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Abstract

This paper examines the concept of “climate matching” in migration—the idea that mi-
grants seek out destinations with familiar climates—and studies its implications for the
geography of economic activity in the United States. We document that temperature
distance between origin and destination predicts the distribution of migrants across U.S.
counties, for both internal and international migration in the historical (1850–1940) and
modern (1970–2019) periods. These patterns cannot be explained by the spatial correla-
tion of climate or the persistence of ethnic networks, and instead reflect two mechanisms:
the transferability of climate-specific skills and climate as an amenity. We then study the
economic consequences of climate mismatch during 1880–1920, a period of rapid growth
and structural transformation. Using an instrumental variable strategy that interacts
origin-country inflow shocks with the timing of county railroad access, we find that mis-
match reduced agricultural productivity and accelerated the exit from farming. However,
manufacturing output did not rise. Instead, manufacturing productivity declined and
population growth was lower in counties with higher climate mismatch. These effects left
a lasting imprint: a 1°C increase in 1880–1920 mismatch is associated with 2.5% lower
per capita income in 1940.
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“[New England is] more suitable to the nature of our people, who neither finde content in
the colder Climates, nor health in the hotter; but (as hearbs and plants) affect their native
temperature, and prosper kindly no where else.” – Sir Ferdinando Gorges, English founder of
the Province of Maine, 1622 (Kupperman, 1984)

1 Introduction

Immigrants tend to cluster geographically within the countries they settle (Altonji and Card,
1991; Card, 2001), leaving persistent and visible spatial imprints—from Norwegians in Min-
nesota to Vietnamese along the Gulf Coast of Texas to Oklahomans in California after the
Dust Bowl. What explains the emergence of these distinctive settlement geographies? Well
studied factors include economic opportunities at destination (Borjas, 2001; Cadena and Ko-
vak, 2016), co-ethnic networks (Munshi, 2003; Stuart and Taylor, 2021), geographic frictions
such as distance and transportation costs (Schwartz, 1973; Steckel, 1983), and political or cul-
tural sorting (Bishop and Cushing, 2009; Bazzi et al., 2020). These sorting forces can in turn
shape long-run economic development, sectoral specialization, spatial inequality, and political
ideology.

Despite frequent historical references, another potential driver of migrant sorting has received
comparatively little systematic attention: climate similarity between origin and destination. In
1925, U.S. President Calvin Coolidge observed that “the newcomers from Europe commonly
sought climatic conditions here [in the United States] like those in which they had been raised.
So the Scandinavians are found chiefly in the northern parts of this country” (Coolidge, 1926, p.
255). Similar arguments have been made about the early European settlement of the Americas
(Fischer, 1989; Crosby, 2004) and U.S. internal migration during the 19th century (Steckel,
1983).1 Yet we lack systematic evidence on how important climate similarity is for migration
independent of distance and networks, and whether it matters for economic outcomes.

In this paper, we examine the relevance of climate matching in migration and study its implica-
tions for the geography of economic activity in the United States. We analyze migration flows
spanning 1850–2019, covering both internal and international movements, to establish the role
of climate similarity in shaping migrant settlement. We then assess the economic consequences
of climate mismatch focusing on the period 1880–1920, a critical juncture in the structural
transformation of the U.S. economy from agriculture to manufacturing. The U.S. is an ideal
setting to study the role of climate preferences on migration: its vast range of climate zones

1 Steckel (1983) noted that a “farmer contemplating a move sought, other things being equal, a location that maximized the return
on previous investments in human capital; namely, a place where the climate, soil, and terrain were familiar.”
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provides migrants with meaningful climatic choice, and its relative lack of internal—and, his-
torically, international—mobility restrictions reduces confounding policy frictions.2 Moreover,
rich historical and modern datasets allow us to measure climate similarity and migrant location
choices with high spatial precision, and to link these patterns to subsequent spatial development
during a formative period of U.S. economic history.

We begin by documenting a strong positive relationship between climate similarity and migra-
tion, which is displayed in Figure 1. Using information from the 1880 full count U.S. Census,
the figure shows that the temperature in the county of residence of immigrants correlates with
the temperature in their country of origin. That is, immigrants from warmer (colder) countries
settled in similarly warmer (colder) parts of the U.S. We formalize this motivating evidence by
estimating gravity models common in the trade literature (Anderson and Van Wincoop, 2003),
where migration flows depend on bilateral climate distance, physical distance, and destination
and origin-specific time-varying factors.

We define climate distance as the absolute difference in average annual temperature and pre-
cipitation at origin and destination, and consider international and domestic migration across
both historical and modern periods. For international migration, we use full count Census data
from the Age of Mass Migration (1880–1920), when over 30 million Europeans moved to the
U.S., and modern samples following the 1965 Immigration and Nationality Act, when flows
from Latin America and Asia surged. For domestic migration, we rely on linked historical
census records from 1850 to 1940—a period marked by the U.S. westward expansion—and on
recent administrative tax data capturing county-to-county moves from 2011 to 2019.

In each setting, climate similarity strongly predicts migration: reducing temperature distance
by 1°C increases migration flows by 2% to 27%, depending on the context. These magnitudes are
comparable to standard estimates of the elasticity of migration with respect to wages.3 A 5°C
reduction in temperature distance—roughly the difference between Chicago and Washington,
DC, or between London and Rome—implies the same migration response as reducing physical
distance by about 300 to 750 kilometers. These magnitudes suggest that climate acts as a
“shadow border” significantly constraining movements between and within countries.

Precipitation similarity also predicts migration flows, but estimates tend to be noisier—consistent
with evidence that temperature is a more systematic predictor of human and economic out-
comes, whereas precipitation effects tend to be context specific (Carleton and Hsiang, 2016).
We thus use overall temperature distance as our preferred measure of climate similarity, while

2 Although the movement of white individuals within the U.S. was largely unregulated until the 1920s, formal and informal
restrictions severely limited the movement of African Americans and Native Americans (Alston and Ferrie, 1999; Nichols, 2014).

3 Migration–wage elasticity estimates range from 0.5 in cross-country settings (Caliendo et al., 2021) to 1.5 in internal migration
contexts such as China (Tombe and Zhu, 2019), and up to 4.5 in Brazil (Morten and Oliveira, 2024).
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always controlling for precipitation distance. As a sufficient statistic for the broader climatic
environment migrants expect to face, temperature is salient, easy to observe, and strongly
correlated with many features relevant for productivity, comfort, and cultural familiarity.

We then go beyond cross-sectional variation and exploit long-run changes in average climate
throughout the 20th century, driven by multi-decadal oceanic cycles (e.g., North Atlantic Oscil-
lation) and anthropogenic climate change, to isolate the impact of changes in climate distance on
changes in migration patterns. We ask whether migration increased between two locations that
converged climatically over time. This exercise allows us to control for any origin-destination
time invariant specific factor, including past networks. This design also helps address concerns
that our results might reflect persistent cultural, institutional, or economic similarities between
locations correlated with both climate and migration. We find that changes in climate distance
from 1900 to 2020 predict changes in both internal and international migration over the same
period—with magnitudes close to those from the baseline specification.

The long-difference design is particularly useful in assessing the role of ethnic networks. If early
migrants settled in climatically similar locations and later flows simply followed those co-ethnic
pioneers, then observed climate matching could reflect persistent enclaves rather than climate-
based preferences. The long-difference framework controls for all time-invariant bilateral effects,
including the influence of such networks. For these networks to drive our results, their strength
would have to co-evolve with climate similarity—rising or falling in tandem over time. While
possible in theory, this seems unlikely in practice, especially given additional evidence from
two complementary analyses. First, we replicate our baseline specifications while controlling
directly for lagged migrant stocks. As in the existing literature (Card, 2001; Munshi, 2003),
these past networks exert a positive influence on subsequent flows, yet the estimated effects of
temperature distance remain virtually unchanged. Second, we show that the results hold in a
setting where ethnic networks were likely absent: newly settled U.S. frontier counties during
the 19th century (Bazzi et al., 2020). Together, these findings suggest that networks alone are
unlikely to account for the climate matching patterns we observe.

Beyond migrant networks, we consider two mechanisms that help explain climate matching in
migration. The first is climate-specific human capital: migrants may prefer climates akin to
where they acquired relevant skills, especially in agriculture and other climate-exposed sectors.
Consistent with this idea, we find larger effects for earlier periods (when agriculture dominated
employment) and for individuals working in outdoor or climate-intensive occupations. The sec-
ond mechanism is climate as an amenity. Climate similarity may enhance well-being directly or
sustain familiar cultural practices, from food preparation and religious rituals to recreation and
social interaction. Supporting this interpretation, climate matching persists among individu-
als in indoor occupations and remains significant in recent decades, when productivity-related
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concerns are less relevant. At the same time, we find that the relationship between origin and
destination temperatures weakens in hotter U.S. destinations after 1970 when looking at sum-
mer temperatures—but not winter temperatures. This is consistent with the diffusion of air
conditioning, which mitigates sensitivity to extreme heat, but not cold. Although we cannot
isolate the relative contribution of these two forces, the evidence indicates that both climate-
specific skills and amenity-based preferences matter—and may reinforce one another.

