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Directedness in Search*

Rasmus Lentz' Jonas Maibom * Espen Rasmus Moen®

January 15, 2026

Abstract

We present a tractable, hybrid framework that nests random and perfectly directed search,
in which workers are more likely to direct their search toward submarkets with higher returns,
while still searching in inferior submarkets with positive probability. The choice of submarket
is governed by a logit choice model with noise parameter p € [0,00). In the respective limits,
search becomes either completely random or perfectly directed. We characterize the model
equilibrium and show that even the perfectly directed search limit is inefficient, in contrast to
its otherwise close cousin, competitive search.

We proceed to quantify the extent of directedness on Danish matched employer—employee
data. Identification relies on the insight that the two benchmark models differ qualitatively in
their implications for job-to-job worker reallocation. We find evidence of substantial directedness
in search. Finally, we study the implications for underinvestment due to holdup problems and
show that the observed degree of directedness substantially reduces underinvestment relative to

a setting with random search.

Keywords: Random search, directed search, partly directed search, structural estimation, efficiency
JEL classification: J62, J63, D83, D4

1 Introduction

In the search model literature, there is little consensus on how to model the search technology. One
approach is to model search as random, where agents of different types on the same side of the
market search in a common pool, thereby generating search externalities for one another. Another

option is to model search as directed, in which case agents of different types tend to be separated
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We are grateful to the ECONAU project database (Department of Economics and Business Economics, Aarhus
University) for making their data available.
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into distinct submarkets. An example of random search is the canonical DMP model (Diamond
1982, Pissarides 1985, Mortensen 1982), but the Burdett—Mortensen (Burdett and Mortensen 1998,
Christensen et al. 2005) and Postel-Vinay and Robin (Postel-Vinay and Robin 2002) types of search
models also fall into this category. In Competitive Search Equilibrium, by contrast, firms divide the
market into submarkets through their wage advertisement policies and hence endogenously create
directed search. However, competitive search is not a prerequisite for directed search, as search
may also be directed if wages are determined ex post (after agents meet), for instance through
bargaining, although the definition of directed search in these cases is, in general, not as clearly
defined.

The extent to which search is directed has consequences for the welfare properties of search
equilibria. Acemoglu and Shimer (1999) show that if search is random and wages are determined
by bargaining, firms invest too little in capital, even if the rent-sharing rule satisfies the Hosios
condition. If search is directed, by contrast, so that firms that invest more in physical capital
search in separate submarkets, efficiency prevails. Similarly, Acemoglu and Pischke (1999) show
that with random on-the-job search, matches under-invest in general human capital even under
efficient bargaining, while Moen and Rosén (2004) show that under competitive search, efficiency
prevails.!

The extent to which search is directed also has consequences for the empirical predictions for
wages before and after a job-to-job transition. Garibaldi et al. (2016) point out that if search is
perfectly random, and a worker changes jobs whenever a new employer offers a higher wage than
the current one, then the distribution of the wage in the destination job wy is independent of the
origin job wage w,, conditional on being above it, wy > w,. In contrast, directed search implies
a positive dependence between the origin wage w, and the destination wage wgy, and if perfectly
directed, the destination wage distribution is degenerate at a point. However, Godgy and Moen
(2013) document that this independence property between ante and post wages (or productivities)
cannot be found in Norwegian data.

The identification strategy in this paper exploits this difference in predictions from the random
and the directed search model to arrive at a search technology estimate that is neither perfectly
random nor perfectly directed. We develop a model of partly directed search. In our model,
firms differ in productivity, and workers search both on and off the job, gradually climbing a job
ladder. The contract space is sufficiently rich that an employee’s search behavior maximizes joint
(firm—worker) income.

Our starting point is a model in which search is directed but not competitive. Workers decide
which firm type to apply to. All firms of a given type and the workers searching for jobs in those

firms form a submarket, and workers choose among these different submarkets. When a match

More broadly, while the random search model equilibrium can be socially efficient when the appropriate version
of the Hosios condition is satisfied, in the event that Hosios is not satisfied, optimal policy prescriptions are subject to
second-best considerations that depend on the estimates of matching and bargaining technology parameters. Optimal
policy design analyses often make the sensible assumption of disregarding the second-best considerations through the
imposition of the Hosios condition, but the mechanisms by which the economy would itself arrive at the Hosios
condition are murky at best.



forms, wages are determined through bargaining, with the net present value of joint income in
the previous job as the worker’s outside option. If the worker was previously unemployed, the
outside option is the value of unemployment. We assume that workers’ bargaining power satisfies
the Hosios condition, which ensures efficiency in a search market in which workers and firms are
identical. Note that employment contracts are not advertised publicly by firms but negotiated ex
post after a match has taken place, as in the standard DMP model, but with the modification that
the outside option is as in Dey and Flinn (2005) and Cahuc et al. (2006). Furthermore, the division
into submarkets is not determined by firms’ wage advertisement policies, but rather by firm types
and workers’ choices of which firms to approach. As a result, the equilibrium in our model has a
much simpler structure than in a Competitive Search Equilibrium and, in our view, captures the
core elements of directed search with bargaining.

Although workers direct their search, we allow the technology for doing so to be imperfect. As
a result, the submarket in which a worker ends up is partly determined by random factors. We
use a logit model to describe this noisy choice process.? Hence, a given worker may search in any
of the existing submarkets, but the probability of entering a particular submarket depends on the
expected return to search there relative to other submarkets. The more sensitive these probabilities
are to relative returns, the more directed the search process.? This sensitivity is governed by a logit
parameter p, ranging from zero (perfectly sensitive) to infinity (completely insensitive). In the
latter case, search is completely undirected, and workers are assigned to submarkets in accordance
with the relative size (relative number of job openings) in that submarket. In the former case,
search is perfectly directed, in the sense that workers only search in their preferred submarkets.

Maybe surprisingly, we find that the perfectly directed search equilibrium is not equal to the
competitive search equilibrium; a firm that is allowed to advertise a wage would advertise a lower
wage than the wage it pays in equilibrium in our model. Relatedly, although welfare improves as
directedness increases, the equilibrium allocation with perfectly directed search is not efficient, even
though the Hosios condition is satisfied. The reason is that workers, although equally productive,
create different match surpluses when matched with a firm of a given productivity. When a worker
enters a submarket, this generates a positive externality for the firms in the market, and this
externality is stronger the more productive the firms in that submarket are. Furthermore, it creates
a negative externality for the workers already searching in that market, and this externality is lower
the higher the submarket is, since the workers in the higher submarket are currently employed in
higher-productivity firms, so that their gain from search is lower. Since workers do not internalize
these effects, they join submarkets with too low productivity compared to what is socially optimal.
Hence, even with perfectly directed search, submarkets with high-productivity firms attract too few

applicants. In Competitive Search Equilibrium, by contrast, firms govern workers’ choices through

20ur analysis does not require us to take a stand on the particular microfoundation, but one interpretation is that
of costly precision in decisions used in Maté&jka and McKay (2015) and Cheremukhin et al. (2020).

3An alternative interpretation of the noise process, which we do not pursue, is that workers have preferences over
more aspects of a job than wages, such as amenities, which are unobservable to the econometrician. The choice of
interpretation matters for our welfare analysis, but not for the predictive properties of the model.



their wage-posting policies, and these externalities are internalized.

Given our model, we identify the degree of directedness in the Danish labor market for the
period 1995-2005. Specifically, we use the administrative matched employer—employee spell data
that allow us to credibly observe job-to-job transitions and the productivities of both the destination
and origin jobs associated with them. As argued above, directedness manifests directly in these
observed mobility patterns.

To this end, we first derive theoretical predictions for how transition patterns associated with
job-to-job transitions differ between directed and random search. With random search, all firms
meet workers at the same rate. If there is some direction in search, submarkets with high-
productivity firms attract more workers, which reduces the job-finding rates in these markets.
In isolation, this reduces their attractiveness, and more so for workers at the low end of the job
ladder with low current incomes. Let firm productivity be increasing in firm type, and consider
a searching worker employed in a firm of type ¢. Denote by ﬂlk the probability that this worker
searches in submarket k > i, conditional on searching in a submarket k or higher. A fundamental
property of directedness is that this probability is higher the lower the firm type ¢ that the worker
is currently in. The reason is that as long as there is some directedness in search, jobs in submarket
k are easier to get but pay less than in higher submarkets, and this makes submarket k relatively
more attractive the lower the current income of the worker. Therefore, sz is an important moment
to target when estimating the model.

As the submarkets form a ladder, we can identify them following the revealed preference
argument used in both Sorkin (2018) and Bagger and Lentz (2019). Similarly to Bagger and
Lentz (2019), we use the poaching rank index. In a higher submarket, a greater fraction of its
inflow comes from other firms relative to unemployment. With this, we can then immediately
measure the sz statistics, which provide the core of the identification strategy. Combined with
other statistics, we estimate the model using a standard simulated minimum distance estimator.
A particular virtue of the estimation is its implicit recognition that the poaching rank submarkets
identify the submarkets with some classification error, which affects the inference the model draws
from the izzk mobility patterns. This corrects a bias that would otherwise have been present had
we adopted an alternative such as the commonly used two-step strategy where submarkets or firm
types are classified in a first step and then treated as data in the second step.

The magnitude of the model parameter that governs the degree of directedness, u, is subject
to the measurement unit choices in the model. As such, the particular estimated value is, by itself,
not all that informative about the degree of directedness in the estimated model. We proceed to
provide three different perspectives on its magnitude.

First, as an interpretable measure of the degree of directedness, we construct a welfare-based
index of directedness. Welfare is measured as the net present value (NPV) of utility for an
unemployed worker; as shown by Pissarides (2000), this provides an appropriate welfare metric
in search models. Using our estimated parameter values (except for p), let welfare under perfectly

directed search (u = 0) be denoted by S¥, and welfare under random search by S. Finally, let



SO denote welfare evaluated at our estimated value of . The degree of directedness, d,., is then

defined as
SO — §R
SP _ SR'

Our estimation indicates that d, is approximately 0.41. That is, the estimated economy realizes

dr =

about 41 percent of the welfare difference between an economy with a perfectly directed search
technology and one in which search is entirely random.

Second, we provide an elasticity measure of how sensitive submarket tightnesses are to changes in
match values. Here, we are contrasting the two extremes, perfectly random and perfectly directed
search. The random search model is an ordinal model, where only firm type ranks matter for
mobility patterns, whereas the directed search model is cardinal, so that productivity differences
between firms also matter. Therefore, if search is entirely random, submarket tightness elasticities
are zero. In the perfectly directed search model, they are infinite. For a receiving submarket with
average tightness, a one percent increase in the search flow value relative to top-firm productivity
increases tightness by 2.5 times the relative size of the sending market.

Third, we adopt another welfare-related perspective; in this case, we consider the interaction
between directedness and investment incentives. Specifically, we consider the possible hold-up
problem associated with ex ante capital investment, as studied in, for example, Acemoglu and
Shimer (1999) and Card et al. (2014). We evaluate how much ex ante underinvestment in capital
we see in a simplified version of the estimated model in which only unemployed workers search, in
which case the perfectly directed search model is efficient. We compare the perfectly random and
perfectly directed economies. Again, we are leveraging a sharp contrast between the two models:
In the perfectly directed search model, ex ante capital investments are efficient. As search gets
less directed, the capital underinvestment problem becomes worse. Similar to above, we state the
degree of directedness in terms of the degree to which the estimated economy realizes the efficiency
gains of the perfectly directed search model relative to the perfectly random model. In this case,
we obtain a measure of 85 percent.

The paper proceeds as follows: In Section 2 we set up our model. In Section 3 we discuss
the equilibrium properties of our model in the two extremes (completely random and perfectly
directed search). In Section 4 we discuss the general efficiency properties of the directed search
equilibrium in our model. We further show that the version with perfectly directed search is not
efficient. In Section 5 we set up our empirical exercise and define an extended version of our model
(adding bells and whistles). We also discuss estimates and model fit. In Section 6 we discuss
the overall implications of our estimates regarding directedness in search and consequences for

underinvestment. Finally, we conclude.

2 Model

In this section, we present the basic model. Some extensions are added later for estimation purposes.

The model is set in continuous time. The economy is populated by a continuum of risk-neutral



workers and firms with a common discount rate r. All workers are identical, infinitely lived, and
search both on and off the job. The measure of workers in the economy is exogenous and normalized
to one. The measure of firms is endogenously determined by entry.

Unemployed workers receive an exogenous net income of gy that also includes the monetary
equivalent of the disutility of that state. Entrepreneurs incur a cost K to open a firm. After K is
sunk, but before production starts, the “type” j of the firm is drawn, 7 = 1,...J. The probability
of drawing type j is 7;, with ijl 7j = 1. The type determines the productivity y; of the firm,
Yo < Y1,... < yj_1 < yy. All firms have a constant-returns-to-scale technology in labor.

Each firm is equipped with a search technology. We adopt the “fishing line” hiring interpretation
where each firm has one vacancy, which is reposted immediately every time a worker is hired. All
matches dissolve with a Poisson rate §. Workers have one unit of search capacity they can exert at
no cost.

The search market is divided into J submarkets. All firms in submarket j are of type j. In
each submarket j, the flow of new matches is given by a concave and constant returns to scale
matching function z(n;,v;), where f; and v; denote the aggregate measure of searching workers
and vacancies in the submarket, respectively. The submarket-specific job finding rates and worker
finding rates are denoted p; = p(6;) and ¢; = ¢(0;), respectively, where 6; = v;/7;.

As is common in the competitive and directed search literature, we assume efficient contracting
between the worker and the firm.* This implies that (1) the worker searches to maximize the joint
income of the worker—firm pair, (2) only jobs that yield a higher joint net present value (NPV)
are accepted, (3) meetings with inferior firms do not lead to a wage increase, and (4) the previous
firm provides full rent extraction as a bargaining position for the worker in the new job. Several
contractual arrangements can support this outcome, the simplest being that the worker buys the
job up front. Note that (3) eliminates rent extraction from the current employer as a motivation
for on-the-job search, consistent with the assumption that the worker searches to maximize joint
surplus.

