
λj − λ̃j

)
−
(
λj − λi

)
12In the last part of Appendix A.4, we derive equation (13) for any given restrictions on πij , that is, for any allocation

(θj)
J
j=1. For a given matrix π̄ij , we maximize welfare with respect to πij given the constraint that πij = π̄ij . We

then obtain the marginal values of changing the πij ’s.
13The Hosios condition implies that the bargaining power of the worker, β, is equal to −q′(θ)θ/q, which is satisfied

by assumption in our model.
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is equal to the difference between the average match surplus in submarket j and the surplus

generated by a match involving an i-worker. If the other workers in the submarket tend to be

employed in firms with lower productivity than yi, so that λi > λ̃j , the net externality of the

i-worker in the j-market is negative. That makes sense since the net externality is zero when the

match surpluses of the new and crowded-out matches are equal. Summing over all the submarkets

in which i-workers search gives the last term in (13).

Next, we consider the optimal choices of πij . In Appendix A.4, we show that the planner

chooses πij to maximize the social values λi given by (13), analogous to the market solution in

which a worker employed in firm i chooses submarkets to maximize Mi. The planner solves a linear

programming problem with first-order conditions given by

βp(θj) (λj − λi)− (1− β) p(θj) (λi − λ̃j) ≤ σiN
−1
i . (14)

With complementary slackness (the inequality in 14 binds unless πij = 0, in which case it is

strict), and with the Lagrangian parameter σi > 0, the right-hand side is independent of j. Since

the externality is positive in markets above those in which the worker in question searches, the

externality moves the planner toward sending workers to higher submarkets than the workers choose

in the market solution.

As in Proposition 3, we assume that the distribution of firms is continuous, in which case

there is a one-to-one correspondence between the types of the sending and the receiving firms,

as established in the discussion preceding Proposition 3. To obtain clear results, we analyze the

planner’s incentives along the perfectly directed search equilibrium, in which case λ andM coincide.

Along this path, we can write θi and λi as functions of yi (that is, θj = θ(yj) and yj = yj(yi) =

y−1
i (yj), where yj(yi) is the function used in the proof of Proposition 3). Along the equilibrium path,

λ̃j(yi) = λi and dλ̃j(yi)/dyi = λ′(yi). The choice of submarket yj maximizes λi. Differentiating λi

with respect to yj and evaluating at yj = yi yields

d

dyj

[
β p(θ(yj))

(
λ(yj)− λ(yi)

)]
+ (1− β) p(θj)λ

′(yi) = 0. (15)

By the definition of the perfectly directed search equilibrium, the first term is zero, since the worker

maximizes the private gain from search. The second term is strictly positive. Since the second-order

conditions are satisfied locally, this implies that the planner chooses a higher optimal value of yj

than in the market solution.

Proposition 5. Consider the perfectly directed search equilibrium with a continuum of types.

Suppose the planner can decide the search behavior of a given worker. Then the planner will

direct the worker to a higher submarket than the one the worker chooses in equilibrium.

In Appendix A.4 we analyze efficient entry of firms. We show that the entry decision is optimal

if a weighted sum of the externalities associated with entry is equal to zero. Hence, the entry

decision is optimal if the private and social values of entering, properly weighted, are equal. See

the appendix for details.
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Partly directed search

Let us analyze the value of a worker–firm match and the value of searching in the various submarkets

for an arbitrary given matrix of search probabilities π̄ij .
14 Note that the differential equations

governing Ṅi are the same as with perfectly directed search; however, θj now also includes searchers

who search in inferior submarkets. Define

λ̃adj
j =

I∑
l=0

al max[λl, λj ].

It follows that λ̃adj
j ≤ λ̃j . In the appendix, we show that λi can be written as

rλi = yi − δ(λi − λ0) +
∑
j>i

πijβp(θj)(λj − λi)−
∑
j>i

πij(1− β)p(θj)(λ̃
adj
j − λi)

+
∑
j≤i

(1− β)p(θj)πij

[
λj − λ̃adj

j

]
(16)

If we compare this with the corresponding equation for λj given by (13), we see two differences.

First, λ̃j is replaced by λ̃adj
j , which adjusts for the fact that not all matches are accepted. Second,

there is an additional term in (16) that captures the externalities arising from the search of i-workers

in inferior submarkets.

Relative to the private counterpart Mi defined by (1), there are two differences. First, the fourth

(second-to-last) term reflects the net externality discussed above. Second, the last term captures

the social cost of searching in submarkets below the worker’s current submarket without accepting

the offers obtained there. These negative search externalities imposed on the searching agents in

those markets enter the social value but not the private value when computing Mi.

Let us then analyze the social value of increasing πij , which we denote Λij . In the appendix,

we show that for j > i,

Λij = Niβp(θj)(λj − λi) +Ni(1− β)p(θj)(λ̃
adj
j − λi). (17)

Suppose for an instant thatMi = λi. As before, the net search externalities are lower the higher is j,

and this will tend to increase the planner’s incentive to send workers to higher submarkets relative

to the private incentives. In a logit setup, this translates into higher probabilities of searching in

these markets in the planner’s solution. For j ≤ i we get that

Λij = −Ni(1− β)p(θj)(λ̃
adj
j − λj).

In the counterfactual situation with λi = Mi for all i, the incentives to search downward in the

14If πij = π̄ij for all i, j, the restriction that
∑J

l=0 πli = 1 is superfluous.
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market solution are lower than in the planner’s solution if

λi − λj ≥ (1− β)(λi − λ̃j).

The left-hand side is the private penalty of searching downward (recall our assumption that the

searching agent, when calculating the perceived value of search, incurs the entire loss), while the

right-hand side is the social penalty. If i = j, the left-hand side is zero and the right-hand side is

also zero, so the private loss is certainly no greater than the social loss. However, this need not

hold if λj is sufficiently lower than λi.

5 Estimation

Until now, we have analyzed the theoretical properties of our model, including its efficiency

properties. We now discuss how the model parameters, and in particular the noise parameter

µ, can be estimated.

5.1 Model extensions

In order to take the model to the data, we extend the model with a few added dimensions

of heterogeneity. First, as will be clear below, firm size will be an important determinant of

measurement errors in the classification of firm types. In order to match the size distribution of

firms, we vary the number of vacancies the different firm types are in possession of, denoted ϕi.

In order to explain downward moves, we introduce advance notice layoff shocks. We also allow

layoff rates to vary with firm type. Specifically, workers are separated into unemployment at a

rate that depends both on the employer’s type and the worker’s tenure. All jobs start with a low,

firm-specific layoff rate of δ̄i. At the Poisson rate ν, this rate increases to δ̄i + ∆, where ∆ > 0.

Hence, the layoff rate is δi = δ̄i + z∆, where i = {i, z}, z ∈ {0, 1}, referred to as the worker’s state.

Unemployment is represented by i = 0.

Finally, we distinguish between search intensities when employed and unemployed. Employed

workers have search intensity normalized at unity, and unemployed workers search with intensity

1 + γ.

The joint value of a firm–worker match in state i can now be written as

rMi=yi + δi(M0 −Mi) + ν(Mi1 −Mi) + β(1 + 1iγ)
∑
j

πijp(θj) (Mj −Mi)
+ , (18)

where 1i = 1 if i = 0 and zero otherwise. The perceived value of search mij is similarly rewritten,

mij = yi + δi(M0 −Mi) + ν(Mi1 −Mi) + β(1 + 1iγ)p(θj)(Mj −Mi)
+ − p(θj)(Mi −Mj)

+. (19)
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For a worker in state i, define the effective productivity of the match as

ỹi = yi + δi(M0 −Mi) + ν(Mi1 −Mi) (20)

In equilibrium, we can index the worker–firm matches according to ỹi. Let ĩ(i) denote the rank of

a worker based on the rank of ỹi, ĩ = 0, · · · , 2J . Define the ranked joint values by Mĩ(i) = Mi.

Lemma 1. In equilibrium of the extended model, the following is true given sufficiently low y0 so

that M0 ≤ M1.

1. A worker’s search behavior only depends on the effective productivity of the match.

2. Mĩ is increasing in ĩ.

3. Propositions 2 and 4 hold when the worker–firm matches are indexed according to ĩ.

Lemma 1 is not completely trivial and is proven in Appendix A.5. The first result follows

from the fact that for i > 0 equation (18) depends on ỹi only, not its various parts. Since we can

then rank the jobs according to the rank of ỹi, Proposition 2 and Proposition 4 follow. Note that

a higher unemployed job-finding rate, 1 + γ, makes unemployed workers require a greater match

value to compensate for the search efficiency loss associated with employment. Every submarket

below the resulting reservation threshold is empty in equilibrium. Our data necessarily only show

observations for non-empty submarkets, and the estimation will therefore necessarily pick a y0 so

as to satisfy that all markets are populated.

The structure of the equilibrium is very similar to the structure of the equilibrium of the simpler

model, with the difference that we have to include flows between the different layoff states. See

the appendix for details and for a proof of equilibrium existence. However, note that Proposition 4

concerns jobs, not necessarily firms. To be more specific, the proposition implies that the inflow of

workers to a firm j, given that the worker transitions to a firm at rung j or above, is decreasing in

the effective productivity ỹ of the current match. However, the outflow of workers in the low layoff

state is lower in high-productivity firms than in low-productivity firms. It follows that the fraction

of job switchers who are in the high layoff state is higher the higher the type of the sending firm.

For example, all workers in the highest type of firms who leave for another job are in the high-layoff

state. Therefore, the average effective productivity ỹ among job switchers does not have to increase

in firm type j. So, it is not an anomaly if ĥij increases in i for some i, j.

In order to explain horizontal transitions between firms of the same type we assume that workers

switch jobs when meeting a firm of the same type as the current employer. For the same reason

we also assume that workers in the highest firm type search. This has minor implications for the

aggregate economy.

The welfare analysis also extends easily; in particular, we obtain the same structure of the

results. The social value of a job, λi, will be an increasing function of ỹi.
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5.2 Data

We use Danish matched employer–employee (MEE) data for our analysis, and our data sources are

similar to those in, e.g., Bagger et al. (2013) and Bertheau and Vejlin (2025).

Our starting point is a population-wide dataset that contains the universe of employment spells

and labor market transitions in the period 1985-2013.15 A key advantage of these data is that we

can distinguish employer-to-employer transitions from similar transitions that have a small period

of non-employment in between, thereby avoiding time aggregation bias (see, e.g., Bertheau and

Vejlin (2022)). Further, since we observe the universe of workers and transitions, including firm

identifiers, we can construct firm ranks exploiting complete employment histories at the firm level

(e.g., all hires and separations over our sample period).

The data on employment spells build on information about worker earnings and are very

granular. We make some sample manipulations to clean the data and, for example, merge employment

spells at the same employer with only small periods of non-earnings. We also discard very short

employment and non-employment spells; see further information on these data cleaning choices in

Appendix E. Lastly, we add non-employment spells, defined as periods in which the workers are not

observed in employment, to the data so that we have complete employment and non-employment

histories for the workers in our sample.