A natural concern with these patterns is that climate varies smoothly over space, raising the
possibility that our estimates may capture residual spatial correlation rather than migration
responses to climate similarity per se. This concern is limited for international migration,
where long-distance moves break the link between climate and geography: physical distance
explains at most 1.6% of the variation in temperature distance. The issue is potentially more
salient for U.S. internal migration, where geographic and climatic distances are mechanically
correlated. Even in this setting, however, geographic distance explains at most 20% of the vari-
ation in temperature distance, leaving substantial independent variation to be exploited. To
address this concern directly, our baseline specification controls for geographic distance between
origin–destination pairs. Moreover, we subject the analysis to a demanding set of additional
exercises designed to absorb local spatial dependence. These include allowing for nonlinear
distance effects, separating north–south from east–west movements, controlling directly for
latitude and longitude distance, excluding short-range moves and within-state migration, drop-
ping potentially idiosyncratic destinations such as Florida and California, and accounting for
time-varying travel frictions linked to railroad expansion.

Across these checks, the evidence for historical internal migration is particularly robust: cli-
mate matching remains strong and statistically significant under all spatial specifications we
consider. For modern internal migration, the relationship is somewhat smaller but persists
across the majority of specifications, except in exercises that isolate vertical movements or al-
low for nonlinear distance effects. This contrast aligns with our broader evidence that climate
matching has weakened over time, as technological change and occupational reallocation have
reduced the importance of climate-specific constraints—both in skills and amenities—in shaping
migration decisions. Finally, we show that both international and internal migration results are
robust to controlling for a wide range of bilateral geographic characteristics correlated with cli-
mate (elevation, ruggedness, soils, and coastal access), as well as to using alternative definitions
of climate similarity, including extremes and seasonality.

Having established the relevance of climate matching for migrant location choices, we next
examine its implications for the economic geography of the U.S. We focus on international
immigration between 1880 and 1920—a period of rapid growth and structural transforma-
tion (Eckert and Peters, 2025)—and ask whether counties receiving migrants from climatically
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more distant origins experienced slower economic trajectories. The effects of climate mismatch
are ex ante ambiguous. On the one hand, mismatch can reduce productivity in agriculture,
where climate-specific skills are very important. It can also lower productivity in other sec-
tors, both directly—as some non-agricultural activities are also climate-dependent—and indi-
rectly—through input-output linkages. On the other hand, greater mismatch could accelerate
structural change if migrants less suited to local agricultural conditions moved more quickly
into manufacturing, the main engine of growth at the time (Eckert and Peters, 2025). The
overall effect is thus an empirical question.

To test these ambiguous predictions, we construct an index of climate mismatch measuring
the average temperature distance of immigrants in each county-decade. The main empiri-
cal challenge is that immigrants’ location choices may correlate with unobserved county-level
trends. For instance, faster-growing counties may attract migrants regardless of their cli-
mate fit—because climate-specific skills are less important there—creating a spurious posi-
tive correlation between climate mismatch and subsequent productivity growth. To address
this issue, we identify plausibly exogenous variation in climate mismatch by interacting push
shocks—aggregate emigration flows from each European country—with pull shocks—the tim-
ing of railroad expansion across U.S. counties. The approach follows Sequeira et al. (2020)
but exploits the interaction of country-specific shocks over time, in the spirit of Terry et al.
(2024). We then estimate 2SLS regressions at the county level between 1880 and 1920 that in-
clude county and region-by-decade fixed effects, and account for railroad expansion to mitigate
concerns about the exclusion restriction.

We find that climate mismatch led to a marked contraction of the agricultural sector. A 1°C
increase in temperature mismatch lowered the value of crops and the land in farms by 16.3%
and 4.2%, respectively. This implies that increasing climate mismatch from the 25th to the 75th
percentile of the distribution—roughly a 4°C difference, comparable to the gap between average
temperatures in Rome and Paris—reduces county-level crop value by 50.9%, land in farms by
16.9%, and farm value per acre by 44.5%. The latter is similar in magnitude to the decline in
farmland values experienced by high-erosion counties during the Dust Bowl (Hornbeck, 2012).

As agriculture contracted, the non-agricultural employment share increased. The reallocation
away from agriculture implies that the marginal product of labor in manufacturing should
decline. Consistent with this prediction, growth in output per worker was 34% lower in a
high-mismatch county relative to a low-mismatch county. Yet, we find no evidence that manu-
facturing output increased; the point estimate is negative (though imprecise), suggesting that
mismatch may have depressed productivity in manufacturing both directly (through the sec-
tor’s climate exposure) and indirectly (through weaker agricultural performance and reduced
input–output linkages). We show that a two-sector model with climate-dependent productivity
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yields predictions that are consistent with these empirical patterns.

The impacts of climate mismatch extend to broader measures of economic development: in-
creasing mismatch from the 25th to the 75th percentile reduces population growth by about
35% from 1880 to 1920. This magnitude is comparable to the difference in population growth
between Cook County, IL, one of the industrial centers of the era, and Dakota County, NE, a
slow-growing rural county. Evidence from the 1940 full count Census—the first to consistently
report income—points to similar long-run outcomes. Residents of counties more exposed to
mismatch during 1880–1920 had lower income per capita and hourly earnings in 1940. This
relationship holds for both U.S.-born and immigrant residents and is quantitatively meaning-
ful: residents of a county at the 75th percentile of the mismatch distribution were, on average,
10.2% poorer than those in a 25th percentile county. The persistence of these effects into 1940
suggests that climate mismatch is not just a temporary friction, but rather a durable constraint
on development.

These results are robust to a wide range of controls and alternative specifications. First, we
derive the climate mismatch index by predicting immigrant flows using weather shocks in Eu-
ropean sending countries, as in Sequeira et al. (2020). This addresses concerns that migrants
from colder (or warmer) origins may have arrived during periods when the railroad network was
already expanding into similarly cold (or warm) counties. Second, we estimate long-difference
regressions to reduce concerns about bias in two-way fixed effects models with heterogeneous
treatment timing or differential trends (De Chaisemartin and d’Haultfoeuille, 2020; Callaway
and Sant’Anna, 2021; Goodman-Bacon, 2021). Third, we replace region-by-decade with state-
by-decade fixed effects to absorb finer spatial heterogeneity. Fourth, we exclude counties with
extreme mismatch values. Fifth, we allow for differential trends by interacting decade dum-
mies with the 1880 immigrant share and other county characteristics such as land productivity,
frontier exposure, and the initial non-agricultural employment share. Finally, we show that the
income results are not driven by farmers, for whom income reporting in the 1940 Census is
known to be incomplete. We describe these and additional robustness checks below.

Together, our results provide systematic empirical support for the long-standing idea that his-
torical migration patterns were shaped by climate similarity (Coolidge, 1926; Steckel, 1983;
Crosby, 2004). This perspective features prominently in historical accounts of U.S. settlement
patterns, notably in Fischer (1989), who argues that enduring regional cultures emerged from
the environmental and institutional conditions faced by early settlers. In linking climate match-
ing to economic outcomes, we contribute to a broad literature on the spatial determinants of
growth and structural transformation (Eckert and Peters, 2025; Nagy, 2023; Desmet et al.,
2025). A large body of work shows that immigration can shape regional development by affect-
ing labor supply, local demand, and sectoral specialization (Sequeira et al., 2020; Peters, 2022;
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Terry et al., 2024). We add to this literature by introducing climate similarity as a distinct and
economically meaningful dimension of migrant sorting which affected not only where migrants
settled but also how local economies evolved.

Our analysis also relates to work emphasizing the role of climate-specific skills and environ-
mental conditions in shaping productivity and development. Michalopoulos (2012) shows that
geographic heterogeneity gave rise to location-specific human capital and persistent spatial
patterns in ethnolinguistic diversity, while Fenske (2014) links ecological diversity to trade and
pre-colonial state formation. Bazzi et al. (2016) show that agroclimatic similarity between origin
and destination predicts farmer productivity in Indonesia. Pellegrina and Sotelo (2025) docu-
ment that Brazil’s internal migrants carried origin-specific agricultural knowledge that raised
productivity and shifted regional specialization. We show that a similar mechanism operated
at scale in the United States, with effects extending to manufacturing. This perspective aligns
with a broader literature on environmental factors and agricultural development (Hornbeck,
2010, 2012; Hornbeck and Naidu, 2014) and complements evidence that agricultural conditions
shape long-run growth (Fiszbein, 2022). By connecting these strands, we provide evidence that
climate-based migrant sorting shaped U.S. regional development.