Wages are determined by Nash bargaining. The firm’s outside option in the bargaining game is
zero.” The worker’s outside option is the joint income in the previous job, as specified in (4) above.
The worker and the firm split the surplus according to the Hosios sharing rule, implying that the
worker’s share of the surplus, 3, satisfies 3 = —0q'(6)/q(6).5

At any point in time, the worker chooses which submarket to enter. With perfectly directed
search, all workers end up searching in the submarket that contributes the most to the joint value

of the current worker—firm pair. In the general case, the return to search for a worker in a given

4Similar assumptions regarding efficient contracting are made in Lentz (2010, 2015), Bagger and Lentz (2019),
Moen and Rosén (2004), Garibaldi et al. (2016), and Menzio and Shi (2011).

5This follows from the assumption that the firm continuously searches, so that a worker does not fill a slot that
otherwise could have been filled by another worker.

SThis is the same type of wage determination and job acceptance rule as in Dey and Flinn (2005) and Cahuc
et al. (2006), except that we do not allow for renegotiation within the job. However, this differs from the wage-
setting mechanism in the canonical on-the-job search model of Pissarides (1994), where the worker’s outside option
in bargaining with the new employer after a job switch is unemployment.



search market influences the probability that the worker searches in that market, but not fully, as
noise or other random factors may disturb the search process. We denote the probability that a
worker employed in a firm of type 7 searches in submarket j by ;.

In transitions, we will generally refer to the sending firm’s type by ¢ and the receiving firm’s
type by j. We will refer to a worker employed in a firm of type i as an i-worker. Let M; denote
the joint value of a worker—firm pair when the firm is of type i. As stated above, a worker accepts
a job offer from a firm of type j if and only if M; > M;, which in turn holds if and only if j > .7
We assume that randomization over the markets in which a worker searches occurs continuously.
It follows that M; is independent of the submarket in which the worker happens to be searching at

any given moment. Hence, we have

rM; = y; — §(M; fMo)+ﬁz7Tz‘jP(9j)(Mj - My)*, (1)

where (M; — M;)" = max (M; — M;,0). The NPV of the unemployed worker is

’I”MO =Yo + ﬁZTrojp(ej) (M] — ]\40)Jr .
J

Next, we determine 7;;. To that end, and as part of the technology underlying the workers’
choice of submarket, define the perceived value of search for an i-worker searching in market j, m;;,

mij = yi— 6(M;— M)+ Bp(6;) (Mj — My)" — p(6;) (M; — M;)™ . (2)

The first three terms in (2) are identical to the first three terms in (1), and together they constitute
the flow value of searching in submarket j for an i-worker. The last term in (2) is absent in (1).
Since workers are free to reject offers, there are no costs associated with receiving inferior offers
(offers that will be rejected). As such, there is no difference in value between directing search toward
different inferior submarkets. However, when building a theory of how workers direct their search,
it is appealing to assume that workers also perceive an ordering among the inferior submarkets.
The last term achieves this through a thought experiment in which the worker cannot refuse the
offer and must bear the entire cost of doing so. A benefit of this construct is that workers in high
submarkets are, to a lesser extent, crowding the lowest submarkets with jobs they would never
accept.

We are now ready to define m;;, the probability that an i-worker searches in submarket j. We

"Given the ordering of yj, this follows directly. In a more general model with more dimensions of heterogeneity
across submarkets, order the submarkets so that M; > M; < j > 1.



define it by the logit expression

)
Tj exp 7

Tij = - 3)
Z}']:1 T; exp(n”:])
If 4 =0, we have
T = 0, if m;; < mjaxmij,
mi; € [0,1], otherwise. (4)

Note that the probabilities are scale-dependent. To be more specific, let m;; = m;;k, where k is
a scaling factor. It follows directly from (3) that an increase in k has the same effect as an increase
in the inverse of y and is invariant to a proportional change in k and p.%

The stochastic nature of the workers’ choice of submarkets may be given different interpretations;
see, for example, Anderson et al. (1992). In one interpretation, it reflects genuine noise. In our
setting, this may represent noise in the search process: workers aim to direct their search toward
the submarkets that yield the highest return to search, but frictions imply that they are only partly
successful. They may, for instance, misjudge the wage or productivity of firms, or the likelihood of
obtaining the jobs they offer. A related interpretation is that of Sims (1998) and Sims (2003), where
the cost of concentrating a choice distribution around particular choices is based on its divergence
from uniformity. As used in Matéjka and McKay (2015) and Cheremukhin et al. (2020), if the
cost is the Kullback-Leibler divergence, one obtains the logit form. Thus, workers may end up
in submarkets other than the optimal one, yet with a higher probability of landing in the more
attractive submarkets.’

The notion that agents tremble while deciding on actions, and that other agents take this
into account, is similar to the underlying logic of the Quantal Response Equilibrium (QRE); see
McKelvey and Palfrey (1995). Under this interpretation, it is implicitly assumed that workers learn
the true submarket type at some point prior to making their acceptance or rejection decision.

Another interpretation is that the stochastic choice of submarkets reflects unobserved heterogeneities
associated with different jobs or search markets that influence their attractiveness. Examples
include amenities (as in Taber and Vejlin 2020), geographic location, or changes in preferences over
job characteristics that lead to lower wages, and so on. Hence, the observed wage is only a noisy
measure of the attractiveness of a submarket; other aspects also play a role in determining the
overall desirability of a job or market. Under this interpretation, workers may in fact target their
search fully when choosing between submarkets, but because of these unobserved heterogeneities,

their choices appear random to the econometrician. In this case, workers may accept job offers

8The choice probabilities are unaltered if all values of m;; increase with a constant.

9As an abstraction, we may introduce a “market maker” that allocates workers and firms to submarkets. Within
this abstraction, our assumption is that the market maker “trembles” when allocating workers across submarkets,
but not when allocating firms, possibly because firms are larger. We conjecture that allowing for two-sided trembles
would qualitatively yield the same results.



in submarkets below their current rank, provided that the amenities are associated with the jobs
themselves (in contrast to our assumption regarding job switches). If the amenities are instead
associated with the search process, they would not.

Which interpretation one adopts is critical for how the observed randomness in workers’ search
behavior should be understood. If it reflects genuine noise, it points to randomness in the search
process itself, in the sense that workers are not fully able to direct their search. If it reflects
unobserved heterogeneities, it merely indicates that wages are a noisy measure of a job’s overall
attractiveness. We adopt the “noise” interpretation. Hence, when a worker directs search toward a
submarket that does not maximize her monetary payoff, her NPV utility is reduced and a welfare
loss arises. We treat this randomness as an integral and exogenous component of the search
technology, consistent with the interpretation of the matching function in Petrongolo and Pissarides
(2001).

Even though workers do not accept inferior jobs, their presence when searching in the associated
submarket crowds the market. The tightness of submarket j is therefore given by

Tik
= >0 migNi )
where N; is the measure of i-workers and Ny is the unemployment rate.

The value of a fishing line to a firm in submarket j is
Vi =q(0;) (1= 8) Y (M; — M) fij, (6)

where f;; is the conditional probability that a meeting is with an i-worker. By definition, ), fi; = 1.
This probability is defined by

WijNi

fii = )
Y Y s misNi

(7)

In equilibrium, the total number of firms (equal to the total number of vacancies) is given by the

free entry condition,

J
E[V]=) 7V;=K. (8)

Balanced-flow equations

Turning to the steady state, the numbers of i-workers have to satisfy a set of flow-balance equations

for i =0,...,N. The equations are given by



No Y mo;p(05) = 6(1 — No) (9)
J

N; 5+Z7Tijp(9j) :p(tgi)Zﬂ'ﬁNj, 1=1,...,N. (10)

7> 1<

Equation (9) combines the balance of flows in and out of unemployment with the normalization of
population size at unity.

We are now ready to define equilibrium:

Definition 1 (Equilibrium). A steady-state equilibrium with wage bargaining is a vector of net
present values M;, j = 0,...,J, a matrix of perceived flow values m;;,¢=0,...,J,7=1,...,J,a
matrix of choice probabilities m;;, ¢ = 0,...,J—1,j =1,...,J, a vector of labor market tightnesses
0 = (61,...,05), a number of firms k, and an allocation of workers over unemployment and firm
types N = (Ny, ..., Ny), such that:

1. The value functions M; and m;; satisfy equations (1) and (2).

2. The choice probabilities 7;; are given by (3) when p > 0, and by (4) when p = 0.
3. The vector of labor market tightnesses (61,...,0 ) satisfies (5).

4. The number of firms k is determined by (6) and the free-entry condition (8).

5. The allocation of workers across firm types and unemployment N is determined by the flow-

balance equations (9)—(10).

Proposition 1. The equilibrium exists.

3 Equilibrium properties

In this section, we first discuss the limit properties of our equilibrium as p approaches 0 and oo,

before we derive a fundamental property of directed search.

3.1 Limit properties

Consider first the equilibrium of the model when p — oo. In this case, (3) implies that the

probability that a worker goes to submarket j is equal to —4— = 7j. Hence, the worker has
j=1Tj

the same probability of meeting any vacancy, as in any model of random search.'® Consider then

10The equilibrium does not converge to the random search equilibrium if search is competitive, as in GMS, in
which case we conjecture that the Albrecht-Axell equilibrium would emerge; see Albrecht and Axell (1984). In the
Albrecht-Axell equilibrium, low-productivity firms offer a wage equal to the reservation wage of unemployed workers.
With sufficient dispersion in firm productivities, productive firms offer a wage exceeding the productivity of the

10



the limit as g — 0. In this limit, the transition probabilities are given by equation (4). Search is
perfectly directed, and a worker will enter submarket j only if this submarket maximizes his return
from search. It is instructive to compare this equilibrium with the Competitive Search Equilibrium
(CSE) concept as presented in Garibaldi et al. (2016), and we will establish results highlighting
both similarities and differences between the two equilibrium concepts.

We first point out the similarities. At a general level, workers in both models enter the submarket
or submarkets that maximize their return to search. Furthermore, in both models, the surplus is
shared according to the Hosios sharing rule-by assumption in the directed search model and as an
equilibrium outcome of a wage-posting game in the CSE model. Finally, in both models, there is
only one firm type in each submarket.

It is well known that in competitive search equilibrium, employed workers with a high current
wage search for firms offering a higher wage than employed workers with a lower current wage do;
see, for instance, Delacroix and Shi (2006) and Menzio and Shi (2010). Garibaldi et al. (2016)
go one step further and derive a maximum separation result, showing that workers with higher-
ranked current employers tend to search for higher-productivity firms. A similar result holds in
the perfectly directed search equilibrium. To be more precise, let I; denote the set of submarkets
in which a worker currently employed at firm ¢ searches. Then, for all j € I;, M;; = max; M;;.
By definition, it follows that 7;; = 0 if and only if j ¢ I;. If I; contains a single element j*, then

Tij* = 1.

Proposition 2 (Maximum separation). Suppose i < i'. Then the highest firm type in I; is smaller

than or equal to the lowest firm type in I;.

The proposition implies that the equilibrium leans toward a strict job ladder, and that workers
in two different firm types meet in at most one submarket. The higher the current state, the higher
the submarkets in which the agent searches.

In the appendix, we prove the proposition using a “revealed-preference” type of argument.
Workers who currently have a high wage are more willing to accept longer waiting time for high
wages than workers who currently have a low wage. To gain intuition, consider two workers who are
currently employed in firms of type ¢ = [ and ¢ = [ 4+ 1, respectively, both searching in submarket
J (j > ). Their flow income (rM;;) while searching in market j (equal to the perceived value of

search when search is perfectly directed) is

m(yi, yj) = yi + 8 (M (yi) — Mo) + Bp(6;) (M (y;) — M(ys)),
and the slope of their indifference curves in submarket j is given by

/
Lo p6)  M(y)

dy;  p'(6;) M(y;) — M(y:)

low-productivity firms so that workers employed in these firms would also accept a job offer. The reason why our
equilibrium does not converge to the Burdett-Mortensen equilibrium is that the worker’s job acceptance decision

in our model (in contrast with the Burdett-Mortensen model) is set so as to ensure efficient job transitions and is
therefore independent of the wage the firm pays.

(11)
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Since M(y;) is lower for ¢ = [ than for ¢ = [ 4 1, it follows that the absolute value of the slope
of the indifference curve for the [ worker is lower than for the [ + 1 worker, evaluated at (6;,y;) (or
at any point where the two curves intersect). First, this implies single crossing: the indifference
curves intersect at most once. Second, if worker [ is indifferent between submarket [ and submarket

i, then worker [ 4+ 1 will strictly prefer submarket [ when ¢ < [, and submarket ¢ when ¢ > [.

An important difference between perfectly directed search and competitive search concerns the
allocation of workers across submarkets. Under directed search, firms would prefer low-i workers
to join their submarkets, because such workers generate larger match surpluses, of which the firm
obtains a share through bargaining. However, since firms do not advertise wages, they have no
instrument with which to influence workers’ choice of submarkets. We now examine this difference
more closely. To that end, consider the perfectly directed search equilibrium, and then allow a
group of type-j firms (for arbitrary j) with measure zero to deviate by posting an NPV wage W
(hereafter simply referred to as a wage).

To avoid discreteness problems and to make calculus applicable, we study the limit properties
of the perfectly directed search equilibrium as the number of firm types converges to a continuous
distribution on [Ymin, Ymax].- Garibaldi et al. (2016) show that a competitive search equilibrium
exists with a continuum of types, and we conjecture that the same argument applies to the perfectly
directed search equilibrium. It follows from the maximum separation result that each submarket,
which we index by y;, attracts workers whose current employer is of exactly one type, which we index
by y;.'' For each submarket, we can write the endogenous variables—NPV wages, tightness, and
sending-firm type—as functions of y;: W(y;), 6(y;), and y;(y;) (the productivity of the sending
firm). It follows that these functions are continuous and strictly monotone; a proof is available
upon request. Finally, let W denote the set of equilibrium wages in the perfectly directed search
allocation, i.e., the image of W ().