We add information on individuals (e.g., education level, age, and gender) and firms (e.g.,

industry and value added) using some of the other registers available at Statistics Denmark. We

link across different data sets using either individual identifiers or firm identifiers, which are readily

available in all the registers (see more details on merging and variables in Appendix E.2).

To arrive at our analysis sample, we employ a number of sample restrictions to ensure a

somewhat harmonized sample and reduce unmodeled heterogeneity and other features of our sample

that our model abstracts from. First, we focus on the time period 1995-2005 to consider a time

period in which the Danish labor market and the economy as a whole are relatively stable. Second,

we focus on workers in the age range 25-50 to avoid early and late career dynamics that influence

the type of employment transitions workers make. Third, we drop observations where we have

questionable information about labor market entry or education.

The final merged dataset contains information about the individual worker (background characteristics

such as age, gender, education, and wages) as well as the current employer (value added, industry,

and firm size). The unit of observation in our final sample is a worker-year. In the final dataset,

we construct our firm ranking, which we return to further below.

5.2.1 Constructing the Poaching Rank

As we return to below, we employ the poaching rank presented in Bagger and Lentz (2019) as

our preferred grouping of firms into markets/types. The poaching rank is constructed for each

firm by considering all transitions into the firm (hiring) and distinguishing them by whether the

15Formally, this is known as the SPELL data set and is created and maintained by ECONAU at Aarhus University.
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arriving workers come from non-employment or employment. For each firm, we calculate the share

of new hires coming from employment (the poached workers). Subsequently, firms are ranked by

this poaching share. Firms that are in the public sector or in agriculture, forestry/fishing, and

financial/insurance activities are treated as an additional (and auxiliary) firm group. The same

holds for firms that are only present in the first two years of our sample window and/or have fewer

than five hires over our sample period. These restrictions are invoked as we do not believe the

poaching rank is adequate for these firms, either due to inaccuracies in terms of firm boundaries,

which makes it hard to differentiate and distinguish between, for example, internal and external

new hires, or simply considerable noise in the rankings due to few hires in general. In total, there

are approximately 76 thousand firms with a well-defined poaching rank. These firms are divided

into 10 equally sized groups/bins.16

When we characterize aggregate and submarket-specific flow statistics (e.g. job separation

rates), we use all transitions available in our dataset (including transitions from or to ranked and

non-ranked firms). When we analyze the composition of job transitions, however, we focus on a

selected set of transitions to focus on transitions that resemble transitions in our model and not

transitions that arise from mass layoffs and the like (we discuss how we select these transitions

next).

5.2.2 Building transition matrices

As outlined above, the key identifying variation in the data for direction in search concerns the

composition of EE transitions (e.g., the share of EE transitions going to markets above your

current market). A key moment of interest in the data is therefore the composition of moves

between employers. When we sample EE transitions for this moment, we invoke three mild sample

restrictions to avoid our key identifying moments being influenced by worker behavior around firm

entry or exit or in relation to large firm size reductions.17 In particular, we do not include EE

transitions away from firms in the year of exit (defined as the last two years in which the sending

firm is seen in the data) or transitions into firms during their first (or last) year in the data. Lastly,

we do not consider EE transitions to firms in years where the number of hires is above one thousand

workers/spells.

This “transition” data set used to analyze the composition of EE transitions contains around

650 thousand EE transitions to and from firms for whom we have a firm (poaching) rank (1-10) in

our sample period. Around 36% of the EE transitions we work with are transitions into a lower-

ranked firm than the origin firm. Including transitions from non-employment gives us a total of

around 1.8 million transitions into these firms.

16Appendix E.3 provides some summary statistics across firm bins.
17The idea is that transitions around these events may not represent revealed preference over two firms’ rankings,

and this process is not something the model is set up to handle. In Appendix F we also show transition moments
without these restrictions and show that while overall patterns are unchanged, there is some noise reduction gain.
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5.3 Identification strategy

The model estimation is done by simulated minimum distance. The object of the estimation is

to minimize the distance between a given set of data moments and the corresponding simulated

data moments. The set of moments is chosen to characterize key relationships in the data that

deliver identification of the model parameters. The model is solved for a given set of model

parameters. Given the solution, a data set with identical structure to that of the data is simulated,

and the simulated data moments follow. The distance between simulated and data moments is

then calculated as the weighted sum of squared differences.

Identification of the model is focused around the insight established in Proposition 4 that the

directed and random search benchmarks differ in the job-to-job move destination distributions

conditional on current firm type. Specifically, the relative likelihood of moving to one of two

higher-ranked firms is unaffected by the worker’s current position in the firm hierarchy under

random search. This is generally not true under directed search. Hence, the set of identifying

moments will pay particular attention to the worker job-to-job flow rates between firm types.

The type of a firm and its associated submarket are not directly observed in the data. To rank

firms, we follow the revealed preference argument used in both Sorkin (2018) and Bagger and Lentz

(2019), where there is global agreement among workers on the ranking of submarkets. Specifically,

we use the poaching index from Bagger and Lentz (2019) to rank firms relative to each other.

The poaching rank index measures the share of a firm’s hires that come directly from other

firms instead of from non-employment. With this, we rank firms and choose a number of equally

sized, by firm count, bins, J = 10, which are thought of as separate submarkets and map into the

separate types in the model. J is set as part of the definition of the data and simulated moments.

With this, we can directly calculate empirical transition rates hij , as we observe workers make

transitions from empirical submarket i to j. From equation (12), the empirical measurement of ĥij

follows directly.

The set of identifying moments includes {hij}(i,j)∈{1,...,J}2 (that is, the transition probability

for a worker who is currently employed at a firm of type i and moves to a firm of type j). We

show these in Table 2. While we have so far emphasized upward mobility, we use this entire set

of mobility rates to also discipline the downward job-to-job mobility rates induced by the advance

notice layoff shocks (ν). In addition, we also include the current-submarket-i conditional rate at

which a worker moves to submarket j relative to any market above j, {ĥij}. This set of moments

speaks specifically to the directedness of search (see Proposition 4).

In Table 3, we show ĥij for i ∈ {1, . . . , 9} and 10 > j ≥ i. Immediately, we see substantial

variation in ĥij across i for given j as well as an overall decreasing relationship between ĥij and

submarket i rank for given destination market j. By Proposition 4, we expect such a relationship

when search is at least partially directed, µ > 0.

On its face, the patterns in Table 3 would suggest evidence that search is at least partially

directed. However, job-to-job moves made by workers in the advance notice layoff state are a

confounding factor; see the discussion in Section 5.1. A worker in the advance notice layoff state
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is effectively searching and moving from a lower submarket equivalent. In such a job-to-job move,

we are effectively misclassifying the worker’s origin submarket. This is not confounding if search is

entirely random, because in this case, ĥij does not vary with origin market. However, if search is

partially directed, it has the potential to generate noise in the empirical ĥij patterns. We discipline

the advance notice layoff process by also including the downward part of the job-to-job mobility

rates shown in Table 2.

Firm submarket misclassification is another confounding factor. In Appendix B, we demonstrate

that classification error in the canonical on-the-job random search model results in variation in the

measured ĥij across the origin market i, where, in the absence of the classification error, ĥij would

not vary with i. Furthermore, depending on the pattern of the classification error, it is possible

that it can by itself induce a broadly decreasing relationship between i and ĥij , as seen in the data.

This highlights a virtue of our estimation strategy as opposed to the commonly used two-step

alternative, where the firm classification is obtained in a first step and is subsequently treated

as data without a sense of the uncertainty of the classification. In our estimation strategy, the

firm classification along with its error is embodied in the simulated data moments. We understand

through our structure how misclassification is a byproduct of the Bagger and Lentz (2019) poaching

rank firm classification, and it is replicated in the simulated data.

The firm classification error embodied in the poaching rank is particularly sensitive to the

number of hires a firm has. The more hires, the lower the variance of the firm’s estimated type

rank. Consequently, we include empirical moments to discipline firm size as well as the submarket-

conditional labor flows. Specifically, we include submarket-conditional average firm size as well as

the submarket-conditional average firm layoff rate and the submarket-conditional separation rate

into other jobs. These moments are shown in Table 4. Generally, firm size is increasing in the rank

of the firm and separations are decreasing.

Table 4 shows submarket-conditional layoff rates, average firm size, as well as the share of

job-to-job transitions from the submarket that are downward rank. The latter moment is used to

discipline the layoff notice process; see subsection 5.1, which is how our model understands job-to-

job transitions that are observed to be in the direction of lower-rank submarkets. The process is

akin to the exogenous job-to-job reallocation process in Jolivet et al. (2006) but is modified to have

the feature that the destination rank distribution is origin-rank dependent, an empirically relevant

feature also emphasized in Bagger and Lentz (2019). Down-rank mobility is common in the data,

and the inclusion of the advance notice process allows the model to more flexibly fit worker flows,

match distributions, and firm size distributions.

Worker reallocation is sensitive to the cardinal features of the model, more specifically, the

productivity gains associated with matches with better firms. We include submarket-conditional

value added per worker as a moment to discipline the estimate of yn. These values are also included

in Table 4.

One could consider controlling for worker heterogeneity in the data. One approach (however,

computationally demanding) could be a fully flexible interaction with observed characteristics
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that would be implied by separate estimations on subsamples. In Appendix F, we provide the

central identifying mobility moments (or summary measures hereof) for subsamples by education

and sex. The mobility patterns do not vary substantially across education categories. There

is some distinction between men and women. This is only suggestive, but at least along these

dimensions of heterogeneity, we do not see an obvious sensitivity of our identifying moments to

worker heterogeneity.

5.3.1 Model specification and parameterization

The discount rate is set at an annual rate of 5 percent, r = 0.05. We specify the matching function

to be homogeneous of degree one Cobb–Douglas, where we follow Petrongolo and Pissarides and

adopt a parameter of one half:

p(θ) = Aθ1/2, and q(θ) = Aθ−1/2.

Given the Hosios condition, we have bargaining power β = 1/2. A is a basic scale parameter to be

estimated.

Given the complexity of the estimation procedure, we economize on the number of parameters

that are estimated, trading off model flexibility to fit the data. We have arrived at the following

specifications as a compromise between these two concerns. The submarket-specific technology

parameters y(i), δ(i), and ϕ(i) are parameterized as follows. Match productivity is characterized

by two parameters (y1, y9) by linear interpolation and normalization of productivity in the top-rank

submarket:

y(i) =

y1 +
i−1
8 (y9 − y1) if 1 ≤ i ≤ 9

1 if i = 10.

The submarket-conditional layoff rate is characterized by five parameters (δ1, δ2, δ9, δ10, δc) by

δ(i) =

δ2 − (δ2 − δ9)
(
i−2
7

)δc if 2 ≤ i ≤ 9

δi if i = 1 or i = 10.