In addition, our paper speaks to recent work that uses hedonic methods to estimate the amenity
value of climate, typically finding that individuals prefer milder temperatures and avoid climatic
extremes (Albouy et al., 2016; Sinha et al., 2021). These studies generally assume homogeneous
climate preferences across migrants from different origins. A notable exception is Albouy et al.
(2021), who document that migrants tend to move to cities with features similar to those of
their countries of origin. We complement this work in several ways. First, we provide systematic
evidence on climate similarity as a determinant of migration, using mean annual temperature
as a transparent and widely applicable metric. Second, we show that this relationship is robust
across a range of empirical settings, climate variables, and spatial controls. Third, we explore
the mechanisms behind climate matching—highlighting the roles of climate-specific skills and
amenities. Fourth, we examine the economic implications of climate mismatch, showing that
climate matching had tangible consequences for U.S. development at the turn of the 20th century.

Our findings can inform the vast literature that, since seminal work by Altonji and Card (1991)
and Card (2001), has used shift–share research designs to study the local effects of immigration
(Boustan, 2010; Tabellini, 2020; Bazzi et al., 2023). A central challenge in this literature is that
the initial migrant shares used as exposure weights are typically treated as given, even though
the origins of these initial settlement patterns are not well understood.4 By documenting the
role of climate similarity in early settlement, our results provide a micro-foundation for the

4 For a formal discussion of shift-share research designs, see Jaeger et al. (2018), Adão et al. (2019), Goldsmith-Pinkham et al.
(2020), and Borusyak et al. (2022).
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initial shares and offer a basis for instrumenting for enclave formation using climate-based
predictors such as temperature distance. This intuition echoes the insight of Hunt (1992), who
used climatic variation to predict the settlements of repatriates from Algeria to France in 1962.

Finally, our results are relevant to the growing literature on the global impacts of climate change.
Recent papers seek to understand the effects of climate shocks on the global economy through
general equilibrium models that assume that the migration costs underlying individuals’ loca-
tion and occupational choices are exogenous to climate change (Cruz and Rossi-Hansberg, 2023;
Desmet and Rossi-Hansberg, 2024; Bilal and Rossi-Hansberg, 2025). Our evidence indicates
that migrants place a large weight on climate distance—effectively a travel cost endogenous
to the spatial distribution of climate change—and that climate mismatch can have persistent
negative economic consequences for receiving places. As a result, the welfare losses from climate
change may be larger than those implied by models that assume frictionless spatial sorting.

2 Climate Matching and Migration

2.1 Data and Measurement

This section describes the main data sources and variables used in the analysis. Table B.1
provides the complete list.

Climate. We use mean annual temperature (in degrees Celsius) and precipitation (in mil-
limeters) from TerraClimate (Abatzoglou et al., 2018), a global gridded dataset widely used
in climate research, to characterize local climate. For U.S. counties, we define climate using
long-run normals (1960–2000) to capture the persistent climatic environment migrants expect to
face. County-level values are population-weighted averages of temperatures within each county,
with gridcell-decade-level population from Goldewijk et al. (2017). Thus, while the underlying
climate data are fixed over 1960–2000, the aggregation reflects historical population patterns
at each point in time, so any time variation arises from population weights rather than climate
change.

For countries outside the United States, we take the 1960–2000 average of annual temperature
and precipitation across all gridcells within national borders, weighted by population in each
decade (Goldewijk et al., 2017). This approach maximizes spatial precision given the absence
of sub-national origin information in historical censuses. We verify robustness to using climate
averages over gridcells within a 25 km radius of the country’s capital city. For robustness, we
also use climate data from the Climatic Research Unit (Harris et al., 2020), which extends back
to 1901. This data product is interpolated from weather observations without any underlying
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atmospheric or hydrological model, which can create spatial or temporal data gaps reflecting
weather station availability.

Figure A.1 displays the spatial distribution of average temperature across U.S. counties. Fig-
ure 2 shows the temperature distance between each U.S. county and four major immigrant-
sending countries, while Figure A.2 plots temperature distances between each U.S. county and
selected counties in the Mississippi Delta (Panel A) and the Northeast (Panel B).

International migration. Our analysis covers the two major waves of U.S. immigration
(Abramitzky and Boustan, 2017). During the Age of Mass Migration (1850–1920), over 30
million Europeans immigrated to the United States, initially from Northern and Western Europe
and later increasingly from Southern and Eastern Europe as transportation costs fell (Hatton
and Williamson, 1998; Abramitzky and Boustan, 2017). Immigrants tended to concentrate
in distinct regions—Scandinavians and Germans in the Midwest; Italians in the Northeast,
Mid-Atlantic, and California. Immigration was overwhelmingly European during this period
(Figure A.3, Panel A), and few migrants settled in the U.S. South, with notable exceptions like
Mexicans in Texas (Figure A.4, Panel A). Canadians tended to settle in northern border states.

After World War I, restrictive quota laws sharply curtailed inflows, and the immigrant share
of the U.S. population fell from 14% in 1920 to 5% by 1960 (Figure A.3, Panel B). The 1965
Immigration and Nationality Act reversed these restrictions and ushered in a new era (King,
2002): by 2010, immigrants came predominantly from Latin America and Asia rather than
Europe, and their settlement patterns had shifted toward the South and West (Figure A.4,
Panel B).5

For the Age of Mass Migration, we use full count U.S. Census data from 1880 to 1920 (Ruggles
et al., 2021).6 For the modern period, we use microdata from the U.S. Census and the American
Community Survey (ACS) from 1970 to 2010. In both cases, we aggregate data at the country-
of-origin by U.S. county-of-residence by decade. For all census years from 1900 onward, we
identify immigrants based on responses to the year-of-arrival question, and restrict the sample
to those who arrived in the previous decade. Since this question is not available in the 1880
Census, we include all foreign-born individuals in that year. Accordingly, the 1880 observation
reflects a stock measure rather than a decadal arrival flow, and our results are unchanged when
excluding 1880.

We follow the harmonization approach of Burchardi et al. (2019), who standardize countries
and counties to their 1990 boundaries. For compatibility with modern administrative data, we

5 See Table A.1 for the top-10 immigrant-sending countries during the two immigration eras.
6 The 1890 Census was destroyed in a fire. For this reason, we exclude this decade from all analyses.

9



adapt this procedure to map all counties to their 2010 definitions.7

Internal migration. As for international immigration, we consider both historical and modern
internal migration. For the historical period, we focus on 1850 to 1940. This period was
characterized by the westward expansion of white settlement (Steckel, 1983; Bazzi et al., 2020),
the diffusion of railroads (Fogel, 1964; Donaldson and Hornbeck, 2016), and the country’s
transition from a rural to an urban and industrial economy (Eckert et al., 2023). As a result
of this process, the population center of gravity shifted from the East to the Midwest (Figure
A.5).8

We measure historical internal migration using linked individual Census records from 1850
to 1940 available through the Census Tree Project (Price et al., 2021; Buckles et al., 2025).9

Harmonized addresses for over 94% of the sample are obtained from the Census Place Project
(Berkes et al., 2023). For the modern period, we use IRS Change-of-Address Tables (available
for 2011–2022). Our baseline analysis uses 2011–2019 annual county-to-county flows, which
draw upon year-to-year address changes reported on individual income tax returns.10 To avoid
any distortions created by the COVID-19 pandemic, we further exclude post-2019 observations
(though results are robust to including 2020 and 2021).

2.2 Empirical Strategy

We estimate gravity-style models of migration, building on the trade literature (Anderson and
Van Wincoop, 2003). In our framework, origin-destination flows are a function of time-varying
origin and destination factors and time-invariant bilateral distances. The central innovation is
to include climate distance—measured as the absolute difference in average temperature and
precipitation—alongside physical distance.

Because many origin-destination pairs record zero flows, we estimate all regressions using Pois-

7 A small number of county–year observations (58) display immigrant population shares above one. These cases occur only in the
historical 1880–1920 period and almost exclusively in counties with very small populations, likely reflecting enumeration errors
or inconsistencies in the boundary–adjustment procedure. We set these observations to missing, although results are virtually
unchanged if we retain them—either using the raw values or after winsorizing.

8 Internal migration patterns changed in the 1930s, due to the Great Depression (Rosenbloom, 2002; Fishback et al., 2006) and
environmental shocks like the Dust Bowl (Hornbeck, 2012, 2023).