If a deviating set of firms with measure 0 (hereafter, a deviating firm) advertises a wage W € W,
workers will enter the resulting submarket up to the point at which they are indifferent between
searching in the new submarket and their best alternative submarket. In the appendix, we show that
this is equivalent to assuming that the deviating firm can choose which of the existing submarkets
to enter and pay the equilibrium wage in that submarket, independently of its own productivity.

Because W () is strictly increasing, it admits an inverse, so that y; = W~1(W) for W € W.
It follows that the tightness facing a deviating firm advertising a wage W’ € W is equal to the
tightness in the existing submarket that pays the equilibrium wage W', namely the submarket in

which the receiving firms have productivity y; = W=Y(W"), with tightness 0(y;)-

Proposition 3. Consider the perfectly directed search equilibrium with a continuum of firm types.

Suppose that a set of measure zero of firms with productivity y§ are allowed to advertise wages as

1 Suppose workers employed in both y;-firms and y/-firms, with vy, > ;, entered submarket yj. The result that
the targeted submarket is non-decreasing in the searching worker’s value y; would still apply. Hence, all sending
submarkets in the interval [y;,y;] would enter submarket y;, violating the maximum separation principle.
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described above, where y,(y;) > Ymin. 1hen the deviating firms will choose a wage that is strictly

lower than the NPV equilibrium income W(y;) in the y;—submarket.

The proof is given in Appendix A.2. To understand the result, note that both sides of the
market have preferences over both wages and the tightness in a submarket. In a given submarket,
wages are determined by bargaining under the Hosios condition, which ensures that positive and
negative externalities from search cancel out. Hence, in all submarkets, the indifference curves of
the workers in the market and the iso-profit curves of the firms in that market are tangent, so that
trade in the 8—W space is efficient given the identities of the agents in that submarket.

However, there are no analogous mechanisms that ensure an efficient allocation of workers of
different values y; across submarkets. As already mentioned, a firm would prefer to attract low-y;
workers, who have a weaker bargaining position, but has no instrument with which to attract them.
From a worker’s perspective, he cannot join a higher submarket and obtain the going wage in that
submarket, since his outside option in the bargaining game, and hence his wage, would be lower
than that of the (high-value) workers already populating that submarket (the choice set in (6, W)
— space is worse for the low y; worker than for the high y; worker). As a result, the allocation of
workers across submarkets is inefficient, and this inefficiency is exploited by the deviating firms.

As the deviating firm lowers its wage, it attracts workers with a lower y;, who obtain a lower
wage partly because their bargaining position is weaker, that is, they are less able to extract rents
than their peers with a higher ;. These workers are therefore cheaper, and for small reductions in
W below W (y;), this manifests itself in a smaller increase in # than if the firm were still attracting
the same workers.

When the deviating y;-firms reduce the wage, they deviate from the Hosios condition for these
workers, since they pay them less than the share 8 of the surplus. The deviating firms effectively
pay the same wage as less productive firms do in equilibrium, which in turn pay the Hosios wage.
However, this deviation from the Hosios condition has only a second-order effect on firms’ profits.

Hence, the deviating firms gain from reducing the wage somewhat.

3.2 A Fundamental Property of Directed Search

We now turn to the general case in which 0 < g < co. In this case, workers direct their search to
some extent, yet all submarkets remain in the support in the sense that each is chosen with strictly
positive probability.

Define by h;; the equilibrium transition probability for a worker who is currently employed at

a firm of type ¢ and moves to a firm of type j. Furthermore, for any ¢ < j, define
. hi:
hij = —52—, (12)
Zk]:j hir,

which is the probability of moving to firm j, conditional on moving to submarket j or above, while

currently in 3.
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Proposition 4. ﬁij defined by (12) is strictly decreasing in i as long as search is not completely

random (that is, for all p < oo). When search is completely random, ﬁij s constant in 1.

The proposition states that as long as search is at least to some extent directed, the probability
of transitioning to a given firm j > ¢ (that is, to a firm with a higher type than the current
employer), conditional on moving to j or higher, is strictly lower the higher the type of the firm
the worker is currently employed in. We consider this a fundamental property of directedness in
search.

To build intuition for the result, consider first the case of completely random search. In this
case, the probability that a worker transitions to a firm of type j > ¢, conditional on transitioning
to a firm of type j or higher, is equal to the ratio of the number of vacancies posted by firms of
type j to the total number of vacancies posted by firms of type j or higher. This ratio is, of course,
independent of the current employer type ¢ for all ¢ < j.

This changes fundamentally when search is directed. Workers then face a trade-off between
obtaining a high job-finding rate and obtaining a high wage when a job is found. Moreover, how
a worker makes this trade-off depends on her current employer’s type. The better the current
employer, the more willing the worker is to give up a high job-finding rate in return for a higher
wage; see equation (11). Therefore, the higher the type of the current employer, the less attractive
it is to apply to firm j relative to more productive firms. Since the choice of submarkets is influenced
by their relative attractiveness, we therefore expect fzij to be decreasing in 7. Proposition 4 confirms
this expectation.

Intuitively, we would also expect the dependence of Bij on the current employer’s type i to
be stronger the more directed search is (that is, the smaller is p). Our simulations confirm this
intuition. We will use an empirical version of ﬁij in our indirect inference setup for identification
of the model.

4 Efficiency properties of directed search equilibrium

In the g — oo limit, where search is random, all submarkets have the same labor market tightness.
Consequently, job-filling rates are identical across firms. Efficiency would improve if more workers
entered the high submarkets at the expense of the low ones, thereby increasing tightness in the high-
productivity markets relative to the low-productivity ones. Directed search allows this reallocation
and therefore raises welfare. It is less clear, however, whether private and social incentives to enter
the various markets coincide, particularly in the case of perfectly directed search. Proposition 3
indicates that the perfectly directed equilibrium is not efficient, and below we confirm this formally.

For a given number of firms k, the welfare function can be written as

s I
W = Z Ni(t)yie_” dt.
0 =0
In the socially optimal allocation, W is maximized with respect to m;; for i = 0,...,J — 1 and
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j=1,...,J, subject to the dynamic constraints (9) and (10).

Perfectly directed search

In the social planner problem above, let A\; be the adjoint variables associated with the law of
motion for ;. Let S\j = {;01 fij A denote the average value of A in submarket j. In Appendix

A.4, we show that A\; can be written as

rAi = yi — 0\ = o) + B8 Y mip(6;) (N — Ai) B) > p(0;)mii(Ai — X)), (13)
Jj>i j>i

The second term on the right-hand side is zero if ¢ = 0. The adjoint variable \; can be interpreted
as the value to the planner of an increase in NV; of one unit; see Seierstad and Sydsaecter (1986),
ch. 3.5. It is the social counterpart to M;, the joint income of a worker—firm pair with firm type
i. The flow value r)\; consists of the flow value of output y;, the flow loss from exogenous job
separation, and the flow gains from on-the-job search. Importantly, we show in the appendix that
the expression for \; gives the social value of employment in market i for any given (steady state)

12

allocation (6;)7_;, not only at the optimal allocation.

j:la
As a preliminary observation, note that if 7;; = 1 for some j, and m;; = 0 for all [ # i (i-workers
only search in submarket j while no other workers search in that market), then the last term in

(13) is zero, and we have
rAi = yi = 0(Ai = Xo) £ Bp(6;)(A; — X,

which is identical to the expression for M; under the same conditions. This is as expected: if
a worker enters a search market, it reduces tightness in the market and crowds out some of the
matches that would otherwise have taken place in that market. For each match the worker creates,
(1—/) matches are crowded out, where 3 = —¢/(6)0/q. If the match surplus of the new matches and
the crowded-out matches are equal, the social and private values of entering exactly balance when
workers obtain a share 3 of the match surplus, that is, when the Hosios condition is satisfied.
With this observation in mind, note that the last term in equation (13) captures the additional
search externalities that arise because the match surpluses differ across searching workers depending
on their current status. We refer to this term as the net search externalities. In submarket j, the
match surplus between a firm and an i-worker is A\; — A;. Hence, the higher is 7, the lower is the

surplus. For each submarket j > 1,

A== (=) = (=)

1211 the last part of Appendix A.4, we derive equation (13) for any given restrictions on m;;, that is, for any allocation
(03')‘;:1. For a given matrix 7;;, we maximize welfare with respect to m;; given the constraint that m;; = 7;;. We
then obtain the marginal values of changing the m;;’s.

13The Hosios condition implies that the bargaining power of the worker, 8, is equal to —¢'(8)8/q, which is satisfied
by assumption in our model.
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is equal to the difference between the average match surplus in submarket j and the surplus
generated by a match involving an i-worker. If the other workers in the submarket tend to be
employed in firms with lower productivity than y;, so that \; > ;\j, the net externality of the
i-worker in the j-market is negative. That makes sense since the net externality is zero when the
match surpluses of the new and crowded-out matches are equal. Summing over all the submarkets
in which i-workers search gives the last term in (13).

Next, we consider the optimal choices of m;;. In Appendix A.4, we show that the planner
chooses m;; to maximize the social values \; given by (13), analogous to the market solution in
which a worker employed in firm 7 chooses submarkets to maximize M;. The planner solves a linear

programming problem with first-order conditions given by
Bp(0;) (\j = Xi) — (1= B)p(8;) (N — X)) < iV . (14)

With complementary slackness (the inequality in 14 binds unless m;; = 0, in which case it is
strict), and with the Lagrangian parameter o; > 0, the right-hand side is independent of j. Since
the externality is positive in markets above those in which the worker in question searches, the
externality moves the planner toward sending workers to higher submarkets than the workers choose
in the market solution.

As in Proposition 3, we assume that the distribution of firms is continuous, in which case
there is a one-to-one correspondence between the types of the sending and the receiving firms,
as established in the discussion preceding Proposition 3. To obtain clear results, we analyze the
planner’s incentives along the perfectly directed search equilibrium, in which case A and M coincide.
Along this path, we can write §; and \; as functions of y; (that is, 8; = 0(y;) and y; = y;(ys) =
Y, 1 (yj), where y;(y;) is the function used in the proof of Proposition 3). Along the equilibrium path,
Nj(yi) = A and d)\;(yi)/dy; = N(y;). The choice of submarket y; maximizes \;. Differentiating \;

with respect to y; and evaluating at y; = y; yields

djj [Bp(0(y;)) (Myj) — Awi))] + (1= 8)p(0;) N(y:) = 0. (15)

By the definition of the perfectly directed search equilibrium, the first term is zero, since the worker
maximizes the private gain from search. The second term is strictly positive. Since the second-order
conditions are satisfied locally, this implies that the planner chooses a higher optimal value of y;

than in the market solution.

Proposition 5. Consider the perfectly directed search equilibrium with a continuum of types.
Suppose the planner can decide the search behavior of a given worker. Then the planner will

direct the worker to a higher submarket than the one the worker chooses in equilibrium.

In Appendix A.4 we analyze efficient entry of firms. We show that the entry decision is optimal
if a weighted sum of the externalities associated with entry is equal to zero. Hence, the entry
decision is optimal if the private and social values of entering, properly weighted, are equal. See

the appendix for details.
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Partly directed search

Let us analyze the value of a worker—firm match and the value of searching in the various submarkets
for an arbitrary given matrix of search probabilities 7_rij.14 Note that the differential equations
governing N; are the same as with perfectly directed search; however, ; now also includes searchers

who search in inferior submarkets. Define
I
< adi
)\? J = Z a; max[)\l, )\j].
=0

It follows that S\?dj < ;\j. In the appendix, we show that \; can be written as

rhi =yi — 0 — M) + > miiBp(0:) (N — M) = > mii (1= B)p(0;) (AP = \)

7> 7>

+ > (1= B)p)m; [N = A (16)

J<i

If we compare this with the corresponding equation for A; given by (13), we see two differences.
First, S\j is replaced by S\?dj , which adjusts for the fact that not all matches are accepted. Second,
there is an additional term in (16) that captures the externalities arising from the search of i-workers
in inferior submarkets.

Relative to the private counterpart M; defined by (1), there are two differences. First, the fourth
(second-to-last) term reflects the net externality discussed above. Second, the last term captures
the social cost of searching in submarkets below the worker’s current submarket without accepting
the offers obtained there. These negative search externalities imposed on the searching agents in
those markets enter the social value but not the private value when computing M;.

Let us then analyze the social value of increasing m;;, which we denote A;;. In the appendix,

we show that for j > i,
Aij = NiBp(0;)(A; — Ai) + Ni(1 — ﬁ)P(ej)(;\?dj — i) (17)

Suppose for an instant that M; = ;. As before, the net search externalities are lower the higher is 7,
and this will tend to increase the planner’s incentive to send workers to higher submarkets relative
to the private incentives. In a logit setup, this translates into higher probabilities of searching in

these markets in the planner’s solution. For j < i we get that
Aij = =Ni(1 = B)p(0;) (A5 = y).

In the counterfactual situation with \; = M; for all i, the incentives to search downward in the

Y1 7,5 = 75 for all 4, 4, the restriction that Z{:O w1, = 1 is superfluous.
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market solution are lower than in the planner’s solution if
=X > (1= B - Ay).

The left-hand side is the private penalty of searching downward (recall our assumption that the
searching agent, when calculating the perceived value of search, incurs the entire loss), while the
right-hand side is the social penalty. If i = j, the left-hand side is zero and the right-hand side is
also zero, so the private loss is certainly no greater than the social loss. However, this need not
hold if ); is sufficiently lower than A;.

5 Estimation

Until now, we have analyzed the theoretical properties of our model, including its efficiency
properties. We now discuss how the model parameters, and in particular the noise parameter

1, can be estimated.

5.1 Model extensions

In order to take the model to the data, we extend the model with a few added dimensions
of heterogeneity. First, as will be clear below, firm size will be an important determinant of
measurement errors in the classification of firm types. In order to match the size distribution of
firms, we vary the number of vacancies the different firm types are in possession of, denoted ¢;.

In order to explain downward moves, we introduce advance notice layoff shocks. We also allow
layoff rates to vary with firm type. Specifically, workers are separated into unemployment at a
rate that depends both on the employer’s type and the worker’s tenure. All jobs start with a low,
firm-specific layoff rate of §;. At the Poisson rate v, this rate increases to 0; + A, where A > 0.
Hence, the layoff rate is d; = &; + zA, where i = {i, 2}, z € {0, 1}, referred to as the worker’s state.
Unemployment is represented by i = 0.