Finally, the recruiting technology is fully flexibly estimated, where ϕ(1) is normalized at unity,

ϕ(1) = 1, and ϕ(i) = ϕi for i ≥ 2 is characterized by the estimated nine parameters (ϕ2, . . . , ϕ10).

Thus, the estimation of (y, δ, ϕ) is achieved using 16 parameters. These parameters are constrained

so that y(i) is monotonically increasing and δ(i) is monotonically decreasing. ϕ(i) is fully flexible.

The rest of the estimated model parameters are (A,K, s, y0, γ, λ, µ). Thus, the estimation

determines 23 parameters.
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Table 1: Estimated model parameters

Layoffs Hiring Productivity

µ 0.405 y0 -8.201
K 436.3 δ1 0.501 ϕ1 1.000 y1 0.680
A 0.972 δ2 0.123 ϕ2 0.257 y2 0.711
ν 0.227 δ3 0.123 ϕ3 0.551 y3 0.742
s 0.218 δ4 0.122 ϕ4 0.878 y4 0.772

1 + γ 3.565 δ5 0.118 ϕ5 1.665 y5 0.803
δ6 0.109 ϕ6 1.610 y6 0.834
δ7 0.091 ϕ7 0.477 y7 0.864
δ8 0.060 ϕ8 1.170 y8 0.895
δ9 0.012 ϕ9 0.494 y9 0.926
δ10 0.010 ϕ10 0.093 y10 1.000

5.3.2 Simulated minimum distance estimator

The estimation is done by simulated minimum distance. The estimator is given by

argmin
[
Ψ(ω0)−ΨS(ω)

]T
Σ
[
Ψ(ω0)−ΨS(ω)

]
,

where Ψ(ω0) is the vector of data moments based on the real data, which is a function of the

true model parameters ω0. ΨS(ω) is the set of data moments based on s data set simulations

from the model solution for model parameters ω. Σ is a positive definite, symmetric weighting

matrix. The set of moments includes the transition probability matrix moments {hij}ij as well as

the upper diagonal matrix {ĥ}ij moments shown in Table 3. The latter are implicitly represented

in the transition probability moments, but we include them as our theory speaks directly to them.

Furthermore, the moments include the 44 moments in Table 4. The weighting matrix is a diagonal

matrix chosen to provide a balanced fit to the data.

The estimation is done with s = 1. We have tried using a greater number of simulations, but

the already substantial data set size results in noise reduction gains that are second order. The

search for the minimum is done with a combination of global optimization using a swarm algorithm

combined with Nelder–Mead.

5.4 Estimation results and fit

Table 1 presents the estimated model parameters. µ is estimated at 0.405. In the next section,

we quantify and discuss the implied directedness of search. Layoff rates δi are strongly submarket-

dependent, decreasing from a high of .501 in submarket 1 to almost zero in the highest submarket.

We estimate ν = 0.227, so that a match deteriorates into the high layoff state after slightly more

than four years of duration on average. The layoff rate then increases by 0.218. Table 4 shows that

the model captures the decreasing EU rates well. The EE flows that constitute the remaining part of

the separations are overall matched well, but the model overestimates the decreasing relationship.
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Table 2: Transition to submarket n conditional on move to n or above.

ĥmn 1 2 3 4 5 6 7 8 9

1
.012 .051 .097 .154 .203 .213 .368 .454 .607
.016 .068 .094 .153 .213 .262 .360 .481 .639

2
.046 .081 .141 .189 .198 .340 .470 .618
.035 .081 .133 .193 .233 .311 .454 .619

3
.081 .150 .195 .204 .353 .451 .619
.071 .127 .188 .223 .298 .453 .614

4
.131 .185 .199 .335 .452 .627
.119 .178 .214 .295 .451 .610

5
.184 .193 .360 .459 .619
.170 .209 .289 .448 .608

6
.175 .311 .448 .602
.201 .284 .449 .608

7
.308 .448 .617
.249 .434 .605

8
.408 .570
.407 .586

9
.554
.529

Note: Data in black. Estimated model moments in red.

The hiring rates are broadly declining so as to ensure correct relative inflows and the overall

increasing relationship between firm size and submarket.

The flow rate of income for unemployed workers is quite low, ensuring that workers enter into

the lower rungs on the firm ladder at a sufficiently high rate so as to allow the model to generate the

empirically observed flows from low-rung to high-rung matches. Unemployed search is estimated

to be around 3.5 times as efficient as employed search (γ).

Firm productivity is estimated to be increasing by firm type, as expected, and the fit to the

estimated submarket-conditional productivity is generally good.

Table 2 presents the empirical relative upward transition rates ĥij as well as the model fit. The

estimated model captures the general pattern that ĥij is decreasing in i, although while both the

layoff shocks and the misclassification mechanisms in the model do result in some non-monotonicity

in the estimated ĥij , it does not manage to match the prevalence of the phenomenon in the data

moments. In fact, the estimated model’s firm type misclassification contributes to the overall

negative relationship between ĥij and origin market i, thereby reducing the need for µ to deliver

the pattern. We conjecture that had we adopted a two-step estimation method that does not

recognize firm misclassification, the estimation would have arrived at a greater estimate for µ in

order to match the empirical negative relationship between ĥij and origin market i.

Table 3 presents the empirical transition rates hmn and the model fit. The fit to the transition

rates is generally good while leaving some room for improvement in the transition patterns out of

measured submarkets 3 and 4, which empirically have considerably more mass focused on moves to
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Table 3: Transition probabilities conditional on job-to-job move

hmn 1 2 3 4 5 6 7 8 9 10

1
.013 .078 .145 .150 .143 .113 .117 .097 .079 .052
.016 .067 .086 .127 .150 .145 .147 .126 .087 .049

2
.019 .052 .154 .155 .135 .106 .117 .102 .080 .049
.003 .035 .078 .117 .148 .144 .148 .148 .111 .068

3
.010 .046 .031 .173 .148 .103 .108 .097 .076 .046
.001 .029 .069 .115 .148 .143 .148 .158 .117 .073

4
.007 .038 .078 .038 .161 .108 .109 .087 .077 .047
.001 .025 .064 .108 .143 .141 .153 .165 .122 .078

5
.005 .030 .070 .118 .040 .130 .152 .128 .108 .049
.001 .025 .061 .103 .137 .140 .154 .170 .127 .082

6
.003 .030 .064 .112 .145 .047 .157 .138 .136 .076
.001 .025 .059 .095 .131 .138 .156 .177 .132 .085

7
.003 .024 .052 .096 .134 .121 .061 .157 .139 .088
.001 .024 .055 .090 .115 .124 .147 .192 .152 .099

8
.003 .022 .048 .088 .125 .117 .184 .075 .158 .113
.001 .026 .056 .081 .099 .100 .125 .208 .178 .125

9
.001 .017 .037 .072 .102 .108 .180 .197 .093 .133
.001 .025 .058 .085 .104 .105 .114 .169 .180 .160

10
.002 .019 .036 .071 .092 .096 .162 .195 .181 .149
.001 .027 .059 .089 .110 .108 .112 .127 .178 .188

Note: Data in black. Estimated model moments in red.
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Table 4: Submarket conditional moments.

submarket
Avg firm

size

Avg value
added per
worker

EE rate EU rate
Non-

employment
rate

Aggregate
16.9 .020 .029 .255
18.9 .024 .041 .252

1
11.2 0.709 .025 .104
4.7 0.713 .030 .117

2
12.6 0.764 .032 .079
8.7 0.762 .030 .054

3
14.9 0.750 .032 .063
14.7 0.794 .028 .046

4
20.9 0.734 .032 .057
20.7 0.816 .026 .046

5
24.1 0.769 .030 .045
24.6 0.834 .026 .045

6
19.4 0.755 .033 .041
23.1 0.843 .025 .045

7
26.0 0.806 .032 .035
24.6 0.878 .023 .041

8
25.1 0.949 .032 .031
29.4 0.927 .022 .034

9
22.8 0.936 .035 .028
24.4 0.967 .020 .029

10
22.3 1.000 .032 .022
17.3 1.000 .019 .024

Note: Data in black. Estimated model moments in red. Aggregate average firm size includes unclassified
firms.

the immediate submarkets above whereas the estimated model spreads out transitions a bit more.

It is also these two submarkets that represent a fit challenge for the ĥij measures.

6 Directedness

The particular value of the noise parameter µ is not very informative by itself regarding the degree

of directedness in the labor market, and it may depend on arbitrary details in the parameterization

of the choice probabilities. In the following, we provide three perspectives on its magnitude.

In Section 6.1 we provide a welfare-based measure that compares the welfare of the estimated

economy to that of the two extreme benchmarks of either perfectly random or perfectly directed

search.

In Section 6.2 we put the µ estimate into the context of how sensitive submarket tightnesses are

to changes in match values. This perspective uses the contrast that the perfectly random search

model is an ordinal model where only rank matters, and a marginal match value change will not
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Table 5: Classification error matrix

1 2 3 4 5 6 7 8 9 10

1 .847 .153 .000 .000 .000 .000 .000 .000 .000 .000
2 .128 .281 .161 .107 .078 .088 .094 .046 .015 .001
3 .007 .298 .243 .157 .113 .096 .069 .016 .001 .000
4 .000 .198 .280 .203 .155 .104 .053 .006 .000 .000
5 .000 .029 .197 .292 .258 .168 .055 .001 .000 .000
6 .000 .002 .039 .135 .248 .325 .236 .015 .000 .000
7 .000 .025 .062 .085 .123 .185 .309 .178 .034 .000
8 .000 .000 .000 .000 .001 .007 .144 .619 .229 .000
9 .000 .000 .000 .000 .000 .000 .002 .029 .472 .498
10 .000 .002 .001 .003 .005 .009 .022 .086 .279 .591

Note: True type in rows and estimated type in columns.

affect market tightnesses for a given firm type. This contrasts with the directed search model,

where cardinality matters. In the extreme case where search is perfectly directed, tightnesses are

infinitely sensitive.

In Section 6.3 we pose another welfare-related question in a setting where we consider an

extension to a model that includes an initial capital investment and a possible hold-up problem

similar to Card et al. (2014). In this case, we quantify the extent of the ex ante capital underinvestment

inefficiency implied by our µ estimate. Investment in the perfectly directed search model is efficient.

The underinvestment problem becomes increasingly severe as search becomes more random.

6.1 Directedness measured in terms of welfare

One main implication of directedness is that it increases welfare. We therefore construct a measure

of directedness that is based on welfare. Welfare is measured as the NPV utility of an unemployed

worker; as demonstrated in Pissarides (2000), this is an appropriate welfare measure in search

models. With our estimated parameter values (except µ), denote welfare with perfectly directed

search (µ = 0) by SP , and welfare with random search by SR. Finally, let SO denote welfare with

our estimated value of µ. The degree of directedness, dr, is defined as

dr =
SO − SR

SP − SR
(21)

It follows that our measure of directedness is equal to the welfare gain, relative to random search,

generated by our estimated value of µ, divided by the welfare gain obtained under perfectly directed

search. Clearly, dr = 0 for µ = ∞ and dr = 1 for µ = 0.