9 Since 1890 is not available, we measure migration from 1880 to 1900. Our baseline results include all individuals aged 15 and
older in the pre-migration census year in the linked sample, but the estimates are robust to restricting the sample to men. As
discussed below, results are also robust to using linked samples from Abramitzky et al. (2020) and to relying on the 1940 full
count Census to measure migration between 1935 and 1940.

10 See IRS Statistics of Income (SOI) Division Tax Stats—Migration Data, https://www.irs.gov/statistics/soi-tax-stats-mig
ration-data. The dataset is available for filing years 1991 through 2022, but we focus on migration flows measured after 2011
when the SOI Division assumed responsibility for producing the tabulations and implemented several changes to the underlying
construction of the data. These include (i) incorporating all tax returns filed and processed within the full calendar year (rather
than only those processed by early fall), (ii) improving year-to-year matching by using the TINs of primary, secondary, and
dependent filers, and (iii) revising tabulations and expanding available breakdowns.

10

https://www.irs.gov/statistics/soi-tax-stats-migration-data
https://www.irs.gov/statistics/soi-tax-stats-migration-data


son Pseudo-Maximum Likelihood (PPML). Our baseline specification is:

Modt = exp[αot + γdt + βDistClimate
od + θDistPhysical

od ]ϵodt (1)

where Modt is the number of migrants from origin o to destination d in period t, and DistClimate
od =

|Climateo − Climated| is a vector denoting the absolute difference in climate (temperature and
precipitation) between origin o and destination d. We also control for the physical distance
between o and d (DistP hysical

od ) as well as for origin by period fixed effects (αot) and destination
by period fixed effects (γdt).11

We estimate equation (1) for both international and internal migration in the U.S. In the
international context, o denotes the migrant’s country of origin, while in the internal context
o denotes the U.S. county of origin; in all cases, d denotes the U.S. county of destination.
Migration flows are aggregated at the decade level, corresponding to census years, except in the
case of modern internal migration, where we use annual data. Standard errors are clustered at
the country-of-origin by destination-state level for international migration, and at the origin-
state by destination-state level for internal migration.

A key identification concern is the spatial correlation of climate.12 In the international context,
transoceanic migration largely breaks the link between climate and geography. Table A.2
regresses temperature distance between country–county pairs on linear, quadratic, and cubic
functions of physical distance. The R-squared indicates that geographic distance explains no
more than 1.6% of the variation in temperature distance. Columns 4–6 repeat this exercise
for county pairs in the contiguous United States. In this case, the R-squared rises to at most
0.199, implying that geographic distance accounts for up to 20% of the variation in temperature
distance. While this correlation is stronger than in the international setting, it remains modest,
leaving substantial independent variation in climate distance to be exploited.

Figures A.1 and A.2 provide a complementary visual perspective. Figure A.1 shows that, while
average temperatures decline with latitude in the United States, geographic features such as
mountains and water bodies generate considerable within-country climate heterogeneity. Figure
A.2 further illustrates this point by plotting the distribution of climate distance for two example
U.S. locations, highlighting meaningful variation in climatic similarity across geographically
proximate areas. We systematically address remaining concerns related to spatial correlation
in climate in Section 2.5 and in Appendix C.

11 In all specifications, period refers to the census decade, except for modern internal migration, where it refers to the calendar year.
12 Climate is no exception to the first law of geography: “Everything is related to everything else, but near things are more related

than distant things” (Tobler, 1970).
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2.3 Main Results

Baseline estimates. We present the results from equation (1) in Table 1, separately for in-
ternational (columns 1–2) and internal (columns 3–4) migration.13 In all specifications, the
coefficient on temperature distance is negative and statistically significant, confirming the pat-
tern shown in Figure 1: migration flows are higher between origins and destinations with more
similar temperatures. The coefficient on geographic distance is also negative and statistically
significant across all models, consistent with well-established frictions to migration over space
(Schwartz, 1973; Bryan and Morten, 2019). The coefficient on precipitation distance is negative
and, except for column 1, statistically significant, suggesting some degree of matching along this
dimension of climate. However, it is smaller in size relative to temperature distance; moreover,
when probing its robustness across settings it becomes less stable.

One interpretation for the stronger temperature—rather than precipitation—results is that
temperature acts as a sufficient statistic for the broader climatic environment migrants expect
to face: it is salient, easy to observe, and strongly correlated with many features relevant for
productivity, comfort, and cultural familiarity. The weaker and less stable relationship between
precipitation distance and migration also aligns with findings in the environmental economics
literature, which generally identifies temperature as a more consistent predictor of human and
economic outcomes. Temperature affects agricultural productivity, labor supply, and health in
direct ways that are harder to mitigate, whereas precipitation effects tend to be more context-
specific and mediated by factors such as irrigation, water storage, and soils (e.g., Schlenker
et al., 2005; Carleton and Hsiang, 2016; Taylor, 2022; Proctor et al., 2022). Our subsequent
analysis thus focuses on temperature distance, while continuing to control for precipitation
distance in all specifications.

The implied magnitudes for historical international migration (column 1) as well as for historical
and modern internal migration (columns 3 and 4) are similar: lowering temperature distance by
1°C increases migration by 16.1%, 27.0%, and 21.1%, respectively.14 Results for international
modern migration (column 2) are instead an order of magnitude smaller in absolute value, and
somewhat less precisely estimated—a pattern to which we return in Section 2.4 below. In this
case, reducing temperature distance by 1°C increases migration by 1.9%.

To benchmark these effects, we compare a 5°C reduction in temperature distance—equivalent to
the difference in the mean annual temperature of Chicago (9.8°C) and Washington, DC (14.6°C),
or London (10.7°C) and Rome (15.5°C)—to geographic distance coefficients. The implied effect
is equivalent to reducing geographic distance by approximately 300 to 750 kilometers, depending

13 Section 2.5 summarizes all robustness checks, which are presented in detail in Appendix C.
14 The implied magnitude can be calculated as 100 × (eβ − 1), where β is the estimated coefficient on temperature distance from

the PPML regression.
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on the specification. The magnitudes are also comparable to standard elasticities in the spatial
economics literature. For cross-country European migration, Caliendo et al. (2021) estimate a
wage elasticity of roughly 0.5. In internal-migration contexts, estimated wage elasticities range
from 1.5 in China (Tombe and Zhu, 2019) to 4.5 in Brazil (Morten and Oliveira, 2024). A 5°C
improvement in climate similarity thus generates effects similar to moving several percentage
points along typical wage gradients.

Finally, it is informative to compare these magnitudes with those attributed to the “pull” of
existing migrant networks (see also Munshi, 2020, for a review). For U.S. internal migration in
the early 20th century, Stuart and Taylor (2021) estimate that one additional migrant induces
1.9 (Black) or 0.4 (white) additional movers from the same birthplace. Green (2025) provides
complementary evidence, documenting that a one standard deviation increase in exposure to
shipmates from other states during World War II increases out-of-state migration over the
subsequent five years by 4–5%.15 For international flows, Beine et al. (2011) find that a 10%
increase in the existing diaspora raises new immigration by 1–6%. Our estimated climate-
distance effects fall within this range. In the larger historical and internal cases, they approach
the upper end of canonical network spillovers.

Exploiting long-run changes in climate. In Table 1, we exploited cross-sectional varia-
tion in bilateral climate distances computed from the average climatology of each location over
the period 1960–2000. We now leverage variation that arises from changes in average climate
occurring differentially across space. Specifically, we test whether, over the 20th century, the
change in climate distance across space predicts the change in international and internal mi-
gration patterns.16 We focus on two periods: a historical window in the early 20th century and
a modern window in the early 21st century.17

Figure 3 visually illustrates how climate distance between each U.S. county and the four coun-
tries shown in Figure 2 has changed over time. The maps reveal substantial spatial variation
in relative climate convergence and divergence. Faster warming in colder origin countries such
as Norway and Germany reduces temperature distance to warmer U.S. regions, generating
widespread decreases in climate distance (green shading) across the U.S. Southeast. For Mex-
ico, by contrast, it is the colder northern regions that have become more similar, while the
Southeast has grown more dissimilar. Figure A.6 presents analogous maps for two selected U.S.
counties—one in the Delta (Panel A) and one in the Northeast (Panel B)—relative to all other

15 Using Facebook friendship data for the U.S. between 2012 and 2023, Koenen and Johnston (2024) find that one additional social
tie increases an individual’s probability of migrating to a given location by 0.3 percentage points.

16 While anthropogenic emissions have driven the overall warming of the climate since about 1980, such spatiotemporal variation is
a normal part of the climate system, influenced by multi-decadal oceanic circulation patterns (e.g., North Atlantic Oscillation),
solar variability, volcanic activity, and land use change.