Finally, we distinguish between search intensities when employed and unemployed. Employed
workers have search intensity normalized at unity, and unemployed workers search with intensity
1+7.

The joint value of a firm—worker match in state i can now be written as

rMi=y; + 6(Mo — M) + v(Miy — M) + B(1 + 1yy) Y _ mip(6;) (M; — My)*, (18)
i

where 1; = 1 if i = 0 and zero otherwise. The perceived value of search m;; is similarly rewritten,

mi; = Yi + 5i(M0 — Mi) + I/(MZ‘ — Mi) + ,8(1 + 1i")/)p<9j)(Mj — ]\Ji>+ —p(ej)(Mi — Mj)Jr. (19)
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For a worker in state i, define the effective productivity of the match as
yi = Yi + 5i(M0 — Mi) + V(Mi — Mi) (20)

In equilibrium, we can index the worker—firm matches according to g;. Let f(i) denote the rank of

a worker based on the rank of §;, i = 0, - - - , 2J. Define the ranked joint values by M%(i) = M;.

Lemma 1. In equilibrium of the extended model, the following is true given sufficiently low yo so
that M(] < Ml.

1. A worker’s search behavior only depends on the effective productivity of the match.
2. M: 1is increasing in i

3. Propositions 2 and 4 hold when the worker—firm matches are indexed according to i.

Lemma 1 is not completely trivial and is proven in Appendix A.5. The first result follows
from the fact that for i > 0 equation (18) depends on g; only, not its various parts. Since we can
then rank the jobs according to the rank of g;, Proposition 2 and Proposition 4 follow. Note that
a higher unemployed job-finding rate, 1 + 7, makes unemployed workers require a greater match
value to compensate for the search efficiency loss associated with employment. Every submarket
below the resulting reservation threshold is empty in equilibrium. Our data necessarily only show
observations for non-empty submarkets, and the estimation will therefore necessarily pick a g so
as to satisfy that all markets are populated.

The structure of the equilibrium is very similar to the structure of the equilibrium of the simpler
model, with the difference that we have to include flows between the different layoff states. See
the appendix for details and for a proof of equilibrium existence. However, note that Proposition 4
concerns jobs, not necessarily firms. To be more specific, the proposition implies that the inflow of
workers to a firm j, given that the worker transitions to a firm at rung j or above, is decreasing in
the effective productivity ¢ of the current match. However, the outflow of workers in the low layoff
state is lower in high-productivity firms than in low-productivity firms. It follows that the fraction
of job switchers who are in the high layoff state is higher the higher the type of the sending firm.
For example, all workers in the highest type of firms who leave for another job are in the high-layoff
state. Therefore, the average effective productivity 4§ among job switchers does not have to increase
in firm type j. So, it is not an anomaly if Bij increases in i for some ¢, j.

In order to explain horizontal transitions between firms of the same type we assume that workers
switch jobs when meeting a firm of the same type as the current employer. For the same reason
we also assume that workers in the highest firm type search. This has minor implications for the
aggregate economy.

The welfare analysis also extends easily; in particular, we obtain the same structure of the

results. The social value of a job, A;, will be an increasing function of g;.
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5.2 Data

We use Danish matched employer—employee (MEE) data for our analysis, and our data sources are
similar to those in, e.g., Bagger et al. (2013) and Bertheau and Vejlin (2025).

Our starting point is a population-wide dataset that contains the universe of employment spells
and labor market transitions in the period 1985-2013.15 A key advantage of these data is that we
can distinguish employer-to-employer transitions from similar transitions that have a small period
of non-employment in between, thereby avoiding time aggregation bias (see, e.g., Bertheau and
Vejlin (2022)). Further, since we observe the universe of workers and transitions, including firm
identifiers, we can construct firm ranks exploiting complete employment histories at the firm level
(e.g., all hires and separations over our sample period).

The data on employment spells build on information about worker earnings and are very
granular. We make some sample manipulations to clean the data and, for example, merge employment
spells at the same employer with only small periods of non-earnings. We also discard very short
employment and non-employment spells; see further information on these data cleaning choices in
Appendix E. Lastly, we add non-employment spells, defined as periods in which the workers are not
observed in employment, to the data so that we have complete employment and non-employment
histories for the workers in our sample.

We add information on individuals (e.g., education level, age, and gender) and firms (e.g.,
industry and value added) using some of the other registers available at Statistics Denmark. We
link across different data sets using either individual identifiers or firm identifiers, which are readily
available in all the registers (see more details on merging and variables in Appendix E.2).

To arrive at our analysis sample, we employ a number of sample restrictions to ensure a
somewhat harmonized sample and reduce unmodeled heterogeneity and other features of our sample
that our model abstracts from. First, we focus on the time period 1995-2005 to consider a time
period in which the Danish labor market and the economy as a whole are relatively stable. Second,
we focus on workers in the age range 25-50 to avoid early and late career dynamics that influence
the type of employment transitions workers make. Third, we drop observations where we have
questionable information about labor market entry or education.

The final merged dataset contains information about the individual worker (background characteristics
such as age, gender, education, and wages) as well as the current employer (value added, industry,
and firm size). The unit of observation in our final sample is a worker-year. In the final dataset,

we construct our firm ranking, which we return to further below.

5.2.1 Constructing the Poaching Rank

As we return to below, we employ the poaching rank presented in Bagger and Lentz (2019) as
our preferred grouping of firms into markets/types. The poaching rank is constructed for each

firm by considering all transitions into the firm (hiring) and distinguishing them by whether the

15Formally, this is known as the SPELL data set and is created and maintained by ECONAU at Aarhus University.
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arriving workers come from non-employment or employment. For each firm, we calculate the share
of new hires coming from employment (the poached workers). Subsequently, firms are ranked by
this poaching share. Firms that are in the public sector or in agriculture, forestry/fishing, and
financial /insurance activities are treated as an additional (and auxiliary) firm group. The same
holds for firms that are only present in the first two years of our sample window and/or have fewer
than five hires over our sample period. These restrictions are invoked as we do not believe the
poaching rank is adequate for these firms, either due to inaccuracies in terms of firm boundaries,
which makes it hard to differentiate and distinguish between, for example, internal and external
new hires, or simply considerable noise in the rankings due to few hires in general. In total, there
are approximately 76 thousand firms with a well-defined poaching rank. These firms are divided
into 10 equally sized groups/bins.'6

When we characterize aggregate and submarket-specific flow statistics (e.g. job separation
rates), we use all transitions available in our dataset (including transitions from or to ranked and
non-ranked firms). When we analyze the composition of job transitions, however, we focus on a
selected set of transitions to focus on transitions that resemble transitions in our model and not
transitions that arise from mass layoffs and the like (we discuss how we select these transitions

next).

5.2.2 Building transition matrices

As outlined above, the key identifying variation in the data for direction in search concerns the
composition of EE transitions (e.g., the share of EE transitions going to markets above your
current market). A key moment of interest in the data is therefore the composition of moves
between employers. When we sample EE transitions for this moment, we invoke three mild sample
restrictions to avoid our key identifying moments being influenced by worker behavior around firm
entry or exit or in relation to large firm size reductions.!” In particular, we do not include EE
transitions away from firms in the year of exit (defined as the last two years in which the sending
firm is seen in the data) or transitions into firms during their first (or last) year in the data. Lastly,
we do not consider EE transitions to firms in years where the number of hires is above one thousand
workers/spells.

This “transition” data set used to analyze the composition of EE transitions contains around
650 thousand EE transitions to and from firms for whom we have a firm (poaching) rank (1-10) in
our sample period. Around 36% of the EE transitions we work with are transitions into a lower-
ranked firm than the origin firm. Including transitions from non-employment gives us a total of

around 1.8 million transitions into these firms.

16 Appendix E.3 provides some summary statistics across firm bins.

1"The idea is that transitions around these events may not represent revealed preference over two firms’ rankings,
and this process is not something the model is set up to handle. In Appendix F we also show transition moments
without these restrictions and show that while overall patterns are unchanged, there is some noise reduction gain.

21



5.3 Identification strategy

The model estimation is done by simulated minimum distance. The object of the estimation is
to minimize the distance between a given set of data moments and the corresponding simulated
data moments. The set of moments is chosen to characterize key relationships in the data that
deliver identification of the model parameters. The model is solved for a given set of model
parameters. Given the solution, a data set with identical structure to that of the data is simulated,
and the simulated data moments follow. The distance between simulated and data moments is
then calculated as the weighted sum of squared differences.

Identification of the model is focused around the insight established in Proposition 4 that the
directed and random search benchmarks differ in the job-to-job move destination distributions
conditional on current firm type. Specifically, the relative likelihood of moving to one of two
higher-ranked firms is unaffected by the worker’s current position in the firm hierarchy under
random search. This is generally not true under directed search. Hence, the set of identifying
moments will pay particular attention to the worker job-to-job flow rates between firm types.

The type of a firm and its associated submarket are not directly observed in the data. To rank
firms, we follow the revealed preference argument used in both Sorkin (2018) and Bagger and Lentz
(2019), where there is global agreement among workers on the ranking of submarkets. Specifically,
we use the poaching index from Bagger and Lentz (2019) to rank firms relative to each other.

The poaching rank index measures the share of a firm’s hires that come directly from other
firms instead of from non-employment. With this, we rank firms and choose a number of equally
sized, by firm count, bins, J = 10, which are thought of as separate submarkets and map into the
separate types in the model. J is set as part of the definition of the data and simulated moments.
With this, we can directly calculate empirical transition rates h;;, as we observe workers make
transitions from empirical submarket i to j. From equation (12), the empirical measurement of ilij
follows directly.

The set of identifying moments includes {h;;}; jye1,....732 (that is, the transition probability
for a worker who is currently employed at a firm of type ¢ and moves to a firm of type j). We
show these in Table 2. While we have so far emphasized upward mobility, we use this entire set
of mobility rates to also discipline the downward job-to-job mobility rates induced by the advance
notice layoff shocks (v). In addition, we also include the current-submarket-i conditional rate at
which a worker moves to submarket j relative to any market above j, {iLZ]} This set of moments
speaks specifically to the directedness of search (see Proposition 4).

In Table 3, we show iLij for i € {1,...,9} and 10 > j > i. Immediately, we see substantial
variation in ﬁij across 7 for given j as well as an overall decreasing relationship between iLZ’j and
submarket ¢ rank for given destination market j. By Proposition 4, we expect such a relationship
when search is at least partially directed, pu > 0.

On its face, the patterns in Table 3 would suggest evidence that search is at least partially
directed. However, job-to-job moves made by workers in the advance notice layoff state are a

confounding factor; see the discussion in Section 5.1. A worker in the advance notice layoff state
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is effectively searching and moving from a lower submarket equivalent. In such a job-to-job move,
we are effectively misclassifying the worker’s origin submarket. This is not confounding if search is
entirely random, because in this case, izij does not vary with origin market. However, if search is
partially directed, it has the potential to generate noise in the empirical ﬁij patterns. We discipline
the advance notice layoff process by also including the downward part of the job-to-job mobility
rates shown in Table 2.

Firm submarket misclassification is another confounding factor. In Appendix B, we demonstrate
that classification error in the canonical on-the-job random search model results in variation in the
measured flij across the origin market ¢, where, in the absence of the classification error, ilij would
not vary with ¢. Furthermore, depending on the pattern of the classification error, it is possible
that it can by itself induce a broadly decreasing relationship between i and fzij, as seen in the data.

This highlights a virtue of our estimation strategy as opposed to the commonly used two-step
alternative, where the firm classification is obtained in a first step and is subsequently treated
as data without a sense of the uncertainty of the classification. In our estimation strategy, the
firm classification along with its error is embodied in the simulated data moments. We understand
through our structure how misclassification is a byproduct of the Bagger and Lentz (2019) poaching
rank firm classification, and it is replicated in the simulated data.

The firm classification error embodied in the poaching rank is particularly sensitive to the
number of hires a firm has. The more hires, the lower the variance of the firm’s estimated type
rank. Consequently, we include empirical moments to discipline firm size as well as the submarket-
conditional labor flows. Specifically, we include submarket-conditional average firm size as well as
the submarket-conditional average firm layoff rate and the submarket-conditional separation rate
into other jobs. These moments are shown in Table 4. Generally, firm size is increasing in the rank
of the firm and separations are decreasing.

Table 4 shows submarket-conditional layoff rates, average firm size, as well as the share of
job-to-job transitions from the submarket that are downward rank. The latter moment is used to
discipline the layoff notice process; see subsection 5.1, which is how our model understands job-to-
job transitions that are observed to be in the direction of lower-rank submarkets. The process is
akin to the exogenous job-to-job reallocation process in Jolivet et al. (2006) but is modified to have
the feature that the destination rank distribution is origin-rank dependent, an empirically relevant
feature also emphasized in Bagger and Lentz (2019). Down-rank mobility is common in the data,
and the inclusion of the advance notice process allows the model to more flexibly fit worker flows,
match distributions, and firm size distributions.

Worker reallocation is sensitive to the cardinal features of the model, more specifically, the
productivity gains associated with matches with better firms. We include submarket-conditional
value added per worker as a moment to discipline the estimate of y,. These values are also included
in Table 4.

One could consider controlling for worker heterogeneity in the data. One approach (however,

computationally demanding) could be a fully flexible interaction with observed characteristics
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that would be implied by separate estimations on subsamples. In Appendix F, we provide the
central identifying mobility moments (or summary measures hereof) for subsamples by education
and sex. The mobility patterns do not vary substantially across education categories. There
is some distinction between men and women. This is only suggestive, but at least along these
dimensions of heterogeneity, we do not see an obvious sensitivity of our identifying moments to

worker heterogeneity.

5.3.1 Model specification and parameterization

The discount rate is set at an annual rate of 5 percent, r = 0.05. We specify the matching function
to be homogeneous of degree one Cobb—Douglas, where we follow Petrongolo and Pissarides and

adopt a parameter of one half:
p(0) = A0, and q(0) = A9~Y/2.