For the estimated value µ = 0.405, we obtain a directedness value of dr = 0.41. That is, the

estimated economy realizes 41 percent of the welfare difference between an economy with a perfectly

directed search technology and one in which search is entirely random.
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6.2 Sensitivity of θi to the flow search values mij

In order to give more economic meaning to our estimate, we interpret our results in terms of the

responsiveness of the tightness θj in a market with respect to the flow payoffs mij .

First, as noted above, µ is scale dependent, i.e., it depends on the scale of the mij values. In our

estimation, we normalized the productivity in the top job to 1, so the flow values mij are measured

relative to the flow value in the top job.

Consider a submarket j that is small relative to the entire economy. Let θ̄ = k/
∑J−1

i=0 Ni denote

the economywide ratio of vacancies to searching workers. Let Ñi = Ni/(1−NJ) denote the fraction

of the searching workers that are in submarket i. From (3) and (5) it follows that the tightness in

any market j is given by

θ̄

θj
=

J−1∑
i=0

Ñi exp(mij/µ)∑J−1
k=0 τk exp(mik/µ)

. (22)

Suppose τj is small, so that we can ignore the effect of mij on the denominator. Then we get that

the derivative with respect to mij is given by

θ̄

θ2j
θ′j(mij) = − 1

µ

Ñi exp(mij/µ)∑J−1
k=0 τk exp(mik/µ)

In the special case in which market ij is an “average market” with exp(mij/µ) =
∑J−1

k=0 τk exp(mik/µ),

the latter expression simplifies to

θ′j(mij)

θj
= − Ñi

µ

θj

θ̄
(23)

The left-hand side shows the semi-elasticity of θj with respect to mij , where mij is normalized by

yJ . Thus, the absolute value of the percentage change in θj when mij increases by one percentage

point relative to yJ is equal to the inverse of µ (2.5 with our estimated value), multiplied by two

factors. The first factor is Ñi, the share of searching workers that is directly influenced by the

change in mij . The second factor is the initial ratio of θj to the average tightness θ̄ in the economy.

If the latter is 1, the semi-elasticity is simply the inverse of µ scaled by Ñi.

Note that if τj is strictly greater than 0, submarket j has “market power,” in the sense that

an increase in mij will increase the overall value of search expressed by the denominator on the

right-hand side of (22). As a result, the semi-elasticity of θj with respect to mij will be lower.

6.3 Directedness and investment incentives

In this subsection, we discuss how our directedness estimate, µ, affects the sensitivity of labor

market tightness and thereby the severity of the hold-up problem facing firms when investing in

capital ex ante, as in Acemoglu and Shimer (1999) and also discussed in Card et al. (2014).

We collapse all firm types to one common type and assume there is no on-the-job search, only
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unemployment search. This is a reasonable assumption when there is only one firm type.18 We

assume that the productivity of a firm is f(K), where K > 0 is the investment undertaken by the

firm at the entry stage. For expositional reasons, we assume that the number of firms is given.

Hence, in the symmetric steady state, tightness is given independently of the equilibrium value of

K. We denote this equilibrium value by θ∗.

Since firms can immediately repost the vacancy (the fishing-line assumption), the outside option

of the firm when bargaining with the worker is still zero. From equation (6) it follows that the

value of the firm is

rV (K) = q(θ)(1− β)
(
M(K)−M0

)
= q(θ)(1− β)

f(K)− rM0

r + δ
. (24)

since M(K)−M0 = (f(K)− rM0)/(r + δ). Firms choose K so as to maximize V (K)−K, and at

the optimum V ′(K) = 1.

For later reference, we first derive the profit-maximizing K under random search, with θ

independent of K. By taking the derivative of (24) we get that

(1− β)f ′(K) =
r + δ

q̄
, (25)

where q̄ = q(θ̄). It is easy to show that the socially optimal investment level is obtained for β = 0,

and that there is underinvestment under the Hosios condition.19

Now let search be partly directed. When setting K, the firms take into account that θ may

depend on K, θ = θ(m(K)), and that the responsiveness of θ to K depends on the degree to which

search is directed. Taking the derivative of (24), we find that the first-order condition for K is

given by

q′(θ)θ′(m)m′(K)(1− β) (M(K)−M0) + q(θ)(1− β)
f ′(K)

r + δ
= r. (26)

Now, the value m(K) is, from (2),

m(K) = y0 + p(θ(K))β (M(K)−M0) .

Note that M0 on the right-hand side is constant, as the workers constantly rerandomize. It follows

that

m′(K) = p′(θ) θ′(m)m′(K)β (M(K)−M0) + p(θ)β
f ′(K)

r + δ

which gives

m′(K) =
1

1− βp′(θ)θ′(m)(M(K)−M0)
βp(θ)

f ′(K)

r + δ
. (27)

18Out of equilibrium, firms may differ and hence trigger on-the-job search since on-the-job search is costless.
However, we conjecture that a small search cost will prevent on-the-job search as a response to deviations in
investments.

19Opening up the entry margin, β = 0 is clearly suboptimal, as there will be too much entry.
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Let K∗ denote the equilibrium value of K, and let θ∗ denote the corresponding equilibrium

value of θ. Consider a firm (or a set of firms with measure 0) that deviates and posts a slightly

different wage. From (23) it follows that for this firm, θ′(m) = −θ∗/µ. Inserting this and m′(K)

into (26) gives that20

r

q(θ∗)
= (1− β + ρβ)

f ′(K∗)

r + δ
. (28)

where

ρ =
βp(θ∗)(M(K∗)−M0)

βp(θ∗)(M(K∗)−M0) + µ/(1− β)
< 1, (29)

Proposition 6. The equilibrium value K∗ is equal to the random search equilibrium value when

µ → ∞, is increasing in µ, and is equal to the efficient level when search is perfectly directed

(µ → 0).

We see that in the limit, as µ → 0, ρ converges to 1 and we get efficiency. As µ → ∞, ρ

converges to 0 and we are back in the random search solution.

We will now use the results from our estimated model to give an indication of the order of

magnitude of µ. To that end, we calibrate the investment model as follows:

• The value of M0 is set equal to the value of M0 in our estimated economy.

• The value of p(θ∗) is set equal to the average unemployment outflow rate in our estimated

economy.

• M(K) is set equal to the average value of obtaining a job in our estimated economy, which

we calculate as

M(K∗) =
rM0 − y0
βp(θ∗)

Inserting these values into the model gives ρ = 0.85. Hence, the estimated degree of directedness

places us 85 percent of the way from random-search investment incentives toward directed-search

investment incentives.

One may ask why we get closer to efficiency in the simplified model with identical firms and

investments than in our estimated model with heterogeneous firms.

Note first, however, that to the best of our knowledge, there is no theorem or result implying

that, for a given µ, the fraction of the efficiency potential realized when moving from random to

directed search should be the same across different environments.
20From (26) we get that

−q′(θ)θµ−1 (1− β)(M(K∗)−M0)

1 + βp′(θ)θµ−1[M −M0]
βp(θ∗)

f ′(K∗)

r + δ
+ q(θ)(1− β)

f ′(K∗)

r + δ
= r

This can be written as in (28), with

ρ =
p(θ)µ−1β(1− β)(M(K∗)−M0)

1 + βp′(θ)θµ−1[M −M0]
=

p(θ)µ−1β(1− β)(M(K∗)−M0)

1 + β(1− β)p(θ)µ−1[M −M0]
=

βp(θ∗)(M(K∗)−M0)

βp(θ)[M −M0] + µ/(1− β)
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Furthermore, the estimated model is far more complex than the investment model. The private

gains from entry into the different submarkets may be higher or lower than the social value,

depending on the submarket in question. Although increased responsiveness to search incentives

increases welfare overall, the effect is not positive in all submarkets. This contrasts with the

investment model, where increased responsiveness to search incentives always increases welfare.

We conjecture that this may explain why the investment model, for a given µ, yields outcomes

closer to efficiency.

That being said, we find the differences in the efficiency response to µ across environments

intriguing, and obtaining a better understanding of these differences is on our agenda for future

research.

7 Conclusion

This paper develops and estimates a tractable model of partly directed search in the labor market.

The model nests random search and perfectly directed search and allows workers to sort across

submarkets in a probabilistic manner, with the degree of directedness governed by a single parameter.

Workers are more likely to search in submarkets that offer higher expected returns, but may still

search in inferior submarkets with positive probability. Wages are determined through bargaining

after a match is formed, as in standard search models, but workers internalize joint surplus when

directing their search.

The model delivers a number of sharp theoretical implications. We show that even with perfectly

directed search, equilibrium deviates from competitive search equilibrium and does not give rise to

an efficient allocation of searching workers across submarkets (and searching firms). Furthermore,

as long as search is not completely random, the composition of job-to-job transitions depends

systematically on the worker’s current position in the job ladder. Conditional on moving to a given

or higher-ranked submarket, workers employed at higher-ranked firms are less likely to move to any

fixed destination submarket than workers employed at lower-ranked firms. This property provides

a natural and robust source of identification of the degree of directedness in search.

We take the model to matched employer–employee data from Denmark and estimate it using

simulated minimum distance. The estimation exploits detailed information on job-to-job transitions,

wages, firm characteristics, and worker histories. Firms are grouped into submarkets using a

poaching rank, and the estimation strategy explicitly accounts for classification error in firm ranks

as well as for downward mobility induced by advance notice layoffs. The estimated model provides

a good fit to key features of worker flows, firm size differences, and transition patterns across

submarkets.

Our estimates indicate that search in the Danish labor market is neither fully random nor fully

directed. Using a welfare-based measure, we find that the estimated economy realizes about 41

percent of the welfare gain that separates perfectly directed search from random search. Alternative

interpretations based on the sensitivity of market tightness to match values and on investment
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incentives also indicate a substantial degree of directedness. In particular, the estimated degree

of directedness substantially mitigates, but does not eliminate, the inefficiencies associated with

random search.

Overall, the results suggest that allowing for imperfectly directed search provides a useful and

empirically relevant middle ground between the standard random search framework and models

with fully directed or competitive search. The framework developed here can be applied to study a

range of questions related to worker reallocation, wage dynamics, and efficiency in frictional labor

markets, and it offers a promising basis for further empirical work on search technologies.
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Anderson, Simon P., André De Palma, and Jacques Francois Thisse (1992). Discrete Choice Theory

of Product Differentiation. MIT Press.

Bagger, Jesper and Rasmus Lentz (2019). An Empirical Model of Wage Dispersion with Sorting.