17 The climate over the historical and modern periods are measured over 1901–1930 and 1991–2020, respectively.
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U.S. counties.

We replicate the analysis in Table 1 allowing climate distances to vary between the early and the
modern periods. In practice, we augment the gravity model in equation (1) by adding origin-
by-destination fixed effects to absorb any pair-specific (time-invariant) variation. To allow
the effects of the change in climate distance on migration to vary depending on geographic
distance, we further control for the interaction between geographic distance and period fixed
effects. Formally, we estimate:

Modτ = exp
[
αoτ + γdτ + γod + βDistClimate

odτ + θτ DistP hysical
od

]
εodτ (2)

where everything is as before, but τ refers to the period (historical or modern), γod are origin-
by-destination fixed effects, and θτ DistP hysical

od are period dummies interacted with geographic
distance.

We present results in Table 2. In columns 1 and 2, we examine international migration, consid-
ering different time windows to measure migration flows (1900 and 2010; average over 1900–1920
and over 1990–2010, respectively). In columns 3 and 4, we focus on internal migration, using
the 1900–1910 linked sample (resp., the 1900 to 1940 averages from the linked sample) and the
2018-2019 IRS migration data (resp., the average over the 2011–2019 period). The coefficient
on temperature distance is statistically significant at the 1% level in all specifications. Magni-
tudes are broadly consistent with those in Table 1—if anything somewhat larger for internal
migration. A 1°C increase in temperature distance over time—comparable to the average global
temperature increase over the last century—reduces migration by 26.4%–35.4%.

These patterns provide compelling evidence that climate matching is not driven by time-
invariant origin-destination characteristics—such as shared language, cultural proximity, eco-
nomic linkages, or historical migration patterns. By including origin-by-destination fixed effects,
the specification absorbs all stable bilateral factors, allowing us to isolate the role of changes in
climate distance in driving changes in migration flows. The model in equation (2) also addresses
the possibility, discussed in the next section, that the observed effects are simply picking up
the persistence of ethnic networks. Since networks tend to be highly persistent over time, any
influence they exert that does not vary across periods is captured by the fixed effects.

2.4 Mechanisms

What explains climate matching in migration? We consider three complementary mechanisms:
the role of ethnic networks, climate-specific human capital, and climate-as-amenity.
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Past networks. Early pioneers may have selected destinations with climates similar to their
origins, but subsequent migrants may have simply followed established co-ethnic communi-
ties—regardless of climate. The long-difference analysis in Table 2 suggests that this mechanism
alone cannot explain our findings. That specification includes origin-by-destination fixed effects,
which absorb all time-invariant bilateral characteristics—including persistent ethnic networks.
For past networks to still confound the results, their strength would need to evolve over time
in tandem with random spatiotemporal changes in climate. While this is possible in theory, it
seems unlikely in practice.

We complement this evidence with two additional exercises designed to assess the extent to
which network dynamics could account for the observed climate-matching pattern. First, we
explicitly control for lagged migration. In Figure 4, we replicate our baseline estimates for both
international (Panel A) and internal (Panel B) migration, decade by decade, and include the
number of migrants from the same origin-destination pair in the previous period as a control.18

Across all decades, the results are nearly identical: the gray triangles (with lagged migration
controls) are indistinguishable from the black dots (baseline estimates). This pattern suggests
that the climate distance effect is not simply a proxy for persistent enclaves.19 However, this
interpretation should be treated with some caution, given that past migration itself is a function
of climate similarity.

Second, we consider a historical setting where past networks should have limited scope to
influence migration: the U.S. frontier. We restrict destinations to the set of counties that
between 1850 and 1890 were on the American frontier, defined by Bazzi et al. (2020) as a set
of sparsely populated counties near the moving edge of settlement by whites (who account for
the vast majority of the migrants in our sample).20 Table A.4 reports the results for both
international (columns 1–3) and internal (columns 4–8) migration.

For international migration, we focus on the final two frontier decades, 1880 and 1900. Column
1 pools these decades, while columns 2 and 3 consider them separately. Despite the substantial

18 To facilitate comparison across settings, temperature distance is standardized to have mean zero and unit variance within
each sample. For international migration, we use the 1940 stock for 1970 given data availability and the very low migration
flows between 1940 and 1960 (Abramitzky and Boustan, 2017). For internal migration, lagged stocks cannot be constructed
at the county level because only state of birth is observed; instead, we control for cumulative migration flows between each
origin–destination pair using the linked sample. For modern internal migration, we report estimates based on 2018–2019 flows
(controlling for 1910–1940 flows from the linked sample); results are similar when averaging over the full 2011–2019 period.
Lagged migration controls cannot be constructed for the first observation in each sample (1880 for international migration and
1860 for internal migration) due to data limitations.

19 Table A.3 replicates the baseline specification (Table 1) while additionally controlling for lagged migrant stocks. Because these
stocks are used as regressors, the first observation in each sample—1880 for international migration and 1850–1860 for internal
migration—is omitted from the left-hand side in columns 1 and 3. Consistent with the existing literature (Card, 2001; Munshi and
Rosenzweig, 2016), prior migrant networks are positively associated with migration flows. The results are virtually unchanged
when replacing lagged stocks with stocks measured in the first sample year (e.g., 1880 for international migration and 1850–1860
for internal migration).

20 Since we cannot compute migration for the 1880–1890 decade, we consider migration between 1880–1900, and use frontier status
in 1890 (the last year considered in Bazzi et al., 2020).
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reduction in sample size, the estimated effect of temperature distance remains negative, sta-
tistically significant, and similar in magnitude to our baseline results. For internal migration,
we can exploit a longer window of frontier expansion, 1850–1900. Column 4 pools all decades,
while columns 5–8 estimate the relationship decade by decade. Across all specifications, the co-
efficients remain negative and statistically significant, even though the magnitudes are smaller
in absolute value than in the full-sample estimates. One interpretation is that network-related
channels partly account for the larger temperature-distance effects documented in the full sam-
ple. Another possibility is that internal migration to the frontier reflects a different composition
of origin counties—specifically, origins that were never on the frontier—so that selection dy-
namics differ from those in the full sample. We cannot distinguish between these explanations,
but the main take-away is that the negative relationship between temperature distance and
migration remains strong even in this setting.

Climate-specific skills vs. Climate-as-amenity. We then turn to two complementary ex-
planations: climate-specific skills and climate-as-amenity. Figure 4 discussed above documented
that the elasticity of migration with respect to climate distance declines over time, particularly
for international migration. In other words, while climate matching remains a relevant factor,
its role in shaping location choices becomes less pronounced. This temporal pattern is consistent
with the idea that migrants partly value climate similarity because of climate-specific human
capital. Between 1850 and 1940, the share of U.S. employment in agriculture fell from 55%
to 17% (Lebergott, 1966). Since climate-specific skills—such as knowledge of crop suitability,
seasonal cycles, and pest management—are especially important for agricultural workers, this
decline suggests a diminishing role for climate-based productivity as the economy transitioned
toward industry and services.

We provide further evidence for the role of climate-specific skills in Figure 5, which shows that
the negative effect of temperature distance is larger for individuals employed in agriculture—a
pattern that holds for both international (Panel A) and internal (Panel B) migrants. Figure
A.7 corroborates this idea by classifying occupations according to whether they are performed
primarily indoors or outdoors and whether they are climate intensive.21 Consistent with the
climate-specific human capital mechanism, climate distance has stronger effects for workers in
outdoor and climate-intensive occupations.22

21 Industries (resp., occupations) are defined using the Census IND1950 (resp., OCC1950 ) codes. Following Eckert and Peters
(2025), we classify agriculture as codes 105 (agriculture), 116 (forestry), and 126 (fishery). For internal migrants, industry and
occupation are measured at baseline; for international migrants, this is not possible, since industry and occupation are observed
only in the destination census year. To facilitate comparison, temperature distance is standardized to mean zero and unit variance
within each relevant subsample.