Given the Hosios condition, we have bargaining power 8 = 1/2. A is a basic scale parameter to be
estimated.

Given the complexity of the estimation procedure, we economize on the number of parameters
that are estimated, trading off model flexibility to fit the data. We have arrived at the following
specifications as a compromise between these two concerns. The submarket-specific technology
parameters y(i), 0(7), and ¢(i) are parameterized as follows. Match productivity is characterized
by two parameters (y1,y9) by linear interpolation and normalization of productivity in the top-rank
submarket:
i+ Sy —y) f1<i<9
1 if i = 10.

y(i) =
The submarket-conditional layoff rate is characterized by five parameters (41, d2, dg, 410, d¢) by

5y — (05 — 89) (52)% if2<i<9
0; if i =1 or 7« = 10.

5(i) =

Finally, the recruiting technology is fully flexibly estimated, where ¢(1) is normalized at unity,
¢(1) =1, and ¢(i) = ¢; for i > 2 is characterized by the estimated nine parameters (¢, ..., ¢10)-
Thus, the estimation of (y, d, @) is achieved using 16 parameters. These parameters are constrained
so that y(i) is monotonically increasing and §(7) is monotonically decreasing. ¢(i) is fully flexible.

The rest of the estimated model parameters are (A, K, s,y0,7, A, ). Thus, the estimation

determines 23 parameters.
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Table 1: Estimated model parameters

Layoffs Hiring Productivity

7 0.405 yo  -8.201
K 436.3 01 0.501 ¢1  1.000 Y1 0.680
A 0.972 02 0.123 ¢o  0.257 Yo 0.711
v 0.227 03 0.123 ¢s 0.551 Y3 0.742
S 0.218 04 0.122 ¢q4 0.878 Y4 0.772
1+~ 3.565 05 0.118 ¢5 1.665 Ys 0.803

d¢ 0.109 ¢ 1.610 Ye 0.834
57 0.091 b7 0.477 yr  0.864
5s  0.060 $s  1.170 ys  0.895
dg 0.012 P9 0.494 Y9y 0.926
510 0.010 ¢10 0.093 Y10 1.000

5.3.2 Simulated minimum distance estimator
The estimation is done by simulated minimum distance. The estimator is given by
argmin [¥(wp) — \I/S(w)]T 2 [W(wo) — ‘I/S(w)} ,

where W(wg) is the vector of data moments based on the real data, which is a function of the
true model parameters wy. W(w) is the set of data moments based on s data set simulations
from the model solution for model parameters w. Y is a positive definite, symmetric weighting
matrix. The set of moments includes the transition probability matrix moments {h;;}i; as well as
the upper diagonal matrix {ﬁ}m moments shown in Table 3. The latter are implicitly represented
in the transition probability moments, but we include them as our theory speaks directly to them.
Furthermore, the moments include the 44 moments in Table 4. The weighting matrix is a diagonal
matrix chosen to provide a balanced fit to the data.

The estimation is done with s = 1. We have tried using a greater number of simulations, but
the already substantial data set size results in noise reduction gains that are second order. The
search for the minimum is done with a combination of global optimization using a swarm algorithm
combined with Nelder—-Mead.

5.4 Estimation results and fit

Table 1 presents the estimated model parameters. u is estimated at 0.405. In the next section,
we quantify and discuss the implied directedness of search. Layoff rates §; are strongly submarket-
dependent, decreasing from a high of .501 in submarket 1 to almost zero in the highest submarket.
We estimate v = 0.227, so that a match deteriorates into the high layoff state after slightly more
than four years of duration on average. The layoff rate then increases by 0.218. Table 4 shows that
the model captures the decreasing EU rates well. The EE flows that constitute the remaining part of

the separations are overall matched well, but the model overestimates the decreasing relationship.
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Table 2: Transition to submarket n conditional on move to n or above.

Bon | 1 2 3 4 5 6 7 8 9
| | 012 051 097 154 203 213 .368 .454 .607
016 .068 .094 .153 213 .262 .360 .481 .639
) 046 081 .141 .189 .198 .340 .470 .618
035 .081 .133 .193 .233 311 .454 .619
5 081 .150 .195 .204 .353 .451 .619
071 127 188 .223 .298 453 614
A 131 185 .199 .335 452 627
119 178 214 295 451 610
; 184 193 .360 .459 .619
170 209 289 .448 .608
6 175 311 .448 602
201 284 449 608
. 308 448 617
249 434 605
. 408 570
407 586
554
) 529

Note: Data in black. Estimated model moments in red.

The hiring rates are broadly declining so as to ensure correct relative inflows and the overall
increasing relationship between firm size and submarket.

The flow rate of income for unemployed workers is quite low, ensuring that workers enter into
the lower rungs on the firm ladder at a sufficiently high rate so as to allow the model to generate the
empirically observed flows from low-rung to high-rung matches. Unemployed search is estimated
to be around 3.5 times as efficient as employed search (7).

Firm productivity is estimated to be increasing by firm type, as expected, and the fit to the
estimated submarket-conditional productivity is generally good.

Table 2 presents the empirical relative upward transition rates ilij as well as the model fit. The
estimated model captures the general pattern that ﬁij is decreasing in 7, although while both the
layoff shocks and the misclassification mechanisms in the model do result in some non-monotonicity
in the estimated ﬁij, it does not manage to match the prevalence of the phenomenon in the data
moments. In fact, the estimated model’s firm type misclassification contributes to the overall
negative relationship between iLij and origin market ¢, thereby reducing the need for p to deliver
the pattern. We conjecture that had we adopted a two-step estimation method that does not
recognize firm misclassification, the estimation would have arrived at a greater estimate for u in
order to match the empirical negative relationship between ﬁij and origin market .

Table 3 presents the empirical transition rates h,,, and the model fit. The fit to the transition
rates is generally good while leaving some room for improvement in the transition patterns out of

measured submarkets 3 and 4, which empirically have considerably more mass focused on moves to
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Table 3: Transition probabilities conditional on job-to-job move

[ 1 2 3 4 ) 6 7 8 9 10
1 013 .078 .145 .150 .143 .113 .117 .097 .079 .052
.016 .067 .086 .127 .150 .145 .147 .126 .087 .049

9 019 .052 .154 .155 .135 .106 .117 .102 .080 .049
.003 .035 .0v8 .117 .148 .144 148 .148 .111 .068

3 .010 .046 .031 .173 .148 .103 .108 .097 .076 .046
.001 .029 .069 .115 .148 .143 .148 .158 .117 .073

4 007 .038 .078 .038 .161 .108 .109 .087 .077 .047
.001 .025 .064 .108 .143 .141 .153 .165 .122 .078

5 .005 .030 .070 .118 .040 .130 .152 .128 .108 .049
.001 .025 .061 .103 .137 .140 .154 .170 .127 .082

6 .003 .030 .064 .112 .145 .047 .157 .138 .136 .076
.001 .025 .059 .095 .131 .138 .156 .177 .132 .085

7 .003 .024 .052 .096 .134 .121 .061 .157 .139 .088
001 .024 .055 .090 .115 .124 .147 .192 .152 .099

3 .003 .022 .048 .088 .125 117 .184 .075 .158 .113
001 .026 .056 .081 .099 .100 .125 .208 .178 .125

9 .001 .017 .037 .072 .102 .108 .180 .197 .093 .133
.001 .025 .058 .08 .104 .105 .114 .169 .180 .160

10 002 .019 .036 .071 .092 .096 .162 .195 .181 .149
.001 .027 .059 .089 .110 .108 .112 .127 .178 .188

Note: Data in black. Estimated model moments in red.
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Table 4: Submarket conditional moments.

Ave firm Avg value Non-
submarket size added per EE rate EU rate employment
worker rate
Aggregate 16.9 .020 .029 .255
18.9 .024 .041 .252
1 11.2 0.709 .025 104
4.7 0.713 .030 A17
9 12.6 0.764 .032 .079
8.7 0.762 .030 .054
3 14.9 0.750 .032 .063
14.7 0.794 .028 .046
4 20.9 0.734 .032 .057
20.7 0.816 .026 .046
5 24.1 0.769 .030 .045
24.6 0.834 .026 .045
6 19.4 0.755 .033 .041
23.1 0.843 .025 .045
7 26.0 0.806 .032 .035
24.6 0.878 .023 .041
3 25.1 0.949 .032 .031
29.4 0.927 .022 .034
9 22.8 0.936 .035 .028
24.4 0.967 .020 .029
10 22.3 1.000 .032 .022
17.3 1.000 .019 .024

Note: Data in black. Estimated model moments in red. Aggregate average firm size includes unclassified
firms.

the immediate submarkets above whereas the estimated model spreads out transitions a bit more.

It is also these two submarkets that represent a fit challenge for the ﬂij measures.

6 Directedness

The particular value of the noise parameter p is not very informative by itself regarding the degree
of directedness in the labor market, and it may depend on arbitrary details in the parameterization
of the choice probabilities. In the following, we provide three perspectives on its magnitude.

In Section 6.1 we provide a welfare-based measure that compares the welfare of the estimated
economy to that of the two extreme benchmarks of either perfectly random or perfectly directed
search.

In Section 6.2 we put the p estimate into the context of how sensitive submarket tightnesses are
to changes in match values. This perspective uses the contrast that the perfectly random search

model is an ordinal model where only rank matters, and a marginal match value change will not
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Table 5: Classification error matrix

1 2 3 4 5 6 7 8 9 10
1 |.847 .153 .000 .000 .000 .000 .000 .000 .000 .000
2 ].128 281 .161 .107 .078 .088 .094 .046 .015 .001
3 |.007 .298 .243 .157 .113 .096 .069 .016 .001 .000
4 1.000 .198 .280 .203 .155 .104 .053 .006 .000 .000
5 | .000 .029 .197 .292 .258 .168 .055 .001 .000 .000
6 | .000 .002 .039 .135 .248 .325 .236 .015 .000 .000
7 1.000 .025 .062 .085 .123 .185 .309 .178 .034 .000
8 |.000 .000 .000 .000 .001 .007 .144 .619 .229 .000
9 | .000 .000 .000 .000 .000 .000 .002 .029 472 .498
10 | .000 .002 .001 .003 .005 .009 .022 .086 .279 .591

Note: True type in rows and estimated type in columns.

affect market tightnesses for a given firm type. This contrasts with the directed search model,
where cardinality matters. In the extreme case where search is perfectly directed, tightnesses are
infinitely sensitive.

In Section 6.3 we pose another welfare-related question in a setting where we consider an
extension to a model that includes an initial capital investment and a possible hold-up problem
similar to Card et al. (2014). In this case, we quantify the extent of the ex ante capital underinvestment
inefficiency implied by our u estimate. Investment in the perfectly directed search model is efficient.

The underinvestment problem becomes increasingly severe as search becomes more random.

6.1 Directedness measured in terms of welfare

One main implication of directedness is that it increases welfare. We therefore construct a measure
of directedness that is based on welfare. Welfare is measured as the NPV utility of an unemployed
worker; as demonstrated in Pissarides (2000), this is an appropriate welfare measure in search
models. With our estimated parameter values (except i), denote welfare with perfectly directed
search (p = 0) by ST, and welfare with random search by S%. Finally, let S denote welfare with
our estimated value of . The degree of directedness, d,., is defined as
O R
=S o)
It follows that our measure of directedness is equal to the welfare gain, relative to random search,
generated by our estimated value of i, divided by the welfare gain obtained under perfectly directed
search. Clearly, d. = 0 for 4 = oo and d,, = 1 for u = 0.
For the estimated value p = 0.405, we obtain a directedness value of d, = 0.41. That is, the
estimated economy realizes 41 percent of the welfare difference between an economy with a perfectly

directed search technology and one in which search is entirely random.
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6.2 Sensitivity of 0; to the flow search values m;;

In order to give more economic meaning to our estimate, we interpret our results in terms of the
responsiveness of the tightness 6; in a market with respect to the flow payoffs m;;.

First, as noted above, p is scale dependent, i.e., it depends on the scale of the m;; values. In our
estimation, we normalized the productivity in the top job to 1, so the flow values m;; are measured
relative to the flow value in the top job.

Consider a submarket j that is small relative to the entire economy. Let § = k/ E%];ol N; denote
the economywide ratio of vacancies to searching workers. Let N; = N;/(1 — Ny) denote the fraction
of the searching workers that are in submarket i. From (3) and (5) it follows that the tightness in
any market j is given by

J—

é S N exp mlj/lu’)

0] i—0 Zk -0 Tk exp(mzk/ﬂ)

(22)

Suppose T7; is small, so that we can ignore the effect of m;; on the denominator. Then we get that

the derivative with respect to m;; is given by

0 1 Njexp(mgj/pm)
92 03(mij) = = — == ) .
1 ko Tk exp(mir/ 1)

In the special case in which market ij is an “average market” with exp(m;/p) = Zg;é Tk exp(mg /1),

the latter expression simplifies to

=i (23)

The left-hand side shows the semi-elasticity of 6; with respect to m;;, where m;; is normalized by
yy. Thus, the absolute value of the percentage change in 6; when m;; increases by one percentage
point relative to y; is equal to the inverse of p (2.5 with our estimated value), multiplied by two
factors. The first factor is N;, the share of searching workers that is directly influenced by the
change in m;;. The second factor is the initial ratio of 6; to the average tightness 0 in the economy.
If the latter is 1, the semi-elasticity is simply the inverse of u scaled by N;.

Note that if 7; is strictly greater than 0, submarket j has “market power,” in the sense that
an increase in m;; will increase the overall value of search expressed by the denominator on the

right-hand side of (22). As a result, the semi-elasticity of 6; with respect to m;; will be lower.

6.3 Directedness and investment incentives

In this subsection, we discuss how our directedness estimate, u, affects the sensitivity of labor
market tightness and thereby the severity of the hold-up problem facing firms when investing in
capital ex ante, as in Acemoglu and Shimer (1999) and also discussed in Card et al. (2014).