The Review of Economic Studies 86, no. 1: 153–190.

Bagger, Jesper, Kenneth L. Sørensen, and Rune Vejlin (2013). Wage sorting trends. Economics

Letters 118, no. 1: 63–67.

Bertheau, Antoine and Rune Vejlin (2022). Employer-to-employer transitions and time aggregation

bias. Labour Economics 75: 102130.

Bertheau, Antoine and Rune Vejlin (2025). Job ladders by firm wage and productivity. Review of

Economic Dynamics (forthcomming).

Burdett, Kenneth and Dale T. Mortensen (1998). Wage differentials, employer size, and

unemployment. International Economic Review 39, no. 2: 257–273.

Cahuc, Pierre, Fabien Postel-Vinay, and Jean-Marc Robin (2006). Wage bargaining with on-the-job

search: Theory and evidence. Econometrica 74, no. 2: 323–64.

Card, David, Francesco Devicienti, and Avata Maida (2014). Rent-sharing, holdup, and wages:

Evidence from matched panel data. The Review of Economic Studies 81, no. 1 (286): 84–111.

Cheremukhin, Anton, Paulina Restrepo-Echavarria, and Antonella Tutino (2020). Targeted search

in matching markets. Journal of Economic Theory 185: 104956.

Christensen, Bent Jesper, Rasmus Lentz, Dale T. Mortensen, George Neumann, and Axel Werwatz

(2005). On the job search and the wage distribution. Journal of Labor Economics 23, no. 1:

31–58.

Delacroix, Alain and Shouyong Shi (2006). Directed search on the job and the wage ladder.

International Economic Review 47, no. 2: 651–699.

Dey, Matthew S. and Christopher J. Flinn (2005). An equilibrium model of health insurance

provision and wage determination. Econometrica 73, no. 2: 571–627.

35



Diamond, Peter A. (1982). Wage determination and efficiency in search equilibrium. 49, no. 2:

217–27.

Garibaldi, Pietro, Espen R Moen, and Dag Einar Sommervoll (2016). Competitive on-the-job

search. Review of Economic Dynamics 19: 88–107.

Godøy, Anna and Espen R Moen (2013). Mixed search. Technical report, Working Paper 21376,

Society for Eco.

Jolivet, Grégory, Fabien Postel-Vinay, and Jean-Marc Robin (2006). The empirical content of

the job search model: Labor mobility and wage distributions in europe and the US. European

Economic Review 50, no. 4: 877–907.
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Appendix to Directness in Search

A Mathematical appendix

A.1 Proof of Proposition 1

We prove existence for µ > 0 and for µ = 0 separately. We start with µ > 0.

The proof is based on a fixed-point argument. Define the compact convex set

X =
{
(M,π, k,N) : Mi ∈ [M,M ], πij ∈ [π, 1],

J∑
j=1

πij = 1 ∀i, k ∈ [k, k], N ∈ ∆J+1
}
,

with ∆J+1 = {Ni ≥ 0,
∑J

i=0Ni = 1}, where bounds (M,M) and π > 0 are provided below. Given

(M,π, k,N) ∈ X , define Γ(M,π, k,N) = (M ′, π′, k′, N ′) as follows:

1. Define tightness. From (M,π, k,N), calculate

θj =
τjk∑J

i=0 πijNi

Given the bounds, θj is strictly greater than zero and bounded above. Denote the bounds on

θ by θ > 0 and θ < ∞.

2. Compute mp
ij from equation (2).

3. Given θ, M, and πij , compute fij from (7), then Vj from equation (6). Let EV =
∑J

j=1 τjVj .

Since q(θj) < q(θ), Vj is finite for all j.

4. Update π from (3)

π′
ij =

ϕjτj exp
(mp

ij

µ

)
∑N

j=1 ϕjτj exp
(mp

ij

µ

)
5. Update M . For i ≥ 0,

rM ′
i = yi − δ(Mi −M0) + β

∑
j

π′
ijp(θj) (Mj −Mi)

+ , (30)

6. Update k:

k′ = kEV/K

.
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7. Update N :

N ′
0

J∑
j=1

π′
0jp (θj) =

J∑
j=1

Njδ (31)

N ′
i

δ +

N∑
j=i+1

π′
ijp(θj)

 = p (θi)

i−1∑
j=1

π′
ijNj (32)

If any of the values (M ′, π′, k′, N ′) defined above exceeds (falls below) the respective upper (lower)

bound, the updated value is instead set equal to the corresponding upper (lower) bound.

The mapping is continuous, and it follows from Brouwer’s fix-point theorem that the mapping

has a fixed point. We denote this by (M∗, π∗, k∗, N∗). By construction, the fix-point satisfies all

the equilibrium requirements provided that bounds do not bind.

Hence the proof is complete if we can construct bounds that don’t bind at the fixed point. We

will now derive such bounds.

1. An upper bound for Mj is yJ/r, and a lower bound is y0/r.

2. Lower bound for k. As k → 0, we have N0 → 1 and M0 → y0/r. Then there exists j > 0 with

θj → 0. Since Mj −M0 → (yj − y0)/(r + δ) > 0 and q(θj) → ∞ under the standard Inada

condition on the matching function, it follows that Vj → ∞ and hence EV → ∞. Thus there

exists k > 0 such that EV > K for all k ≤ k. This lower bound cannot bind at the fixed

point.

3. Upper bound for k. Total worker mass is 1. The mass of type-J firms is τJk. Thus the

average number of workers per type-J firm is at most 1/(τJk). Since wages are at least y0,

flow profit per type-J firm is bounded by (yJ − y0)/(τJk). Discounting at rate r,

VJ ≤ yJ − y0
r τJ k

.

Because yj ≤ yJ for all j, Vj ≤ VJ . Hence

EV =
J∑

j=1

τjVj ≤ VJ ≤ yJ − y0
r τJ k

.

As a consequence, for k ≥ k := (yJ − y0)/(rKτJ), we have EV ≤ K, so no fixed point can lie

above k. Thus k∗ ≤ k in equilibrium.

4. Lower bound for πij . From the logit expression

πij =
τj exp(m

p
ij/µ)∑J

ℓ=1 τℓ exp(m
p
iℓ/µ)

,
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with mp
ij ∈ [y0, yJ ], the worst case for j is mp

ij = y0 and all mp
iℓ = yJ for ℓ ̸= j. Hence

πij ≥ τje
y0/µ∑J

ℓ=1 τℓe
yJ/µ

≥ τmin e
−(yJ−y0)/µ =: π > 0.

Suppose then that µ = 0. We define the fixed point as above; however, we change the update of

πij . For a given i, let j̃ denote a value of j that maximizes mp
ij defined in step 2, and let mmax

i

denote the corresponding maximum value. Let m̄i =
∑

j πijm
p
ij .

π′
ij = πij

(
1 +

mp
ij − m̄i

mmax
i

(1− πij̃)

)
It follows that π′

ij is bounded by 0 and 1, sums over j to 1, and is continuous in πij and mp
ij .

Furthermore, at a fixed point, πij > 0 only in the submarkets with mp
ij = mmax

i .

We use the same bounds as in the proof with µ ̸= 0, and show that the bounds do not bind

in the same way except for the lower bound π for πij , which is no longer defined by (3). Instead,

we assume a lower bound on a combination of variables, ñj =
∑

i<j Niπij , the measure of workers

searching in submarket j, and show that it does not bind for sufficiently low values of the bound for

any j > 0. This is sufficient to ensure an upper bound on θj , which is what we need for the mapping

Γ to be well defined. To this end, construct a decreasing sequence of lower bounds on ñ, ϵz, which

converges to zero. For each z, there exists a fixed point. We want to show that for sufficiently high

z, the bound ñj does not bind for any j. Suppose it does. For each of these fixed points, θj is

non-increasing in j. Since all workers at j < J search, there must exist a lowest market l at which

the sequence ñz
l is bounded below by a strictly positive number, and denote the associated upper

bound on the tightness by θ. Some unemployed workers must search in market l (due to maximum

separation, see 2), so that rM0 ≤ y0 + βp(θ)(Ml −M0). Furthermore, M1 −M0 ≥ y1−y0
r+δ+p(θ)

, which

is a fixed number strictly greater than zero. However, as ñ1 → 0, and since k ≥ k, p(θ1) → ∞,

and an unemployed who is searching in the j = 1 market obtains an NPV income that converges

to M1, a contradiction. Hence, for some z < ∞ the bound does not bind for j = 1, and since θj is

non-increasing in j, for none of the markets. This completes the proof.

A.2 Proof of Proposition 2

Recall that, in the limit economy,

rMi = yi + δ(M0 −Mi) + βmax
j

[p(θj)(Mj −Mi)] . (33)

Suppose i′ > i. Further, suppose there exists a market j that workers in i′ search in, and another

market j′ > j that workers in i search in. We will show that this leads to a contradiction.
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Assume the claim is true. For the worker in i′, it follows that:

yi′ + δ(M0 −Mi′) + βp(θj)(Mj −Mi′) ≥ yi′ + δ(M0 −Mi′) + βp(θj′)(Mj′ −Mi′).

This simplifies to:

p(θj)(Mj −Mi′) ≥ p(θj′)(Mj′ −Mi′). (34)

Similarly, for the worker in i, it follows that:

p(θj)(Mj −Mi) ≤ p(θj′)(Mj′ −Mi). (35)

Combining (34) and (35), we obtain:

(p(θj′)− p(θj))(Mi′ −Mi) ≥ 0. (36)

We know that p(θj′) < p(θj) and that Mi′ > Mi. Therefore, the left-hand side is strictly negative,

contradicting the inequality. This completes the proof.

Proof of Proposition 3

First, we want to show that it does not matter for the profitability of the deviating firms whether

they form their own submarket or join the existing submarket with the same wage, since in both

cases they will face the same tightness (and will also attract workers with the same employer type).

Suppose the deviating firms’ submarket with wage W ′ did obtain a strictly higher tightness

than the market with the corresponding productivity y′j = W−1(W ′), which in equilibrium has

tightness θ(y′j). Then workers currently employed in firms with productivity y′i = yi(y
′
j) would

strictly prefer to join the new market, which is inconsistent with equilibrium. If, on the other hand,

the resulting tightness were strictly lower than θ(y′j), the new market would be strictly dominated

by the y′j-market, and we could not be in equilibrium. Hence it follows that the tightness must be

equal to θ(y′j). Given this tightness, the deviating market would be dominated by another market

for all workers except those currently employed in firms of type y′i, who will therefore be the workers

who populate the new market.

Given this equivalence, we now let the deviating firm choose which submarket to enter. When

choosing between submarkets, the firm chooses between a menu of wage–tightness combinations

(W (yj), θ(yj)). It follows that we can write θ as a function of W , θ = θe(W ) ≡ θ(W−1(W )) for all

W ∈ W. Hence
dθe(W )

dW
=

θ′(yj)

W ′(yj)
, (37)

where yj = W−1(W ), W ∈ W.