22 A complementary explanation may be that farmers are better at observing and inferring climatic similarity across locations.
Then, even if climatic sorting were driven primarily by climate-as-amenity rather than by climate-specific skills, we would still
expect stronger sorting among farmers. Our data do not allow us to disentangle these two interpretations, and both may operate
simultaneously.
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However, climate distance also predicts migration flows for individuals working in sectors where
climate-specific skills should be less relevant—such as services and other indoor occupations.
Moreover, even in recent decades, climate similarity continues to influence location choices,
particularly for internal migrants (Figure 4, Panel B). These findings suggest that migrants
also value climate for its amenity value. For instance, if climate conditions influence cultural
practices—from cooking traditions and recreational activities to religious observances—then
climate similarity may contribute to a sense of familiarity and comfort in destination regions.23

The role of air conditioning. In principle, technologies can insulate migrants from some of
the discomfort associated with climate mismatch. While this protection is incomplete—many
activities still take place outdoors—such innovations should weaken the relationship between
migration and climate similarity. Table A.5 explores this idea by examining how the spread
of air conditioning (AC) affected migrants’ sensitivity to temperature. The table replicates
our international migration analysis separately for the historical period (1880–1920, columns
1–3) and the modern period (1970–2010, columns 4–6). We distinguish between January and
July temperature distances and interact each with a dummy equal to one if the destination
county’s average July temperature lies above the national median (“South”). This allows us to
test whether migrants’ avoidance of hot destinations weakened after the 1960s when AC was
rapidly adopted in the U.S. (Biddle, 2008).24

Consistent with our previous results, the effect of temperature distance is negative in all specifi-
cations, though smaller in magnitude in the modern era, indicating that the overall importance
of climate matching has declined over time. Columns 2 and 5 separate winter and summer
temperatures. In the historical period, January temperature distance has a stronger effect,
likely reflecting the fact that many migrants at the time came from colder European countries.
In the modern period, the July coefficient becomes larger and statistically significant, a pattern
consistent with the changing composition of migrants, who increasingly originate from warmer
regions.

Columns 3 and 6 introduce interactions between temperature distance and the “South” dummy.
In the historical period (column 3), the coefficient on the interaction between the South dummy
and July temperature distance is negative and statistically significant, implying that migrants
historically avoided hotter destinations that were less similar to their climates of origin. In
the modern period (column 6), this interaction becomes positive and statistically significant,
showing that migrants are no longer deterred by heat to the same extent. The weakening of this

23 This interpretation resonates with findings in Albouy et al. (2021), who document a relationship between the climatic and
geographic features of immigrants’ countries of origin and the U.S. cities where they settle.

24 Ideally, we would replicate this analysis for internal migration as well. However, comparable data on county-to-county migration
flows are not available systematically for the 1970–2000 period, which is critical for assessing the impact of air conditioning on
migration.
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summer-temperature effect in hot regions is precisely what we would expect if AC reduced the
discomfort associated with climatic mismatch. While July temperature distance continues to
exert an overall negative influence on migration, its magnitude is much smaller in the post-1970
era, indicating that technological adaptation has mitigated the amenity cost of heat.

If this mechanism operates through amenities rather than productivity, its effects should be
concentrated among non-farmers, whose thermal exposure is largely mediated by indoor envi-
ronments. Columns 7 and 8 test this implication by estimating the specification in column 6
separately for farmers and non-farmers. Consistent with the amenity-based interpretation, the
interaction between July temperature distance and the South dummy is positive and statisti-
cally significant for non-farmers, but negative and imprecisely estimated for farmers. Given the
limited relevance of AC for agricultural work, these patterns indicate that the moderating effect
of AC operates mainly through amenities rather than through climate-sensitive production.

Taken together, these results reinforce the view that part of the climate-matching effect operates
through the amenity value of climate, and that this channel is sensitive to technologies—such
as air conditioning—that alter how individuals experience the weather. We emphasize that
the evidence presented here is suggestive and does not allow us to separately identify the
climate-specific skills and amenity channels. Nevertheless, our results point to the relevance
of both mechanisms—and possibly to their complementarity. For example, food preferences
are shaped by culinary practices in the origin country, which in turn depend on what can be
grown, preserved, and prepared in the local climate. In such cases, productivity-based and
amenity-based motives for climate matching may reinforce each other.

2.5 Summary of Robustness Checks

The climate matching patterns documented in Section 2.3 are robust to a wide range of speci-
fications and checks. We present these in Appendix C and summarize them here. In Appendix
C.1, we first assess the sensitivity of the results to the sequential inclusion of additional con-
trols and fixed effects (Tables C.1–C.4), excluding continents sending relatively few migrants
to the U.S. or decades and measuring climate with capital-city temperatures (Table C.5), and
clustering standard errors at larger levels (Table C.6).

In Appendix C.2, we then address the concern that climate distance may proxy for geographic
distance, particularly in the context of internal migration. We replicate the internal migration
analysis under a series of increasingly demanding spatial specifications: (i) estimating regres-
sions separately by direction of movement (Table C.7); (ii) excluding short-range and within-
state moves, as well as potentially idiosyncratic destinations such as California and Florida
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(Table C.8); and (iii) allowing for nonlinear effects of geographic distance (Table C.9). Across
these exercises, the historical internal migration results remain highly robust. For modern in-
ternal migration, the estimated effects are generally smaller but continue to hold, except when
focusing on vertical movements or when allowing for flexible polynomial controls for geographic
distance. The stronger and more stable patterns for historical migration are consistent with
our earlier evidence that climate matching has weakened over time.

In Appendix C.3, we further show that results are robust to controlling for origin–destination
differences in a wide range of geographic characteristics—including elevation, coastal access,
ruggedness, latitude and longitude, and soil quality (Tables C.10–C.17). Focusing on historical
internal migration, we also verify that the findings are unchanged when we control for a rich
set of bilateral economic and demographic characteristics (Figure C.1) and when we use time-
varying travel-cost proxies (Table C.18). In Appendix C.4, we assess robustness to alternative
climate definitions, such as measures of seasonal variability (Tables C.19–C.20) and alternative
temperature statistics, including minimum and maximum temperatures and growing-season
indices (Tables C.21–C.22). In Appendix C.5, we show that the historical internal migra-
tion results are robust to alternative sample restrictions and to using the linked samples from
Abramitzky et al. (2020) as well as the 1940 full count U.S. Census (Table C.23).

3 The Economic Consequences of Climate Mismatch

The evidence thus far indicates that migrants systematically sort into places with climates simi-
lar to their homelands. We now examine what happens when this matching margin fails—when
migrants end up in places whose climates differ substantially from those they know. We focus
on international immigration to the U.S. between 1880 and 1920. This setting offers two advan-
tages. First, the staggered expansion of the railroad network—combined with variation in the
timing of national-level inflows from different origin countries—generates plausibly exogenous
variation in climate mismatch. Second, agriculture was a major sector, climate-specific skills
were central to production, and local economies were closely tied to the land. At the same time,
the U.S. was undergoing a rapid structural transformation from agriculture to manufacturing
(Eckert and Peters, 2025), making this a period in which shifts in sectoral productivity and
labor allocation could have consequential effects for local development.

The economic effects of climate mismatch are ex ante ambiguous. On the one hand, when mi-
grants’ climate-specific skills do not transfer well to local conditions, agricultural productivity
should fall, lowering the value of output and reducing incentives to cultivate marginal land. Be-
cause agriculture and non-agriculture were tightly linked at the time, these productivity losses
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could spill over into other sectors, slowing output growth and the pace of structural trans-
formation. Moreover, sectors such as construction and manufacturing were themselves partly
climate dependent, so mismatch could reduce productivity there directly. On the other hand,
climate mismatch could promote structural change if counties with poorly matched migrants
shifted more rapidly into manufacturing, while better-matched areas remained concentrated in
agriculture. Appendix E develops a simple two-sector model that formalizes these mechanisms
and provides a framework for interpreting the empirical results that follow.

3.1 Empirical Strategy

Baseline estimating equation. To study the effects of climate mismatch on economic devel-
opment, we consider a panel of U.S. counties observed between 1880 and 1920.25 We restrict
attention to counties with positive population in 1880, and estimate regressions of the form:

ydt = αd + αrt + βMismatchdt + X ′
dtγ + εdt (3)

where ydt denotes an economic outcome for county d in decade t; αd and αrt are county fixed
effects and census region-by-decade fixed effects; and, Xdt is a vector of control variables intro-
duced below. We cluster standard errors at the county level.

The index of climate mismatch, Mismatchdt, is defined as the weighted average of the temper-
ature distance between each immigrant’s country of origin and the destination county:

Mismatchdt =
∑

o

ωodt × TempDistod. (4)

TempDistod is the absolute difference in average annual temperature between origin country o

and destination county d, expressed in degree Celsius, and the weights are given by

ωodt = Modt

Mdt

(5)

with Modt denoting the number of immigrants from origin o to county d arriving between
decades t − 1 and t, and Mdt = ∑

o Modt denoting total immigration into county d during the
same period.

Figure A.8 shows the spatial distribution of climate mismatch in 1880 (Panel A) and 1920 (Panel
B). The 1880 map already displays substantial geographic variation, with higher mismatch
concentrated in the South (notably the Gulf Coast and Florida) and scattered pockets in the

25 Because climate mismatch cannot be constructed for 1890, we exclude this decade from the analysis.
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West, while mismatch remains relatively low in much of the Northeast and Upper Midwest.
By 1920, mismatch intensifies across the Southeast, Mid-Atlantic, and Rocky Mountain West,
while remaining comparatively low in much of the Northeast and Upper Midwest.