We collapse all firm types to one common type and assume there is no on-the-job search, only
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unemployment search. This is a reasonable assumption when there is only one firm type.'® We
assume that the productivity of a firm is f(K), where K > 0 is the investment undertaken by the
firm at the entry stage. For expositional reasons, we assume that the number of firms is given.
Hence, in the symmetric steady state, tightness is given independently of the equilibrium value of
K. We denote this equilibrium value by 6*.

Since firms can immediately repost the vacancy (the fishing-line assumption), the outside option
of the firm when bargaining with the worker is still zero. From equation (6) it follows that the

value of the firm is

rV(K) = q(0)(1 - B)(M(K) — Mo)

— g0y - py B = ro

r—+9 (24)

since M(K) — My = (f(K) —rMy)/(r+ 0). Firms choose K so as to maximize V(K) — K, and at
the optimum V'(K) = 1.

For later reference, we first derive the profit-maximizing K under random search, with 6
independent of K. By taking the derivative of (24) we get that

(1-B)f(K) = j; , (25)

where ¢ = ¢(0). It is easy to show that the socially optimal investment level is obtained for 5 = 0,
and that there is underinvestment under the Hosios condition.!?

Now let search be partly directed. When setting K, the firms take into account that § may
depend on K, 6§ = §(m(K)), and that the responsiveness of 6 to K depends on the degree to which
search is directed. Taking the derivative of (24), we find that the first-order condition for K is

given by

¢'(0)0"(m)m/(K)(1 = 8) (M(K) — Mo) + ¢(0)(1 = B)—— =r. (26)

Now, the value m(K) is, from (2),
m(K) = yo + p(0(K)) 8 (M(K) — Mo).

Note that My on the right-hand side is constant, as the workers constantly rerandomize. It follows
that

! () = 1/ (0) 0 om)m ()8 (0 () — 14y) + p(0) 62
which gives (
) 1 1K)
N O TSR S 0

BOut of equilibrium, firms may differ and hence trigger on-the-job search since on-the-job search is costless.
However, we conjecture that a small search cost will prevent on-the-job search as a response to deviations in
investments.

90Opening up the entry margin, 8 = 0 is clearly suboptimal, as there will be too much entry.
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Let K* denote the equilibrium value of K, and let #* denote the corresponding equilibrium
value of . Consider a firm (or a set of firms with measure 0) that deviates and posts a slightly
different wage. From (23) it follows that for this firm, 6'(m) = —0*/u. Inserting this and m/(K)
into (26) gives that?°

roo_ f'(K™)
= =8+t (28)
where

 Bp(0*)(M(K*) — Mo) + /(1 — B)
Proposition 6. The equilibrium value K* is equal to the random search equilibrium value when

U — 00, is increasing in u, and is equal to the efficient level when search is perfectly directed
(k—0).

We see that in the limit, as u — 0, p converges to 1 and we get efficiency. As y — oo, p
converges to 0 and we are back in the random search solution.
We will now use the results from our estimated model to give an indication of the order of

magnitude of . To that end, we calibrate the investment model as follows:
e The value of Mj is set equal to the value of My in our estimated economy.

e The value of p(#*) is set equal to the average unemployment outflow rate in our estimated

economy.

e M(K) is set equal to the average value of obtaining a job in our estimated economy, which

we calculate as
rMo — yo

Bp(6*)

Inserting these values into the model gives p = 0.85. Hence, the estimated degree of directedness

M(K*) =

places us 85 percent of the way from random-search investment incentives toward directed-search
investment incentives.

One may ask why we get closer to efficiency in the simplified model with identical firms and
investments than in our estimated model with heterogeneous firms.

Note first, however, that to the best of our knowledge, there is no theorem or result implying
that, for a given u, the fraction of the efficiency potential realized when moving from random to

directed search should be the same across different environments.

20From (26) we get that

~ 00 (G OIS 200 g0 LU 1 qoya - LU =
This can be written as in (28), with
_ p(O)n (L= BY(M(K™) — Mo) _ p(®)n~B(1— B)(M(K") = Mo) _ _ p(0")(M(K") — My)
1+ Bp'(0)0p~ " [M — Mo] 1+ B(1 = B)p(@)u='[M — Mo] — Bp(0)[M — Mo] + /(1 — )
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Furthermore, the estimated model is far more complex than the investment model. The private
gains from entry into the different submarkets may be higher or lower than the social value,
depending on the submarket in question. Although increased responsiveness to search incentives
increases welfare overall, the effect is not positive in all submarkets. This contrasts with the
investment model, where increased responsiveness to search incentives always increases welfare.
We conjecture that this may explain why the investment model, for a given pu, yields outcomes
closer to efficiency.

That being said, we find the differences in the efficiency response to p across environments
intriguing, and obtaining a better understanding of these differences is on our agenda for future

research.

7 Conclusion

This paper develops and estimates a tractable model of partly directed search in the labor market.
The model nests random search and perfectly directed search and allows workers to sort across
submarkets in a probabilistic manner, with the degree of directedness governed by a single parameter.
Workers are more likely to search in submarkets that offer higher expected returns, but may still
search in inferior submarkets with positive probability. Wages are determined through bargaining
after a match is formed, as in standard search models, but workers internalize joint surplus when
directing their search.

The model delivers a number of sharp theoretical implications. We show that even with perfectly
directed search, equilibrium deviates from competitive search equilibrium and does not give rise to
an efficient allocation of searching workers across submarkets (and searching firms). Furthermore,
as long as search is not completely random, the composition of job-to-job transitions depends
systematically on the worker’s current position in the job ladder. Conditional on moving to a given
or higher-ranked submarket, workers employed at higher-ranked firms are less likely to move to any
fixed destination submarket than workers employed at lower-ranked firms. This property provides
a natural and robust source of identification of the degree of directedness in search.

We take the model to matched employer—employee data from Denmark and estimate it using
simulated minimum distance. The estimation exploits detailed information on job-to-job transitions,
wages, firm characteristics, and worker histories. Firms are grouped into submarkets using a
poaching rank, and the estimation strategy explicitly accounts for classification error in firm ranks
as well as for downward mobility induced by advance notice layoffs. The estimated model provides
a good fit to key features of worker flows, firm size differences, and transition patterns across
submarkets.

Our estimates indicate that search in the Danish labor market is neither fully random nor fully
directed. Using a welfare-based measure, we find that the estimated economy realizes about 41
percent of the welfare gain that separates perfectly directed search from random search. Alternative

interpretations based on the sensitivity of market tightness to match values and on investment
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incentives also indicate a substantial degree of directedness. In particular, the estimated degree
of directedness substantially mitigates, but does not eliminate, the inefficiencies associated with
random search.

Overall, the results suggest that allowing for imperfectly directed search provides a useful and
empirically relevant middle ground between the standard random search framework and models
with fully directed or competitive search. The framework developed here can be applied to study a
range of questions related to worker reallocation, wage dynamics, and efficiency in frictional labor

markets, and it offers a promising basis for further empirical work on search technologies.
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Appendix to Directness in Search

A Mathematical appendix

A.1 Proof of Proposition 1

We prove existence for p > 0 and for p = 0 separately. We start with p > 0.

The proof is based on a fixed-point argument. Define the compact convex set

J
X = {(M,w,k:,N): M; € M), 7 € [m,1], > mj =1 Vi, k€ [k, NEAJ“},
j=1

with A7 = {N; >0, Z;'Jzo N; = 1}, where bounds (M, M) and 7 > 0 are provided below. Given
(M,m,k,N) € X, define T'(M, w,k,N) = (M', 7', k', N') as follows:
1. Define tightness. From (M, 7, k, N), calculate

ik
J
> i—o mijNi

Given the bounds, 0; is strictly greater than zero and bounded above. Denote the bounds on
6 by 6 >0 and 0 < co.

0; =

2. Compute mfj from equation (2).

3. Given 0, M, and m;;, compute f;; from (7), then V; from equation (6). Let EV = Z;']:I 7 V.

Since ¢(6;) < ¢q(), Vj is finite for all j.

4. Update 7 from (3)

p

, dimexp (5E)

Mij = o
Z;-V:l ¢jTj exp ( 'L:J )

v

5. Update M. For i > 0,

rM] = y;—6(M; — M) + 3 Z mip(05) (Mj — My)™ (30)
J

6. Update k:
K =kEV/K
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7. Update N:

J J
NS wip(9) = SN (31)
7=1 7=1
N i—1
N6+ D wip(6y) | =p(0:)>  mi;N, (32)
J=i+1 Jj=1

If any of the values (M’', 7', k', N') defined above exceeds (falls below) the respective upper (lower)
bound, the updated value is instead set equal to the corresponding upper (lower) bound.

The mapping is continuous, and it follows from Brouwer’s fix-point theorem that the mapping
has a fixed point. We denote this by (M*,7*, k*, N*). By construction, the fix-point satisfies all
the equilibrium requirements provided that bounds do not bind.

Hence the proof is complete if we can construct bounds that don’t bind at the fixed point. We

will now derive such bounds.

1. An upper bound for Mj is y;/r, and a lower bound is yo /7.

2. Lower bound for k. As k — 0, we have Ny — 1 and My — yo/r. Then there exists j > 0 with
6; — 0. Since M; — Mo — (y; — vo)/(r +6) > 0 and ¢(#;) — oo under the standard Inada
condition on the matching function, it follows that V; — oo and hence EV — oo. Thus there
exists k > 0 such that EV > K for all £ < k. This lower bound cannot bind at the fixed

point.

3. Upper bound for k. Total worker mass is 1. The mass of type-J firms is 77k. Thus the
average number of workers per type-J firm is at most 1/(77k). Since wages are at least yo,

flow profit per type-J firm is bounded by (y; — y0)/(7sk). Discounting at rate r,

YJ — Yo

V; < .
= rTrk

Because y; < y; for all j, V; < V;. Hence

J
YJs — Yo

EVzE V. <V < =
jlejJ_ T rrk

As a consequence, for k >k := (y; —yo)/(rK7y), we have EV < K, so no fixed point can lie
above k. Thus k* < k in equilibrium.

4. Lower bound for m;;. From the logit expression

7j exp(my; /1)

p— J 5
Ze;l Te eXp<m€z/M)

7Tij
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with my; € [yo, y,], the worst case for j is m}; = yo and all mj, = y; for £ # j. Hence

Yo/ h
Tij > e s Tmin e~ WY/ = >,
i J - =
Dy TeeYI /R

Suppose then that ¢ = 0. We define the fixed point as above; however, we change the update of

max

m;j. For a given 1, let j denote a value of j that maximizes mfj defined in step 2, and let m;

denote the corresponding maximum value. Let m; = >, mijmy;.

p —
m,. — 1My
ﬂ-;j = Tj (1 + 7;;{11&( (1-— 7['15)>

7

It follows that ng is bounded by 0 and 1, sums over j to 1, and is continuous in m;; and mfj.

p _ max
ij m; .

We use the same bounds as in the proof with p # 0, and show that the bounds do not bind

Furthermore, at a fixed point, 7;; > 0 only in the submarkets with m

in the same way except for the lower bound =« for 7;;, which is no longer defined by (3). Instead,
we assume a lower bound on a combination of variables, n; =), <j N;m;;, the measure of workers
searching in submarket j, and show that it does not bind for sufficiently low values of the bound for
any j > 0. This is sufficient to ensure an upper bound on ¢;, which is what we need for the mapping
I" to be well defined. To this end, construct a decreasing sequence of lower bounds on 7, €., which
converges to zero. For each z, there exists a fixed point. We want to show that for sufficiently high
z, the bound 7n; does not bind for any j. Suppose it does. For each of these fixed points, 0; is
non-increasing in j. Since all workers at j < J search, there must exist a lowest market [ at which
the sequence 7} is bounded below by a strictly positive number, and denote the associated upper
bound on the tightness by 6. Some unemployed workers must search in market | (due to maximum
separation, see 2), so that rMy < yo + Bp(0)(M; — Mp). Furthermore, My — My > %, which
is a fixed number strictly greater than zero. However, as n; — 0, and since k > k, p(6;) — oo,
and an unemployed who is searching in the ;7 = 1 market obtains an NPV income that converges
to M1, a contradiction. Hence, for some z < oo the bound does not bind for j = 1, and since 0; is

non-increasing in j, for none of the markets. This completes the proof.

A.2 Proof of Proposition 2

Recall that, in the limit economy,

rM; =vy; + (Mo — M;) + Bm]ax [p(ej)(Mj — M;)]. (33)

Suppose 7' > i. Further, suppose there exists a market j that workers in i’ search in, and another

market 7/ > j that workers in 7 search in. We will show that this leads to a contradiction.
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Assume the claim is true. For the worker in ¢/, it follows that:
yir + 6(Mo — My ) + Bp(6;)(M; — M) >y + 0(Mo — My) + Bp(0;)(Mjr — M;r).

This simplifies to:

p(0;)(M; — M) > p(0) (M — My). (34)
Similarly, for the worker in i, it follows that:

p(0;)(M; — M;) < p(0y) (M — My). (35)
Combining (34) and (35), we obtain:

(p(057) — p(6;))(Mir — M;) = 0. (36)

We know that p(6;) < p(0;) and that My > M;. Therefore, the left-hand side is strictly negative,
contradicting the inequality. This completes the proof.

Proof of Proposition 3

First, we want to show that it does not matter for the profitability of the deviating firms whether
they form their own submarket or join the existing submarket with the same wage, since in both
cases they will face the same tightness (and will also attract workers with the same employer type).

Suppose the deviating firms’ submarket with wage W’ did obtain a strictly higher tightness
than the market with the corresponding productivity y3 = W=Y(W'), which in equilibrium has
tightness 0(y;). Then workers currently employed in firms with productivity y; = y;(y}) would
strictly prefer to join the new market, which is inconsistent with equilibrium. If, on the other hand,
the resulting tightness were strictly lower than O(yg-), the new market would be strictly dominated
by the y}—market, and we could not be in equilibrium. Hence it follows that the tightness must be
equal to H(y;). Given this tightness, the deviating market would be dominated by another market
for all workers except those currently employed in firms of type y}, who will therefore be the workers
who populate the new market.