We now investigate the derivative of θe(W ) further. Let g(yi) denote the value of search in the
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perfectly directed search equilibrium, defined as

g(yi) = max
yj

p(θ(yj))β (M(yj)−M(yi)) . (38)

By the envelope theorem it follows that

g′(yi) = −β p(θ(yj))M
′(yi), (39)

where yj is the productivity of the firms in the optimal submarket, given by yj = y−1
i (yi). Note

that g′(yi) < 0.

Next, we take the derivative of (38) with respect to yj , taking into account that yi = yi(yj).

We obtain

g′(yi) y
′
i(yj) = p′(θ) θ′(yj)β

(
M(yj)−M

(
yi(yj)

))
+ p
(
θ(yj)

)
β
(
M ′(yj)−M ′(yi) y

′
i(yj)

)
. (40)

Recall that

W (yj) = M
(
yi(yj)

)
+ β

(
M(yj)−M

(
yi(yj)

))
,

hence

W ′(yj) = M ′(yi) y
′
i(yj) + β

(
M ′(yj)−M ′(yi) y

′
i(yj)

)
.

Substituting these expressions into (40) gives

g′(yi) y
′
i(yj) = p′(θ) θ′(yj)

(
W (yj)−M(yi)

)
+ p
(
θ(yj)

)(
W ′(yj)−M ′(yi) y

′
i(yj)

)
.

Using (39) and rearranging yields

p′(θ) θ′(yj)
(
W (yj)−M(yi)

)
+ p
(
θ(yj)

)
W ′(yj) = −(1− β) g′(yi) y

′
i(yj) > 0, (41)

since g′(yi) < 0 and, by monotonicity, y′i(yj) > 0. It follows that

dθe(W )

dW
= − θ′(yj)

W ′(yj)
> − p(θ(yj))

p′(θ(yj))
(
W (yj)−M(yi)

) . (42)

The deviating firm of productivity yj seeks to maximize profit

rV = q(θe(W )) (Mj −W ).

The first-order condition is

q′(θe(W ))
dθe(W )

dW
(Mj −W )− q(θe(W )) = 0.

It is sufficient to show that the left-hand side of this condition, evaluated at (W (yj), θ(yj)), is
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strictly negative. In that case the firm finds it profitable to reduce the wage. This is equivalent to

showing that
dθe(W (yj))

dW
>

q(θ(yj))

q′(θ(yj)) (Mj −W (yj))
.

Now, using the Cobb–Douglas relations

β =

∣∣∣∣θ q′(θ)q(θ)

∣∣∣∣ , 1− β =
p′(θ)

q(θ)
,

we obtain (evaluated at yj , and suppressing the dependence on yj)

q(θ)

q′(θ) (Mj −W )
=

q(θ)

q′(θ)

1− β

β

1

W −Mi

= − θ

(1− β)(W −Mi)

= − p(θ)

p′(θ) (W −Mi)
. (43)

From (42) we know that

dθe(W (yj))

dW
> − p(θ(yj))

p′(θ(yj)) (W (yj)−M(yi))
,

which proves that a small reduction in W increases profit, and therefore the deviating firm sets a

strictly lower wage than W (yj).

Finally, note that the indifference curve of the worker of type yi(yj) who searches in the yj-

market is given by

p(θ(W )) (W −Mi) = g(yi),

with derivative exactly equal to

− p(θ)

p′(θ) (W −Mi)
.

Hence, if the deviating firm were always attracting workers of type yi(yj), it follows from (43)

that it would not be profitable to deviate. However, when it reduces the wage, the deviating firm

attracts workers of strictly lower type. The relevant θ–W relationship is therefore θe(W ), which is

strictly less steep than the indifference curve of the yi(yj) worker.

A.3 Proof of Proposition 4

Let j and z be two receiving markets, with z > j. Let i < j be arbitrary. Then we have that

miz −mij = βp(θz)(Mz −Mi)− βp(θj)(Mj −Mi)

= β
(
p(θz)Mz − p(θj)Mj + (p(θj)− p(θz))Mi

)
(44)
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Since p(θj) > p(θz), it follows thatmiz−mij is strictly increasing in i. Recalling that πij =
emij/µ∑
x emix/µ

we get

ĥij =
pjπij∑J

z=j pzπiz

=
pj

τje
mij/µ∑

x τxemix/µ∑J
z=j pz

τze
miz/µ∑

x τxemix/µ

=
pjτje

mij/µ∑J
z=j pzτze

miz/µ

=
pjτj∑J

z=j pzτze
(miz−mij)/µ

Suppose that i′ > i. It follows that

mi′z −mi′j > miz −mij (45)

(since z > j). It follows that e(mi′z−mi′j)/µ > e(miz−mij)/µ, and hence that

ĥij =
pjτj∑J

z=j pzτze
(miz−mij)/µ

>
pjτj∑J

z=j pzτze
(mi′z−mi′j)/µ

=ĥi′j

which shows Proposition 4

A.4 Derivations related to efficiency considerations

Hence, the planner’s maximization problem can be written as

max
πij(t)

∫ ∞

0

I∑
i=0

Ni(t)yie
−rt dt

Given the following constraints:

Ṅi(t) = −Ni(t)

δ1i>0 +
I∑

j=i+1

πij(t)θj(t)
1−β

+
i−1∑
l=0

Nl(t)πli(t)θi(t)
1−β+(1−1i>0)δ

J∑
i=1

Ni, i = 1, . . . , I
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where 1i>0 = 1 if i > 0 and 0 if i = 0, where

θj(t) =
τjk∑I

l=0 πlj(t)Nl(t)
, p(θj(t)) = θj(t)

1−β, 0 < β < 1,

and where we require that
I∑

i=0

Ni(0) = 1, πij(t) ≥ 0,

J∑
j=1

πij = 1 i = 1, . . . , I

We will first derive the solution to this maximization problem in the noiseless limit with µ = 0.

Then we will use the set-up (the Hamiltonian and the associated adjoint variables) to shed light

on the social versus private value of entering the different submarkets when µ > 0.

Perfectly directed search, µ = 0

Let us first derive the optimal solution in the noiseless limit with µ = 0. In this case, the planner

can freely choose the probabilities πij . Furthermore, neither the planner nor the agents in the

decentralized solution would ever choose πij > 0 for j ≤ i. The current-value Hamiltonian thus

reads

H =

I∑
i=0

Niyi +

I∑
i=0

λi

−Ni

δ1i>0 +
∑
j>i

πijp(θj)

+

i−1∑
l=0

Nlπlip(θi) + (1− 1i>0)δ

J∑
l=1

Nl


+

∑
i

σi

 J∑
j=i+1

πij − 1

+
J∑

i=0

J∑
j=0

κijπij (46)

We require that σi, κij ≥ 0 and that πijκij = 0 (complementary slackness).

Using that rλi =
∂H
∂Ni

in steady state we get that

rλi = yi − δ(λi − λ0) +
∂

∂Ni

∑
j>i

p(θj)
∑
l<j

Nlπlj(λj − λl)

 (47)

(since δi(λ0 − λ0) = 0). Now
∂θj
∂Ni

= −θj
πij

ñj
, where ñj is the total number of applicants in market j

(ñj =
∑j−1

l=0 πlj(t)Nl(t)). The next expression follows. For i > 0 we have that

rλi = yi − δ(λi − λ0) +
∑
j>i

πijp(θj)(λj − λi)−
∑
j>i

(1− β)p(θj)πij
∑
l<j

flj(λj − λl) (48)

The first term is the productivity flow, the second the direct effect of on-the-job search (not including

search externalities) and the third term captures search externalities. Note that if πik = 1 for some
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k, and that πlk = 0 for all l ̸= i, then the equation writes

rλi = yi − δ(λi − λ0) + βp(θk)(λk − λi)

which is well known in competitive search. More generally, let λ̃j =
∑j−1

0 fljλl. Then

rλi = yi − δ(λi − λ0) +
∑
j>i

πijβp(θj)(λj − λi)−
∑
j>i

(1− β) p(θj)πij(λi − λ̃j) (49)

equal to (13).

Note that
∂θj
∂πij

= −θj
Ni
ñj
.

πij

βp(θj)(λj − λi)− (1− β)p(θj)
∑
l<j

(λ̃j − λi) = (σi + κij)N
−1
i

 (50)

which is equivalent to maximizing λ given by (49). This is a linear programming problem, and

using the complementary slackness condition for κij and πi gives first order conditions (14).

Finally, we consider entry decisions. Firms can enter at cost K. Subtracting kK from the

Hamiltonian (46) and taking derivatives wrt k gives

J∑
j=1

τjq(θj)(1− β)
(
λj − λ̃j

)
= K (51)

which has the same format as the equilibrium entry condition, as expected. Hence, any inefficiencies

along the entry dimension will be due to differences between the expected social and private values,

λi and Mi, of worker-firm matches.

General case

Let us then consider a situation in which the πij are constrained to be equal to π̄ij for some

probability matrix π̄. We do not require π̄ij = 0 for i ≥ j. The Hamiltonian then read (the

constraint that
∑

j πij = 1 and that the probabilites are non-negative are now automatically

satisfied and therefore ignored).

H =

I∑
i=0

Niyi +

I∑
i=0

λi

−Ni

δ1i>0 +
∑
j>i

πijp(θj)

+

i−1∑
l=0

Nlπlip(θi)


+

J∑
i=0

J∑
j=0

κij (πij − π̄ij) , θj(t) =
τjk∑I

l=0 πlj(t)Nl(t)
(52)

Using that rλi =
∂H
∂Ni

gives
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rλi = yi − δ(λi − λ0) +
∑
j>i

πijp(θj)(λj − λi)

−
∑
j>i

(1− β)p(θj)πij
∑
l

Nlπlj
ñj

(λj − λl)−
∑
j≤i

(1− β)p(θj)πij
∑
l

Nlπlj
ñj

max [λj − λl, 0] (53)

Now define λ̃adj
j =

∑I
l=0 flj max[λl, λj ]. It follows that we can write

rλi = yi − δ(λi − λ0) +
∑
j>i

πijp(θj)(λj − λi)

−
∑
j>i

(1− β)p(θj)(λj − λ̃adj
j ) +

∑
j≤i

(1− β)p(θj)πij

[
λj − λ̃adj

j

]
(54)

Or

rλi = yi − δ(λi − λ0) +
∑
j>i

πijβp(θj)(λj − λi) +
∑
j>i

πij(1− β)p(θj)(λ̃
adj
j − λi)

−
∑
j≤i

(1− β)p(θj)πij

[
λ̃adj
j − λj

]
(55)

as stated in the text.