Instrument for climate mismatch. The inclusion of county fixed effects in equation (3)
absorbs all time-invariant factors correlated with both climate mismatch and economic devel-
opment, while census region-by-decade fixed effects capture shocks common to counties within
the same region and decade. Identification therefore comes from within-county variation over
time—that is, from comparing changes in economic outcomes across counties within the same
census region and decade. Even with this set of fixed effects, changes in climate mismatch could
correlate with other time-varying county characteristics that also influence economic growth.
For example, in faster-growing counties climate may be less relevant to migrants’ location deci-
sions, and such counties may attract migrants from a wide range of origins regardless of climate
fit, generating a spurious relationship between mismatch and economic development. To ad-
dress such concerns, we construct an instrument for climate mismatch that exploits plausibly
exogenous push and pull forces shaping the distribution of immigrants across counties over
time.

Our strategy builds on Sequeira et al. (2020) and exploits the roll-out of the U.S. railroad net-
work as a key determinant of immigrant settlements: counties received more immigrants when
they become newly connected to the railroad at a time of high immigrant inflows. Following
Terry et al. (2024), we extend this framework to account for the staggered arrival of different
national groups. Specifically, if a county becomes connected to the railroad during a period of
intense Norwegian immigration, it will attract relatively more Norwegians; if it is connected
when German inflows peaked, it will receive more Germans, and so on. The interaction be-
tween the timing of railroad access and origin-specific immigration waves generates plausibly
exogenous variation in the composition of immigrant inflows—and therefore in the degree of
climate mismatch across U.S. counties and decades.

We restrict attention to European immigrants—who accounted for more than 85% of total
arrivals during this period—because consistent decadal data on aggregate inflows by country of
origin are available only for European countries (see Section 3.2 for details). We augment the
baseline PPML model from equation (1) to estimate:

Modt = exp
[
αot + γdt + β1DistClimate

od + β2DistP hysical
od + β3 log(Mot) × Rdt

]
εodt (6)

As in equation (1), Modt denotes the number of immigrants from origin o who arrived in the
previous decade and were living in county d in decade t, DistClimate

od and DistP hysical
od refer to

physical and climate distances, and αot and γdt are country-of-origin by decade and county-of-
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destination by decade fixed effects.26 The key innovation of this specification is the interaction
term log(Mot)×Rdt. This captures two sources of variation: the (log) number of migrants from
origin o arriving between decades t − 1 and t, which proxies for origin-specific push shocks, and
an indicator for whether county d was first connected to the railroad between decades t − 1
and t (i.e., the arrival window used to construct Modt), which proxies for local pull shocks. The
interaction log(Mot)×Rdt therefore measures how much a U.S. county–origin pair responds when
a country experiences a large emigration wave and the U.S. county becomes newly connected
to the railroad.

Column 1 of Table A.6 reports the estimates from equation (6). The coefficient on temperature
distance is negative and statistically significant, consistent with our baseline results in Table 1.27

The interaction between log(Mot) and Rdt is positive and statistically significant: immigration
from origin o into county d is higher in decades when that origin is sending more migrants to the
United States and the county gains railroad access. In column 2, we perform a placebo exercise
by replicating the specification in column 1 but interacting the 10-year leads of both the railroad
indicator and the (log) country-specific migration push shock. The estimated coefficient is close
to zero and statistically insignificant.

We then use the fitted values from equation (6) to construct a predicted index of climate
mismatch. Let M̂odt denote the predicted number of immigrants from origin o to county d

between decades t − 1 and t, and define predicted shares ω̂odt = M̂odt/
∑

o′ M̂o′dt. Substituting
these shares into equation (4) yields the predicted mismatch index, ̂Mismatchdt. Because this is
a generated regressor, we compute standard errors in the second stage using a block bootstrap:
we resample counties with replacement, re-estimate equation (6) within each draw, reconstruct
the predicted mismatch measure, and re-estimate equation (3) on each bootstrap sample. The
reported standard errors are based on the distribution of the resulting estimates of the treatment
effect.

Panels C and D of Figure A.8 display the predicted mismatch index for 1880 and 1920. Although
the broad patterns resemble those in the actual mismatch maps (Panels A and B), the predicted
surface is noticeably smoother, reflecting the fact that the instrument filters out much of the
idiosyncratic variation present in the data.

Instrument validity. Predicted mismatch depends on the composition of predicted migration
inflows—not their level. When we normalize predicted flows to obtain shares, any term in
equation (6) that is constant across origins for a given county-decade (i.e. γdt) cancels out of

26 As in Section 2, we include all foreign-born individuals in the 1880 sample, cluster standard errors at the country-of-origin by
U.S. state-of-destination level.

27 The coefficient on precipitation distance is similar to that in column 1 of Table 1, while the coefficient on geographic distance
becomes small and imprecisely estimated. The number of observations is lower than in the baseline specification (Table 1, column
1) because data on aggregate migration flows are missing for some countries.
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ω̂odt by construction. Variation in ̂Mismatchdt therefore comes from three sources: (i) bilateral
geography, DistClimate

od and DistP hysical
od ; (ii) origin–decade fixed effects, αot, capturing push forces

driven by conditions in sending countries; and, (iii) the interaction log(Mot)×Rdt, capturing how
national origin inflows are differentially transmitted across U.S. counties depending on when
they are connected to the railroad network. Since the bilateral distance terms (physical and
climate) are predetermined and time-invariant, any induced level differences in local outcomes
are absorbed by the county fixed effects in equation (3). Conditional on these fixed effects and
on region-by-decade shocks, the timing of Mot and Rdt is plausibly orthogonal to county-specific
shocks to economic development, so the instrument isolates variation in mismatch arising from
exogenous push–pull forces rather than from endogenous shifts in migrant location choice.

A remaining concern is that railroad expansion could affect local economic development directly,
violating the exclusion restriction. To address this, all regressions control for the main effect of
railroad connectivity. The identifying assumption could also be violated if railroad expansion
in certain counties (within a census region) during a given decade systematically attracted
immigrant groups that were a particularly good climate match for those counties. To address
this possibility, we replicate the analysis constructing the instrument using immigrant flows
predicted from exogenous weather shocks in origin countries following Sequeira et al. (2020)
and Medici (2024). We present this and further robustness checks in Section 3.4, including long-
difference regressions that alleviate concerns about bias in two-way fixed-effects settings with
heterogeneous treatment (De Chaisemartin and d’Haultfoeuille, 2020; Callaway and Sant’Anna,
2021; Goodman-Bacon, 2021).

3.2 Data and Measurement

We complement the migration and climate data described in Section 2.1 with additional sources.
First, to construct predicted climate mismatch, we use information on the year each county was
first connected to the railroad network from Atack (2016). These data provide a decade-by-
decade record of railroad expansion across U.S. counties. We combine them with newly digitized
annual records on the number of immigrants from each European country entering the United
States between 1860 and 1920, compiled from Willcox (1929). Together, these datasets allow
us to construct the push and pull shocks underlying our instrument.

Next, to track population and employment, we use county-level data from the full count de-
cennial U.S. Census of Population between 1880 and 1920 (Ruggles et al., 2021). From these,
we obtain total population and the number of men of working age (15–64) by employment
sector and nativity. To measure economic outcomes in agriculture and manufacturing, we draw
on the Census of Agriculture (Haines and Inter-university Consortium for Political and Social
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Research, 2000) and the Census of Manufactures (Haines and Inter-university Consortium for
Political and Social Research, 2010; Haines et al., 2018). These sources provide information on
agricultural output, land use, capital, and farm value, as well as manufacturing output, estab-
lishment counts, and wages.28 Finally, we draw on the 1940 full count Census, which for the
first time reports income systematically, to measure earnings and construct a proxy for hourly
wages.29

3.3 Results

The agricultural sector. We begin by examining how climate mismatch affected the agri-
cultural sector. Table 3 reports OLS and 2SLS estimates (Panels A and B), as well as the
first stage (Panel C). Across all outcomes, OLS and IV coefficients are similar in sign but differ
substantially in magnitude; we discuss this pattern in detail at the end of the section.30 Column
1 shows that climate mismatch reduced the value of crops produced. The negative and statis-
tically significant 2SLS coefficient implies that a 1°C increase in mismatch lowers the value of
county-level agricultural production by 16.3%, or $83,474 lower crop value relative to the 1880
mean. For reference, the difference in mismatch between the 25th and 75th percentiles of the
distribution is about 4°C—comparable to the gap between Boston and Raleigh, Chicago and
Richmond, or Denver and Dallas. This implies that crop values were roughly 50.9% lower in a
high (75th percentile) than in a low (25th percentile) mismatch county. Column 2 shows that
mismatch also reduced the share of county land devoted to agriculture: increasing mismatch
from the 25th to the 75th percentile reduces the farmland share by 10.8 percentage points
(16.9% of the mean).