Given this equivalence, we now let the deviating firm choose which submarket to enter. When
choosing between submarkets, the firm chooses between a menu of wage-tightness combinations
(W (y;),0(y;)). It follows that we can write § as a function of W, 6 = §¢(W) = (W ~L(W)) for all

W € W. Hence ,
doc(W) — 0'(y;)

aw  W'(y;)’

(37)

where y; = W=HW), W € W.
We now investigate the derivative of §¢(WW) further. Let g(y;) denote the value of search in the
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perfectly directed search equilibrium, defined as
9(yi) = maxp(0(y;)) B (M(y;) — M(y:). (38)
By the envelope theorem it follows that

9 (yi) = —Bp0(y;)) M'(y:), (39)

where y; is the productivity of the firms in the optimal submarket, given by y; = v, 1(y1) Note
that ¢'(y;) < 0.

Next, we take the derivative of (38) with respect to y;, taking into account that y; = v;(y;).
We obtain

9'(vi) vi(y;) = P'(0) 0 (y;) B (M (y;) — M (vi(y;)))
+p(0(y;)) B (M'(y5) — M’ (i) v (y5)) - (40)

Recall that
W (y;) = M (yi(y;)) + B (M(y;) — M (yi(5))) »

hence
W (y;) = M'(yi) yi(y;) + B8 (M'(y;) — M'(y:) yi(y;)) -
Substituting these expressions into (40) gives
o/ (vi) yi(s) = 90 6/ (uy) (W (3y) — M(w2)) +p(0()) (W' () = M (w1) iwy) ).
Using (39) and rearranging yields
P'(0) 6" (y;) (W(ys) — M(yi) +p(0(y;)) W(ys) = —(1 = B) g (i) wi(y;) > 0, (41)
since ¢'(y;) < 0 and, by monotonicity, y;(y;) > 0. It follows that

o (W) _ 0'(y;) . p(0(y;))
AW Wi(y;) ~ p'(0(y;) (W (y;) — M(yi))

The deviating firm of productivity y; seeks to maximize profit
PV = q(6°(W)) (M; — W).

The first-order condition is

dge(W)
AW

q'(6°(W)) (Mj —W) = q(0°(W)) = 0.
It is sufficient to show that the left-hand side of this condition, evaluated at (W (y;),0(y;)), is
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strictly negative. In that case the firm finds it profitable to reduce the wage. This is equivalent to

showing that

do(W(y;)) q(0(y;))
dw q'(0(y;)) (M; — W(y;))
Now, using the Cobb—Douglas relations
10d) L)
=] =t

we obtain (evaluated at y;, and suppressing the dependence on y;)

q(6) _q®)1-8 1
JO)(M;— W) ¢0) B W -
0
T A-B)(W - M)
p(0)

T YO W - )

From (42) we know that

do“(W () p(0(y;))
AW P (0(y;) (W (y;) — M(y:))’

which proves that a small reduction in W increases profit, and therefore the deviating firm sets a
strictly lower wage than W (y;).
Finally, note that the indifference curve of the worker of type y;(y;) who searches in the y;-

market is given by
p(O(W)) (W — M;) = g(yi),

with derivative exactly equal to
B p(6)
p(0) (W — M;)
Hence, if the deviating firm were always attracting workers of type v;(y;), it follows from (43)
that it would not be profitable to deviate. However, when it reduces the wage, the deviating firm
attracts workers of strictly lower type. The relevant —W relationship is therefore (W), which is

strictly less steep than the indifference curve of the y;(y;) worker.

A.3 Proof of Proposition 4

Let 7 and z be two receiving markets, with z > j. Let ¢ < j be arbitrary. Then we have that

miz — myj = Bp(0,) (M, — M;) — Bp(6;)(M; — M;)
= B(p(ez)Mz - p(ej)Mj + (p(QJ) - p(ez)) Mz) (44)

43



. . . . . . . . mij/
Since p(6;) > p(6.), it follows that m;,—m;; is strictly increasing in i. Recalling that m;; = <*—. .

> eMiz /K
we get
h.. — PjTij
hZ] - Zi:j P2Tz
e Mg/ #
_ P emia i
- ryeMiz/H
D S v
_ pyie™id /"
B S paTseMiz/l
_ PjT
Zi:j pZTze(miz—mij)/M
Suppose that i’ > i. It follows that
Mirz — Myt > Myz — My (45)
(since z > j). It follows that e(™i==)/i > (mi==mij)/1 and hence that
B — PjTj
=
T peraelmimmi/n
DjT;
7N~ (mar—mary)]
S perseme
which shows Proposition 4
A.4 Derivations related to efficiency considerations
Hence, the planner’s maximization problem can be written as
o T
max Ni(t)ye " dt
7rz’j(t)/o ; it
Given the following constraints:
I i—1 J
Ni(t) = =Ni(t) [ 0Liso + D> mi(00;0) 7 | +> - Ni®)ms(t)0i ()P +(1-1in0)8 3 Ny i=1,...
j=i+1 1=0 i=1
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where 1,59 =1 if 7 > 0 and 0 if ¢ = 0, where

Tjk
ST N

and where we require that

0;(t)

We will first derive the solution to this maximization problem in the noiseless limit with g = 0.
Then we will use the set-up (the Hamiltonian and the associated adjoint variables) to shed light

on the social versus private value of entering the different submarkets when p > 0.

Perfectly directed search, ;=0

Let us first derive the optimal solution in the noiseless limit with g = 0. In this case, the planner
can freely choose the probabilities m;;. Furthermore, neither the planner nor the agents in the
decentralized solution would ever choose m;; > 0 for j < i. The current-value Hamiltonian thus

reads

I I i1 J
H = > N+ Y A |=Ni | 0liso+ Y mip(05) | + Y Nimip(6i) + (1= 1i50)5 3 N,
i=0 i=0 > 1=0 =1

J J J
+ ZO’Z‘ Z mi; — 1 +ZZI€UT(¢]’ (46)

j=i+1 i=0 j=0

We require that o, k;; > 0 and that 7;;k;; = 0 (complementary slackness).

Using that r\; = g—]{i in steady state we get that

0
rAi = Yi — (N — o) + N, Zp(ej) Z Nlﬂ'lj()\j - A) (47)
v\ j>i I<j
(since 6;(Ag — Ag) = 0). Now % =—0; 7;:;, where 7; is the total number of applicants in market j

(n; = Zi:_ol m5(t)N;(t)). The next expression follows. For i > 0 we have that

rAi =y — 0\ = Ao) + Y _mip(0) (A — A) = > (1= B)p(0)mi; Y fii(\—N)  (48)

§>i §>i I<j
The first term is the productivity flow, the second the direct effect of on-the-job search (not including

search externalities) and the third term captures search externalities. Note that if 7;;, = 1 for some
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k, and that m, = 0 for all [ # ¢, then the equation writes

i = yi —0(Ni — Ao) + Bp(0r) (Ae — Ni)

which is well known in competitive search. More generally, let S\j = ngl fijAi- Then

rAi = i = 6(Ai = do) + D miiBp(0;) (N — Xi) = D (1= B) p(0;)mii(Ai — Aj) (49)

> >
equal to (13).
90; _ o N;
Note that 67“?3_ = —0; 7y
mij | Bp(6) (N — M) — (1= B)p(05) D _(Aj — Ai) = (00 + kgg) N; (50)
I<j

which is equivalent to maximizing A given by (49). This is a linear programming problem, and
using the complementary slackness condition for x;; and m; gives first order conditions (14).
Finally, we consider entry decisions. Firms can enter at cost K. Subtracting kK from the

Hamiltonian (46) and taking derivatives wrt k gives

J
> 7001 - 8) (N = ) = K (51)
j=1

which has the same format as the equilibrium entry condition, as expected. Hence, any inefficiencies
along the entry dimension will be due to differences between the expected social and private values,

A; and M;, of worker-firm matches.

General case

Let us then consider a situation in which the m;; are constrained to be equal to 7;; for some
probability matrix 7. We do not require 7;; = 0 for 4 > j. The Hamiltonian then read (the
constraint that Ej m;j = 1 and that the probabilites are non-negative are now automatically

satisfied and therefore ignored).

1 I i—1
H = Y N+ A |=Ni|[0liso+ Y mip(05) | + Y Nimip(6:)
i=0 i=0 5> 1=0

JoJ
7k
rkij (mij — ij) s 05(t) = 2 52
MR e L ST )

Using that rA; = % gives
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rAi =y — 0\ — o) + Y mip(6;) (A — Ai)

7>t
S-S Ng“ (A = M) = D (1= B)p(0;)s Z N”]”J max [\; — A, 0] (53)
j>i l J<i

Now define )\adj S fiymax[A;, A;]. Tt follows that we can write

rAi = yi — 0\ = o) + Y miip(6;) (A — Ai)
>t
=D ARy = XY + 301 = BYp(0)mis | A — X5
j>t 151
(54)
Or
rXi = yi — 0 — M) + D miBp0) (A — M) + D w1 — B)p(0;) (XY = \)

Jj>i j>i

=S BBy [N - ] (55)
1<t

as stated in the text.
We will calculate the social value of increasing ;;, which we denote A;;. To that end we take
the derivative of H given by (52) to get that, for j > i,

Aij = NiBp(0;)(Aj — M) + Ni(1 = B)p(0;) (A% — \j) (56)

For j <0 we get that

Aij = =Ni(1 = B)p(6;) (57 = X))
Finally, consider optimal entry. The optimal number of firms maximises H — kK where H is
given by (52). It follows that the conditions for optimality is given by (51) with X replaced by A4,
A.5 Definition of extended equilibrium

Definition 2. A steady state equilibrium with wage bargaining for p > 0 is a vector of net present
values, Mj, j = 0,...,J, a matrix of perceived flow values, ms;, i = (i,2), 4 =0,...,J, 2 = 0,1,
and j = 1,...,J , a matrix of choice probabilities, mj;, a vector of labour market tightnesses,

0 = (61,...,05), a number of firms, k, and an allocation of workers on firms and states, N =
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(N.1,...,N.y), 2= 0,1, such that
1. M; and my; solve equations (18) and (19).
2. The matrix of choice probabilities, j;, is given by (3), with i replaced by i.

3. The vector of labour market tightnesses (61,...,0;) is given by equation (5), where the

summation is over i instead of 1.
4. The number of firms, k, is implicitly defined by equations (6) and (8).

5. The allocation of workers on firms, N, solves the following equations (replacing 9 and 10)

7No Z mo;p(6;) = 0(1 — No) (57)

Ni (64> mp(6)1(M; = M; > 0) | =p(6:) > miMil (Mo — My > 0) (58)
J 1

where 1() is an indicator function that takes value 1 if the expression in () is true and 0

otherwise.

The proof of existence of equilibrium is completely analogous to the proof of existence of

equilibrium in the simpler model and is therefore omitted.

Proof of Lemma 1

Claim 1. The choice probabilities depend on g;;.

For given equilibrium values of 6 = (61,---0;), mligj defined by (2) depends on g;; only. Since
the probabilities 7;;, defined by (3), only depend on values of mfj, the claim follows.
Claim 2. M: is increasing in y;.

Let M(y) denote the NPV income as a continuous function of § for all § > yo, given by (18),
where ¢ is defined generically by (20). Furthermore, define mﬁ-’ (g) by (19). Similarly, define ()
by (3), with mj;, replaced by m% ().

For sufficiently high values of ¢, no job will be accepted (recall that the vector yg,...,ys is
fixed). Then

rM'(7) =1 > 0.

Suppose M'(§) < 0 for some §. Since M’(7) is continuous in ¢, there must then exist 3’ such that
M'(y') = 0. From (2) we then have that at 3’

dm? (i

é;y) =1 forallje{0,...,J}.
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It thus follows from (3) that
dm;(§')
dy
But by differentiating (1) with respect to ¢ it then follows that M’(g) > 0, contradicting the
assumption that M'(g") = 0.

=0.

Claim 3. The propositions 2 and 4 hold when the worker-firm matches are indexed according to .
These claims follow from the same arguments as those presented in the proofs of proposition 2

and 4, and the proofs are therefore omitted.

B Random Search w/ classification error

Consider a canonical random search model. Workers receive offers at Poisson rate A whether
currently employed or unemployed, and jobs are destroyed at rate . Denote by f;, the joint
offer distribution of a true type x offer and its observed type y. Worker movement is as in the
regular model in that an offer (weakly) better than current offer is accepted. Denote by f, the
marginal distribution, Zy Jzy = fz, and its CDF F, = " | fs. Let unemployment be given by
go. Denote by g, , the steady state match distribution over true type x and observed type y. By
similar convention denote the marginal distribution by, g, = Zy gz and its CDF Gy = >0 gn.

Denote by hg,, the worker transition flow rate between measured type m and measured type
n. A worker knows true type and accepts any true type offer that is better than current true type.

An observed flow from m to n happens at rate:

y>w

With this,

. zx Jzm Zyzx fyn
" Zx Yzm Zzzn Zyzx fyz

h

The steady state condition on g, is,

o+ )\Zfz — )\fxy Jzy = /\fxy <Z 9z — gmy)
z>x 2=0
i
(54—)\2.]02 ga:y:>‘f$y <Zgz>

2> z=0

The reasonably straightforward way to solve this is to solve for G, and then with that solve for
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gzy- The solution on the marginals is

Al = Fy] Gy = 6[1 — Gy

0
J

Gp=————.
J+A[1— F,
With that we have,

_ AfayGe _
ga:y - 5_'_)\(1 . Fx_l) - ¢33f2?y7

where ¢, = Wﬁm is monotonically increasing in x and 0 < ¢, < A/d. With this, in steady

state it follows that,

Zx ¢xfxm ZyZa: fyn

P, = .
Zx ¢$f€0m ZzZn ZyZm fyz

It is possible to design classification error examples where Bnn is at least locally increasing in
m. However, the (far) more common pattern is that of a negative dependence in m. To illustrate,
consider a symmetric classification error where a type can only be misclassified as a neighboring

type. For some € > 0, assume,

.
€ if [z —yl=1
fr—2 ify=zxzand N >z >1

fﬂcy: )
fx—ff 1fy:xandx:10rx:N

\ 0 otherwise.