We will calculate the social value of increasing πij , which we denote Λij . To that end we take

the derivative of H given by (52) to get that, for j > i,

Λij = Niβp(θj)(λj − λi) +Ni(1− β)p(θj)(λ̃
adj
j − λj) (56)

For j ≤ 0 we get that

Λij = −Ni(1− β)p(θj)(λ̃
adj
j − λj)

Finally, consider optimal entry. The optimal number of firms maximises H − kK where H is

given by (52). It follows that the conditions for optimality is given by (51) with λ̃ replaced by λ̃adj .

A.5 Definition of extended equilibrium

Definition 2. A steady state equilibrium with wage bargaining for µ > 0 is a vector of net present

values, Mj , j = 0, ..., J , a matrix of perceived flow values, mij , i = (i, z), i = 0, ..., J , z = 0, 1,

and j = 1, ..., J , a matrix of choice probabilities, πij , a vector of labour market tightnesses,

θ = (θ1, ..., θJ), a number of firms, k, and an allocation of workers on firms and states, N =
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(Nz1, ..., NzJ), z = 0, 1, such that

1. Mi and mij solve equations (18) and (19).

2. The matrix of choice probabilities, πij , is given by (3), with i replaced by i.

3. The vector of labour market tightnesses (θ1, ..., θJ) is given by equation (5), where the

summation is over i instead of i.

4. The number of firms, k, is implicitly defined by equations (6) and (8).

5. The allocation of workers on firms, N , solves the following equations (replacing 9 and 10)

γN0

∑
j

π0jp(θj) = δ(1−N0) (57)

Ni

δ +
∑
j

πijp (θj)1 (Mj −Mi > 0)

 = p (θi)
∑
l

πliNl1 (Mi0 −Ml > 0) (58)

where 1() is an indicator function that takes value 1 if the expression in () is true and 0

otherwise.

The proof of existence of equilibrium is completely analogous to the proof of existence of

equilibrium in the simpler model and is therefore omitted.

Proof of Lemma 1

Claim 1. The choice probabilities depend on ỹij .

For given equilibrium values of θ = (θ1, · · · θJ), mp
ij defined by (2) depends on ỹij only. Since

the probabilities πij , defined by (3), only depend on values of mp
ij , the claim follows.

Claim 2. Mĩ is increasing in yi.

Let M(ỹ) denote the NPV income as a continuous function of ỹ for all ỹ ≥ y0, given by (18),

where ỹ is defined generically by (20). Furthermore, define mp
j (ỹ) by (19). Similarly, define πj(ỹ)

by (3), with mp
ijk replaced by mp

j (ỹ).

For sufficiently high values of ỹ, no job will be accepted (recall that the vector y0, . . . , yJ is

fixed). Then

rM ′(ỹ) = 1 > 0.

Suppose M ′(ỹ) < 0 for some ỹ. Since M ′(ỹ) is continuous in ỹ, there must then exist ỹ′ such that

M ′(ỹ′) = 0. From (2) we then have that at ỹ′

dmp
j (ỹ

′)

dỹ
= 1 for all j ∈ {0, . . . , J}.
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It thus follows from (3) that
dπj(ỹ

′)

dỹ
= 0.

But by differentiating (1) with respect to ỹ it then follows that M ′(ỹ) > 0, contradicting the

assumption that M ′(ỹ′) = 0.

Claim 3. The propositions 2 and 4 hold when the worker-firm matches are indexed according to ĩ.

These claims follow from the same arguments as those presented in the proofs of proposition 2

and 4, and the proofs are therefore omitted.

B Random Search w/ classification error

Consider a canonical random search model. Workers receive offers at Poisson rate λ whether

currently employed or unemployed, and jobs are destroyed at rate δ. Denote by fx,y the joint

offer distribution of a true type x offer and its observed type y. Worker movement is as in the

regular model in that an offer (weakly) better than current offer is accepted. Denote by fx the

marginal distribution,
∑

y fx,y = fx, and its CDF Fx =
∑x

n=1 fn. Let unemployment be given by

g0. Denote by gx,y the steady state match distribution over true type x and observed type y. By

similar convention denote the marginal distribution by, gx =
∑

y gx,y and its CDF Gx =
∑x

n=0 gn.

Denote by hmn the worker transition flow rate between measured type m and measured type

n. A worker knows true type and accepts any true type offer that is better than current true type.

An observed flow from m to n happens at rate:

hmn = λ
∑
x

gxm
∑
y≥x

fyn.

With this,

ĥmn =

∑
x gxm

∑
y≥x fyn∑

x gxm
∑

z≥n

∑
y≥x fyz

.

The steady state condition on gxy is,δ + λ
∑
z≥x

fz − λfxy

 gxy = λfxy

(
x∑

z=0

gz − gxy

)

⇕δ + λ
∑
z≥x

fz

 gxy = λfxy

(
x∑

z=0

gz

)

The reasonably straightforward way to solve this is to solve for Gx and then with that solve for
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gxy. The solution on the marginals is

λ [1− Fx]Gx = δ [1−Gx]

⇕

Gx =
δ

δ + λ [1− Fx]
.

With that we have,

gxy =
λfxyGx

δ + λ (1− Fx−1)
= ϕxfxy,

where ϕx = λGx
δ+λ(1−Fx−1)

is monotonically increasing in x and 0 < ϕx < λ/δ. With this, in steady

state it follows that,

ĥmn =

∑
x ϕxfxm

∑
y≥x fyn∑

x ϕxfxm
∑

z≥n

∑
y≥x fyz

.

It is possible to design classification error examples where ĥmn is at least locally increasing in

m. However, the (far) more common pattern is that of a negative dependence in m. To illustrate,

consider a symmetric classification error where a type can only be misclassified as a neighboring

type. For some ε > 0, assume,

fxy =



ε if |x− y| = 1

fx − 2ε if y = x and N > x > 1

fx − ε if y = x and x = 1 or x = N

0 otherwise.

Furthermore, restrict ε so that fxx ≥ fxy for all y and x. With this we have for 1 < n < N ,

ĥmn =


fn

F̂n−1
for m ≤ n− 2

fn−C

F̂n−1−C
for m = n− 1

fn−D

F̂n−1−D−ϕn+1ε2
for m = n

where,

C =
ϕnε

2∑n
x=n−2 ϕxfx,n−1

D =
ϕnε

[
(fn − 2ε) + ϕn+1

ϕn
(fn − ε)

]
∑n+1

x=n−1 ϕxfxn
.
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Hence, it immediately follows that ĥn−1,n < hmn for m ≤ n − 2 . Furthermore, ĥn,n ≤ ĥn−1,n

implies,

ĥn,n ≤ ĥn−1,n

⇕
fn −D

F̂n−1 −D − ϕn+1ε2
≤ fn − C

F̂n−1 − C

⇕

[C −D]
[
F̂n−1 − fn

]
≤ [fn − C]ϕn+1ε

2

⇕

[C −D] F̂n ≤ [fn − C]ϕn+1ε
2.

A sufficient condition for ĥn,n ≤ ĥn−1,n is then that,

D > C

⇕

(fn − ε)

(
1 +

ϕn+1

ϕn

)
> ε

∑n+1
x=n−1 ϕxfxn +

∑n
x=n−2 ϕxfx,n−1∑n

x=n−2 ϕxfx,n−1
,

which is satisfied for suffiently low ε. This is a sufficient condition. In our experience, D > C is the

rule rather than the exception even for high ε, but ĥmn has so far resisted broader characterization,

and as mentioned, it is possible to provide examples where ĥmn monotonically decreasing in m is

violated.
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C Specification and solution algorithm

Specification

Let the matching function in a submarket be Cobb-Douglas, M(s, v) = Asαv1−α, where s is the

mass of efficiency units of worker search in the market. The employed worker meets a vacancy

at rate p (θ) = M (s, v) /s = m (θ) = Aθ1−α. The unemployed worker, by virtue of the possibly

different search efficiency, meets a vacancy at rate, p0 (θ) = γm (θ) = γAθ1−α. Vacancies meet

workers at rate q (θ) = Aθ−α.

Solution algorithm

1. The solution algorithm looks to find a fixed point in a mapping of (θ, k) into itself, (θ(m+1), k(m+1)) =

Tθk(θ
(m), k(m)).

2. The mapping Tθk is determined as,

3. Take input (θ(m), k(m)).

4. Solve for
(
m(m),M (m), π(m)

)
for given θ(m) using equation systems (2), (1), and (3).

(a) This equation system is solved as fixed point search M∗ = TMM∗.

i. Make a guess, M (s,m).

ii. Solve for m(s,m) using equation (2) - uses M (s,m) and θ(m).

iii. Solve for π(s,m) using equation (3) - uses m(s,m).

iv. Solve for M (s+1,m) using equations (1) - uses θ(m) and π(s,m).

A. This step uses that M can be written as a contraction mapping,

Mik=
yi + (δi + sk)M0 + λMi1 +

∑
j=1 πijkp (θj)βmax [Mj0,Mik]

r + δi + sk + λ+
∑

j=1 πijkp (θj)β

M0 =
y0 +

∑
j=1 γπ0jkp (θj)βmax [Mj0,M0]

r +
∑

j=1 γπ0jp (θj)β

Thus, simply iterate until convergence to obtain solution. This happens to be

quite fast.

v. loop back to step i with M (s+1,m) as input. Continue to iterate until convergence...

no convergence guaranteed.

(b) In practice, it is faster if the algorithm does not iterate for a full solution of this system

in each (m) iteration.

5. Solve for n(m) as the solution to the linear equation system in equations (9)-(??) taking as

given π(m), M (m) and θ(m).
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6. Solve for
(
θ(m+1), k(m+1)

)
as the solution to equations (5) and (8).

(a) This step uses a speed up from the Cobb-Douglas formulation. We have that q(θ) = θ−α.

Define,

θ̃
(m)
j =

τj∑1
k=0

∑N
i=1 π

(m)
ijk N

(m)
ik + γπ

(m)
0j N

(m)
0

.

With this, the free entry condition can then be written as,

k−α
N∑
j=1

τj θ̃
−α
j (1− β)

[∑N
i=1

∑1
k=0(Mj0 −Mik)

+fijk + (Mj0 −M0) f0j

]
r + δ

= K.

Hence,

k(m+1) =

 N∑
j=1

τj

(
θ̃
(m)
j

)−α
(1− β)

[∑N
i=1

∑1
k=0(M

(m)
j0 −M

(m)
ik )+fijk +

(
M

(m)
j0 −M

(m)
0

)
f0j

]
K (r + δ)


1/α

.

And with this, it immediately follows that,

θ
(m+1)
j = θ̃

(m)
j k(m+1).

7. With
(
θ(m+1), k(m+1)

)
loop back to step 3. Repeat to convergence.

D Simulation

A worker i’s history consists of a sequence of spells {γil, wil, jil, kil}Li
l=1, where γ is the duration, w

is the wage, jil is the firm type of the spell and kil is the layoff rate state. Denote by hjk the hazard

of spell with a j type firm and layoff rate state k. Conditional on an employment spell, j > 0, the

spell hazard is given by

hjk = λ (1− k) + δj + sk +

N∑
j′=1

πjj′kp(θj′)1
[
Mjk < Mj′0

]
.

If the spell is an unemployment spell, j = 0, the spell hazard is (where the layoff state notation is

suppressed),

h0 =
N∑

j′=1

π0j′p0(θj′).
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Denote by βjj′kk′ the transition conditional probability that the state of the next spell is (j′, k′)

given that the current spell is state (j, k). It follows directly that,

βjj01 =
λ

hj0
, ∀j > 0

βj0k =
δj + sk
hjk

, ∀j > 0, k ∈ {0, 1}

βjj′kk =
πjj′kp(θj′)1

[
Mjk < Mj′0

]
hjk

, ∀j, j′ > 0, k ∈ {0, 1}

β0j =
π0j′p0(θj′)

h0
, ∀j > 0,

and βjj′kk′ = 0 for all other (j, j′, k, k′) combinations.

The simulation initializes by steady state Njk. Thus, from this distribution draw an initial

state for worker i. Then simulate the duration γil ∼ Exp(hjilkil). The state of the next spell is then

drawn according to βjj′kk′ . Let the length of the simulated panel of workers be T periods. Stop

simulating spells for worker i when
∑Li

l=1 γil > T . Let there be I workers in the panel.

E Data Construction Appendix

E.1 Sample selection and cleaning of the spell data

We focus on individuals which we are also able to find in the IDA registers so that we can observe

age, gender, education and the like. Focusing on the set of employment spells for a given individual

we we now do the following:

• We merge two employment spells into one if they take place in the same firm with less than

94 days in between spells

• We merge two employment spells in different firms with less than 21 days between spells in

the sense that we change the startdate of the second spell to start immediately after the first

• We drop employment spells with a duration of below 21 days

• We drop employment spells with accumulated earnings less than 20.000 (in 2000 Dkk)

• We drop employment spells with weekly earnings less than 3000 (in 2000 Dkk) kr

• We drop employment spells where we have no hours recorded

• We drop employment spells with an average number of weekly hours below 20 hours (full

time work: 37 hours * 40 weeks / 52 weeks)

• We drop employment spells with less than 150 accumulated hours
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E.2 Linking across datasets and firm data

Individuals are linked across registers by their personal identifiers pnr. For individuals we use the

IDA registers at Statistics Denmark: IDAP (from which we get information about age), UDDA

(information on highest completed education ), IDAN (from which we get information about wages).

Firms are linked across registers by their firm id (cvrnr) (firm level identifier). This firm id

allows us to identify worker moves between firms and collect workers employed at the same firms.

In addition we add information on industry affiliation and value added. Data on Value Added

comes from the FIRM register at Statistics Denmark. FIRM contains firm level accounting data

and a measure of value added.21 Note that FIRM is only available for a selected subset of Danish

firms (higher coverage in larger firms)22, but since we focus on firms with more than 5 hires over

the sample period and only need one period of non-missing value added to construct ranks and

since we are not ranking firms in the public sector (where value added is not available) and we do

not loose a lot of coverage using this VA measure.23

E.3 Summary statistics within firm ranks

In Table 6 we show various summary statistics of our sample within each firm rank bin. Average

age across firm bins is similar. There are fewer women working in the highest ranked firms and

slightly higher educated workers. If we instead rank firms based on wages that wage ranking is

broadly increasing across firm bins. Similarly ranking firms using only women or men, or low or

highly educated workers when constructing poaching ranks would also imply firm rankins which

are increasing across our firm bins.

21See an example of the calculation here: http://www.dst.dk/extranet/staticsites/TIMES3/html/

63c1f70e-7933-40fd-89de-90f8ab191b0c.htm
22The FIRM database we use is a collection of the registers: FIRM (Generel Firmastatistik), FIGF, FIGT, and

FIRE from Statistics Denmark. The degree of coverage in the FIRM database varies across industries for historical
reasons. Statistics Denmark started to collect firm accounting data in the Manufacturing sector in the early 90’s and
then slowly expanded the coverage until it covered all of the private sector except the financial sector.

23(We discard less than 3 % of observations when restricting to non-missing value added.
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F Data appendix with robustness checks

As argued above, central for our identification of directedness is the tendency for ĥij to be decreasing

in i. To ease interpretability and comparability across samples we measure this tendency with two

measures which we report and discuss these across different samples.

The first measure is a weighted average of the j-specfic variances of ĥ′ijs (each column in the

matrix of ĥij). In our version with 10 submarkets this is calculated as:

βSD =

√√√√ 1

n

9∑
j=2

9∑
i≤j

(
ĥij − ˆ̄hj

)2
(59)

where ˆ̄hj = 1
j

∑
i≤j ĥij . βSD is thus a measure of the overall variability of ĥij in a given sample

(keep in mind that ĥij ∈ [0, 1]).

The second measure is a regression estimate from a regressions of ĥij on a linear i-trend allowing

for j−specific intercepts:

ĥij = αj + βREG · i+ ϵij (60)

in this specification βREG can be thought of a an estimate of how much the ĥij are decreasing. 24

F.1 Sensitivity wrt to sample restricitons

In Table 7we report our summary statistics βREG and βSD in our baseline sample (row 1), that is

the ĥij moments we use in estimation. Our baseline estimate of βREG is −0.006 suggesting that

ĥij ’s are moderately decreasing as we move down the columns (change the i for a fixed j). Moving

from row 1 to 6 suggests that ĥij falls by 0.03 on average (average ĥij is 0.33 in the sample).

In row 2 we then report the same statistics based on our full sample when we do not invoke the

additional sample restrictions (where we discard certain type of EE transitions such as transitions

to or from entering or exiting firms in the years of entry or exit) explained in SubSection 6.1.2. The

regression based estimate of how decreasing ĥij is (βREG) is very similar to the baseline sample

however we see that βSD is around 30 % higher (0.019 relative to 0.014) consistent with there being

more noise in the ĥij ’s in the extended sample.

In row 3 of Table 7we report statistics in a sample where we only rank firms if they have more

than 10 hires over the sample period. In row 4 we report results when we only construct ĥij using

the first X hires of the firm.

F.2 Subsample heterogeneity

In row 2-5 in Table 10 we consider ĥij estimates obtained across other subsamples. In each

subsample we both recalculate poaching ranks and reconstruct ĥij within the specific subsample.

24With 10 markets the regression then has 45 observations.
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Table 7: Summary measures for ĥij across different subsamples

βREG βSD

Baseline -0.006
(0.001)

0.014

Extended sample (all transitions) -0.006
(0.003)

0.019

Hires¿10 sample -0.006
(0.001)

0.014

HiresCap 20 -0.005
(0.002)

0.019

Drop smaller Empl spells -0.007
(0.002)

0.014

Drop smaller Empl spells and merge E spells -0.007
(0.003)

0.017

Include non-business sector firms in ranks -0.004
(0.002)

0.017

Notes: This table reports summary statistics (βREG (equation 60) and βSD (equation 59)) for
different samples. Row 1 displays statistics for the baseline sample (used in estimation). Row 2
reports statistics for a sample where we do not . In row 3 we report statistics in a sample where we
only rank firms if they have more than 10 hires over the sample period. In row 4 we report results
when we only construct ĥij using the first 20 hires of the firm when calculating poaching ranks and

constructing ĥij . In row 5 we report results for a sample where we require that employment spells
are longer than 94 days to be included in the sample. In row 6 we only include employment spells
longer than 188 days and “merge” (i.e. ignore the time in between) employment spells with less
than 188 days in between them. Standard errors are robust to heteroskedasticity. All estimates of
βREG are significant at a 5% significance level.

In row 1 we reproduce our baseline estimates. Row 2 (3) focus on low (high) educated workers only

(defined as education levels below (above) a bachelor). Row 4 focus on women and row 5 on men.
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Table 8: ĥij baseline sample

ĥij
1 .012 .051 .097 .154 .203 .213 .368 .454 .607
2 . .045 .081 .141 .190 .198 .340 .470 .618
3 . . .081 .150 .195 .204 .353 .451 .619
4 . . . .131 .185 .199 .335 .452 .627
5 . . . . .184 .193 .360 .459 .619
6 . . . . . .175 .311 .448 .602
7 . . . . . . .308 .448 .617
8 . . . . . . . .408 .570
9 . . . . . . . . .554

Table 9: ĥij extended sample

ĥij
1 .016 .054 .087 .141 .187 .183 .312 .349 .470
2 . .045 .069 .118 .163 .203 .278 .373 .581
3 . . .077 .141 .187 .183 .321 .405 .538
4 . . . .124 .178 .180 .292 .421 .559
5 . . . . .161 .164 .286 .354 .543
6 . . . . . .154 .291 .387 .534
7 . . . . . . .270 .374 .461
8 . . . . . . . .322 .436
9 . . . . . . . . .483
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Table 10: Summary measures for ĥij across different subsamples

βREG βSD

Baseline -0.006
(0.001)

0.014

Low educated sample -0.004
(0.002)

0.012

High educated sample -0.007
(0.002)

0.016

Women only sample -0.010
(0.002)

0.024

Women only (on baseline ranking) -0.010
(0.002)

0.023

Men only sample -0.005
(0.002)

0.016

Men only (on baseline ranking) -0.005
(0.002)

0.012

Notes: This table reports summary statistics (βREG (equation 60) and βSD (equation 59)) for
different samples. Row 1 displays statistics for the baseline sample (used in estimation). In row
2-5 we report statistics across different sub samples of workers. In each sample we both recalculate
poaching ranks and reconstruct ĥij within the specific subsample. Row 5 (6) focus on low (high)
educated workers only (defined as education levels below (above) a bachelor). Row 7 focus on
women and row 8 on men. Standard errors are robust to heteroskedasticity. All estimates are
significant at a 5% significance level.

Table 11: ĥij low educated sample

ĥij
1 .011 .060 .100 .184 .203 .201 .369 .442 .554
2 . .050 .084 .187 .207 .180 .367 .424 .521
3 . . .081 .187 .206 .193 .348 .485 .590
4 . . . .183 .194 .180 .333 .433 .562
5 . . . . .193 .181 .352 .560 .576
6 . . . . . .166 .301 .425 .532
7 . . . . . . .299 .419 .562
8 . . . . . . . .380 .531
9 . . . . . . . . .486
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Table 12: ĥij high educated sample

ĥij
1 .016 .046 .114 .140 .170 .277 .331 .414 .623
2 . .042 .105 .129 .137 .273 .333 .410 .674
3 . . .104 .137 .138 .288 .329 .423 .676
4 . . . .122 .131 .286 .326 .416 .681
5 . . . . .129 .269 .332 .422 .648
6 . . . . . .260 .314 .437 .654
7 . . . . . . .303 .407 .636
8 . . . . . . . .390 .653
9 . . . . . . . . .606
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