Furthermore, restrict € so that f, > fy for all y and x. With this we have for 1 <n < N,

In —

o form<n-—2
7 fn=C _
Bomn = oo form=n-1

fn=D

e E—- fOI' m=n
anl_D_¢n+152

where,

Pre?

ZZ:n—2 ¢xfa:,n—1
One (fn - 25) + % (fn - 5)
D=
St Gufon

C:
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~

Hence, it immediately follows that ﬁn_l,n < hpp for m < n — 2 . Furthermore, h,, < iln—l,n

)

implies,

[C_D] |:Fn—1 _fn] [fn_c] ¢n+152
(i
[C = DI, < [fo = Cl pniac”

A sufficient condition for ﬁnn < hnfl,n is then that,

D>C

)

¢n+1> Zgi}kl $f:cn + Z;L:nfg ¢$fz,n—1
n 1 n s
(f 6) ( " ¢n - e Zx:n—2 d)xfm,n—l

which is satisfied for suffiently low €. This is a sufficient condition. In our experience, D > C is the
rule rather than the exception even for high e, but humn has so far resisted broader characterization,
and as mentioned, it is possible to provide examples where Bonn monotonically decreasing in m is

violated.
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C Specification and solution algorithm

Specification

Let the matching function in a submarket be Cobb-Douglas, M(s,v) = As“'~®, where s is the
mass of efficiency units of worker search in the market. The employed worker meets a vacancy
at rate p(0) = M (s,v) /s = m(0) = A9'~®. The unemployed worker, by virtue of the possibly
different search efficiency, meets a vacancy at rate, po (6) = ym (0) = yA9 ~*. Vacancies meet
workers at rate ¢ () = A6~

Solution algorithm

1. The solution algorithm looks to find a fixed point in a mapping of (6, k) into itself, (91 E(m+1)y =
Tor (00, k(™).

2. The mapping Tpy; is determined as,
3. Take input (#(™), k(™).

4. Solve for (m(™), M(m),w(m)) for given (™ using equation systems (2), (1), and (3).

(a) This equation system is solved as fixed point search M™* = Ty, M*.

(s.m).

i. Make a guess, M
ii. Solve for m(*™) using equation (2) - uses M ™) and (™).
iii. Solve for 7(*™) using equation (3) - uses m(*™),

iv. Solve for M+1™) using equations (1) - uses #(™ and (™),

A. This step uses that M can be written as a contraction mapping,

Yi + (0; + sk) Mo + AMi1 + 35—y mijwp (05) B max [Mjo, Mig]
T+ 0+ sk + A+ D mikp (65) B
Yo + D=1 Ymojkp (05) B max [M;o, Mo]
My =
r+ 321 ymop (05) B

k=

Thus, simply iterate until convergence to obtain solution. This happens to be

quite fast.

v. loop back to step i with ML) as input. Continue to iterate until convergence...

no convergence guaranteed.

(b) In practice, it is faster if the algorithm does not iterate for a full solution of this system

in each (m) iteration.

5. Solve for n{™ as the solution to the linear equation system in equations (9)-(??) taking as
given (™) M (™) and (™).
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6. Solve for (61, k(m+1) as the solution to equations (5) and (8).

(a) This step uses a speed up from the Cobb-Douglas formulation. We have that ¢(0) = 6=.
Define,

5 _ g
J N m m m m)’
Yo L ngk)Ni(k t ’W(()j )Né )

With this, the free entry condition can then be written as,

e N Tjé;a(l — B) |, S i (Mjo — M) T fiji + (Mjo — M) fo; o
Z r+49 o
7j=1
Hence,
(m)\ N o1 m) g m) (m) _ 3 (m) He
(m+1) N T (93' ) (1-8) [Zi:l Zk:O(MjO — M, )+fijk + (MjO — M ) foj}
s ; K (r+90)

And with this, it immediately follows that,

(m+1) _ 5(m) g (mt1
0, =0, E(m+1)

7. With (9071, k(m+1)) loop back to step 3. Repeat to convergence.

D Simulation

A worker i’s history consists of a sequence of spells {vi;, wy, i, kil}lL:il, where ~ is the duration, w
is the wage, j; is the firm type of the spell and k; is the layoff rate state. Denote by hj the hazard
of spell with a j type firm and layoff rate state k. Conditional on an employment spell, j > 0, the
spell hazard is given by

N
hje = A1 = k) + 8 + s + > myep(051)1 [My < Mo -
J'=1

If the spell is an unemployment spell, 7 = 0, the spell hazard is (where the layoff state notation is

suppressed),

N
ho = Z Woj/po(ej/).
—1
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Denote by (j;kr the transition conditional probability that the state of the next spell is (j', k')
given that the current spell is state (7, k). It follows directly that,

A .
Bjjor = 7 Vi >0
40

5.
BjOk: j+8k7\v/j>07k6{071}
hj,
.. 0., 1 M <M,,
B = 22 5) My < Myol o 50, ke {0,1)
I
. 97
Boj:w,w>0’
ho

and Bj;pr = 0 for all other (4, ', k, k') combinations.

The simulation initializes by steady state Nj;. Thus, from this distribution draw an initial
state for worker i. Then simulate the duration v; ~ Exp(hj,k, ). The state of the next spell is then
drawn according to ;. Let the length of the simulated panel of workers be T' periods. Stop
simulating spells for worker ¢ when ZZL:Z 1Yit > T. Let there be I workers in the panel.

E Data Construction Appendix

E.1 Sample selection and cleaning of the spell data

We focus on individuals which we are also able to find in the IDA registers so that we can observe
age, gender, education and the like. Focusing on the set of employment spells for a given individual

we we now do the following:

e We merge two employment spells into one if they take place in the same firm with less than

94 days in between spells

e We merge two employment spells in different firms with less than 21 days between spells in

the sense that we change the startdate of the second spell to start immediately after the first
e We drop employment spells with a duration of below 21 days
e We drop employment spells with accumulated earnings less than 20.000 (in 2000 Dkk)
e We drop employment spells with weekly earnings less than 3000 (in 2000 Dkk) kr
e We drop employment spells where we have no hours recorded

e We drop employment spells with an average number of weekly hours below 20 hours (full
time work: 37 hours * 40 weeks / 52 weeks)

e We drop employment spells with less than 150 accumulated hours
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E.2 Linking across datasets and firm data

Individuals are linked across registers by their personal identifiers pnr. For individuals we use the
IDA registers at Statistics Denmark: IDAP (from which we get information about age), UDDA
(information on highest completed education ), IDAN (from which we get information about wages).

Firms are linked across registers by their firm id (cvrnr) (firm level identifier). This firm id
allows us to identify worker moves between firms and collect workers employed at the same firms.
In addition we add information on industry affiliation and value added. Data on Value Added
comes from the FIRM register at Statistics Denmark. FIRM contains firm level accounting data
and a measure of value added.?! Note that FIRM is only available for a selected subset of Danish
firms (higher coverage in larger firms)?2, but since we focus on firms with more than 5 hires over
the sample period and only need one period of non-missing value added to construct ranks and
since we are not ranking firms in the public sector (where value added is not available) and we do

not loose a lot of coverage using this VA measure.?3

E.3 Summary statistics within firm ranks

In Table 6 we show various summary statistics of our sample within each firm rank bin. Average
age across firm bins is similar. There are fewer women working in the highest ranked firms and
slightly higher educated workers. If we instead rank firms based on wages that wage ranking is
broadly increasing across firm bins. Similarly ranking firms using only women or men, or low or
highly educated workers when constructing poaching ranks would also imply firm rankins which

are increasing across our firm bins.

21See an example of the calculation here: http://www.dst.dk/extranet/staticsites/TIMES3/html/
63c1£70e-7933-40£d-89de-90£8ab191b0c.htm

22The FIRM database we use is a collection of the registers: FIRM (Generel Firmastatistik), FIGF, FIGT, and
FIRE from Statistics Denmark. The degree of coverage in the FIRM database varies across industries for historical
reasons. Statistics Denmark started to collect firm accounting data in the Manufacturing sector in the early 90’s and
then slowly expanded the coverage until it covered all of the private sector except the financial sector.

23(We discard less than 3 % of observations when restricting to non-missing value added.
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F Data appendix with robustness checks

As argued above, central for our identification of directedness is the tendency for ilij to be decreasing
in 7. To ease interpretability and comparability across samples we measure this tendency with two
measures which we report and discuss these across different samples.

The first measure is a weighted average of the j-specfic variances of izgjs (each column in the

matrix of ﬁlj) In our version with 10 submarkets this is calculated as:

RN
Bsp = ;ZZ(hij_hj) (59)

=2 i<

where Ej = %Zigj izzj Bsp is thus a measure of the overall variability of izij in a given sample
(keep in mind that h;; € [0, 1]).
The second measure is a regression estimate from a regressions of izij on a linear i-trend allowing
for j—specific intercepts:
ilij = ;4 BrEG -1 + € (60)

in this specification Srga can be thought of a an estimate of how much the Bij are decreasing. 24

F.1 Sensitivity wrt to sample restricitons

In Table 7we report our summary statistics Srrpg and Ssp in our baseline sample (row 1), that is
the iL,'j moments we use in estimation. Our baseline estimate of Srpg is —0.006 suggesting that
ﬁi]-’s are moderately decreasing as we move down the columns (change the i for a fixed j). Moving
from row 1 to 6 suggests that ﬁij falls by 0.03 on average (average ﬁij is 0.33 in the sample).

In row 2 we then report the same statistics based on our full sample when we do not invoke the
additional sample restrictions (where we discard certain type of EE transitions such as transitions
to or from entering or exiting firms in the years of entry or exit) explained in SubSection 6.1.2. The
regression based estimate of how decreasing ﬁij is (Brpc) is very similar to the baseline sample
however we see that Ssp is around 30 % higher (0.019 relative to 0.014) consistent with there being
more noise in the ﬁij’s in the extended sample.

In row 3 of Table 7we report statistics in a sample where we only rank firms if they have more
than 10 hires over the sample period. In row 4 we report results when we only construct ﬁij using
the first X hires of the firm.

F.2 Subsample heterogeneity

In row 2-5 in Table 10 we consider iLij estimates obtained across other subsamples. In each

subsample we both recalculate poaching ranks and reconstruct iLij within the specific subsample.

24With 10 markets the regression then has 45 observations.
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Table 7: Summary measures for h;; across different subsamples
| Brec | Bsp |

Baseline -0.006 | 0.014
(0.001)

Extended sample (all transitions) -0.006 | 0.019
(0.003)

Hires; 10 sample -0.006 | 0.014
(0.001)

HiresCap 20 -0.005 | 0.019
(0.002)

Drop smaller Empl spells -0.007 | 0.014
(0.002)

Drop smaller Empl spells and merge E spells | -0.007 | 0.017
(0.003)

Include non-business sector firms in ranks -0.004 | 0.017
(0.002)

Notes: This table reports summary statistics (Sreg (equation 60) and Ssp (equation 59)) for
different samples. Row 1 displays statistics for the baseline sample (used in estimation). Row 2
reports statistics for a sample where we do not . In row 3 we report statistics in a sample where we
only rank firms if they have more than 10 hires over the sample period. In row 4 we report results
when we only construct Bij using the first 20 hires of the firm when calculating poaching ranks and
constructing Bl] In row 5 we report results for a sample where we require that employment spells
are longer than 94 days to be included in the sample. In row 6 we only include employment spells
longer than 188 days and “merge” (i.e. ignore the time in between) employment spells with less
than 188 days in between them. Standard errors are robust to heteroskedasticity. All estimates of
BrEG are significant at a 5% significance level.

In row 1 we reproduce our baseline estimates. Row 2 (3) focus on low (high) educated workers only

(defined as education levels below (above) a bachelor). Row 4 focus on women and row 5 on men.
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Table 8: hu baseline sample

1 |.012 .051 .097 .154 .203 .213 .368 .454 .607
2 045 .081 .141 .190 .198 .340 .470 .618
3 081 .150 .195 .204 .353 .451 .619
4 131 185 199 335 452 .627
5 184 193 360 .459 .619
6 A75 0 311 448  .602
7 308 448 617
8 408 .570
9 .b54
Table 9: iLij extended sample
1 |.016 .054 .087 .141 .187 .183 .312 .349 .470
2 045 .069 118 .163 .203 .278 373 .581
3 077 141 187 183 .321 .405 .538
4 124178 180 .292 421 559
5 161 .164 .286 .354 .543
6 154 291 387 .534
7 270 374 461
8 322 .436
9 483
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Table 10: Summary measures for iLij across different subsamples
| Brec | Bsp |

Baseline -0.006 | 0.014
(0.001)

Low educated sample -0.004 | 0.012
(0.002)

High educated sample -0.007 | 0.016
(0.002)

Women only sample -0.010 | 0.024
(0.002)

Women only (on baseline ranking) | -0.010 | 0.023
(0.002)

Men only sample -0.005 | 0.016
(0.002)

Men only (on baseline ranking) -0.005 | 0.012
(0.002)

Notes: This table reports summary statistics (Sgrpg (equation 60) and Bsp (equation 59)) for
different samples. Row 1 displays statistics for the baseline sample (used in estimation). In row
2-5 we report statistics across different sub samples of workers. In each sample we both recalculate
poaching ranks and reconstruct h;; within the specific subsample. Row 5 (6) focus on low (high)
educated workers only (defined as education levels below (above) a bachelor). Row 7 focus on
women and row 8 on men. Standard errors are robust to heteroskedasticity. All estimates are
significant at a 5% significance level.

Table 11: izij low educated sample

1 |.011 .060 .100 .184 .203 .201 .369 .442 .554
2 .050 .084 187 .207 .180 .367 .424 521
3 .081 187 .206 .193 .348 .485 .590
4 183 194 180 .333 433 .562
) 193 181 352 .560 .576
6 166 .301 425 .532
7 299 419 562
8 380 531
9 .486
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Table 12: ﬁij high educated sample

1 |.016 .046 .114 .140 .170 .277 .331 414 .623
2 042 105 129 137 273 333 410 .674
3 104 137 138 288 .329 423 .676
4 122 131 286 .326  .416 .681
5 129 .269 332 422 648
6 260 314 437 .654
7 303 407 .636
8 390 .653
9 .606
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