Columns 3 to 5 of Table 3 examine the intensive margin of agricultural performance conditional
on land use, using crop revenue per acre, farm value per acre, and equipment value per acre as
dependent variables.31 The coefficients are negative and statistically significant. This indicates
that mismatch weakened agricultural performance not only by shrinking the sector but also
by reducing productivity on cultivated acres. The magnitudes are large: increasing mismatch
from the 25th to the 75th percentile (4°C) reduces per acre crop, farm, and equipment values
by 33.0%, 44.5%, and 34.6%, respectively. Our estimates are in line with those by Hornbeck

28 We use data from the Census of Agriculture for each decade from 1880 to 1920 and from the Census of Manufactures for decades
1880–1920, except for 1910, which is unavailable. For the Census of Agriculture, we restrict the sample to counties with at least
100 farms in each year to limit concerns that counties with very few farms enter or exit the sample in ways that could influence
the results.

29 The 1940 Census reports only wage and salary income and provides no continuous measure of farm profits. As a result, total
income is understated for farm households.

30 Panel C indicates a strong first stage, as reflected in the large Kleibergen–Paap F-statistic reported in Panel B.
31 Crop revenue per acre provides a direct measure of land productivity, while farm value per acre and equipment value per acre

reflect the capitalized value of agricultural profits and capital intensity, respectively.
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(2012), who finds that high-erosion counties during the Dust Bowl experienced a 30% decline
in farmland value per acre. These intensive-margin estimates align with evidence on the limits
of agricultural adaptation to climate change. We find that a 1°C increase in climate mismatch
reduces crop revenue per acre by roughly 9.5%, a magnitude comparable to the estimated
revenue impact of 1°C of long-term warming (Burke and Emerick, 2016).32

Columns 6 and 7 show that mismatch reduced the number of farms and increased farm size,
although the latter effect is small and imprecisely estimated. This is consistent with lower
profitability and farmer exit, as in the Dust Bowl (Hornbeck, 2012).

In Table A.7, we turn to crop-specific outcomes. Corn, the dominant staple crop in many regions
at the time (Olmstead and Rhode, 2008), exhibits clear negative effects: climate mismatch
reduces both acreage (column 1) and output (column 2). Since the decline in acreage is larger
than the decline in output, there is a mechanical increase in yield, which is defined as crop
production per acre (column 3). However, this reflects a contraction along the extensive margin
rather than a genuine productivity gain. Wheat behaves differently. Columns 4–6 show that
mismatch increases wheat acreage and output by similar proportions, leaving wheat yields
essentially unchanged. A possible interpretation is that mismatch induced farmers to substitute
away from corn—a crop whose cultivation was particularly climate-sensitive and relied more
heavily on accumulated local experience—toward wheat, which was generally more robust across
environments and required less climate-specific knowledge for basic cultivation (Olmstead and
Rhode, 2002; Raz, 2025).33

As noted above, OLS coefficients are consistent in sign with 2SLS estimates but are an order
of magnitude smaller (in absolute value). Classical measurement error in mismatch attenuates
OLS coefficients toward zero, but is unlikely to explain the magnitude of the difference. A
more plausible explanation is that high-performing agricultural counties attracted a more het-
erogeneous—and more climatically mismatched—set of migrants, since climate-specific skills
were less binding in these places. This selection pattern would generate a positive correla-
tion between agricultural performance and mismatch, biasing OLS coefficients toward zero. A
complementary explanation is that 2SLS identifies a local average treatment effect (LATE)
for migrants whose location choices respond to the instrument. These compliers place less

32 This comparison requires mapping changes in mean temperature to degree days (Schlenker and Roberts, 2009). A uniform 1 °C
increase in mean temperature over the growing season generates approximately 180 additional degree days. For the average U.S.
county, we assume that roughly one-third of these (about 60 degree days) fall above the harmful threshold, with the remaining
two-thirds (about 120 degree days) being beneficial. Applying these shifts to the growing degree day coefficients reported in
columns 2 and 4 of Table 3 in Burke and Emerick (2016) implies a predicted revenue decline of 10–22%.

33 Corn is sensitive to photoperiodism (latitude-dependent day length), necessitating intensive selective breeding and local adaptation
to ensure maturity within specific seasonal windows. While wheat has its own vulnerabilities such as stem rust, the dissemination
of the Red Fife variety across much of the U.S. in the mid-to-late 19th century provided a hearty reliable grain for settlers.
Wheat’s broader environmental tolerance offered a more standardized risk profile than corn, particularly in contexts with limited
local climate knowledge.
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weight on climate similarity and co-ethnic networks, and have fewer climate-relevant skills as
well as weaker access to local knowledge. Because they tend to settle in newly connected and
less diversified counties—where adaptation failures are costlier—their outcomes yield larger IV
effects.

Finally, although all regressions control for railroad connectivity, one may still worry that
the instrument captures direct economic effects of railroad expansion, violating the exclusion
restriction. Any such direct effects would bias the 2SLS estimates upwards, because railroads
stimulated agricultural activity and market access (Donaldson and Hornbeck, 2016). Since
our IV estimates are substantially more negative than OLS ones, the sign pattern goes in the
opposite direction of what such a violation would generate. This makes it unlikely that direct
railroad effects are driving our results. We examine additional threats to identification and
present a wide range of robustness checks in Section 3.4.

The non-agricultural sector. The contraction of the agricultural sector documented in
Table 3 raises the question of whether climate mismatch accelerated the transition into non-
agricultural activities. Between 1880 and 1920, structural transformation in the U.S. was rapid
and economic growth was driven largely by manufacturing (Eckert and Peters, 2025; Hornbeck
and Rotemberg, 2024). If mismatch pushed workers out of agriculture and into other sectors, it
could in principle have stimulated local industrial expansion. Table 4 examines this possibility.

In column 1, the dependent variable is the non-agricultural employment share. The positive
and statistically significant coefficient indicates that mismatch favored the reallocation of la-
bor out of agriculture and into the non-agricultural sector. The 2SLS estimates imply that the
non-agricultural employment share rose by 3.7 percentage points per 1°C mismatch, or 14.8 per-
centage points more in a high-mismatch county than in a low-mismatch county (38% relative to
the mean).34 If mismatch pushes workers out of agriculture and into non-agricultural activities,
diminishing returns imply that the marginal product of labor outside agriculture should fall.
Although we lack comprehensive data for all non-agricultural sectors, we can observe manufac-
turing, the dominant non-agricultural sector at the time (Eckert and Peters, 2025; Hornbeck
and Rotemberg, 2024). Column 2 shows that moving from the 25th to the 75th percentile of
climate mismatch lowers manufacturing output per worker by roughly 30.0%. Column 3 reports
a negative but small and imprecisely estimated coefficient for average wages, which may reflect
downward wage rigidity, though we view this as suggestive.

The effect of mismatch on manufacturing output, however, is ex ante ambiguous. On the one
hand, an influx of labor should increase total manufacturing output. On the other hand, climate

34 This is in line with results from Colmer (2021), who estimates that increasing temperature by 1°C decreases agricultural employ-
ment share by 7 percentage points in contemporary India.
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mismatch may depress manufacturing productivity—directly, because parts of manufacturing
remained climate exposed, and indirectly, because weaker agricultural performance reduced
demand for manufactured inputs and disrupted input–output linkages.35 Column 4 shows
a negative and sizable, though imprecisely estimated, effect of mismatch on manufacturing
output. This suggests that productivity losses outweigh any scale effects, but the estimate is
not precise enough for definitive conclusions. Finally, column 5 shows that mismatch reduces the
number of manufacturing establishments—a pattern that mirrors agriculture and is consistent
with lower profitability and the exit of marginal producers.

Taken together, these results indicate that climate mismatch did not stimulate non-agricultural
growth. Although mismatch increased non-agricultural employment, it reduced productivity
in the sector and did not raise manufacturing output. Combined with the negative effects on
agriculture, mismatch acted as a drag on overall local economic activity. Appendix E develops
a simple two-sector model that formalizes these mechanisms and shows how mismatch can
simultaneously accelerate labor reallocation while lowering productivity in both sectors.

Population growth and income per capita. In Table 5, we examine the implications
of climate mismatch for broader economic development. Column 1 documents that mismatch
slowed population growth. The 2SLS coefficient implies that each 1°C in mismatch is associated
with 10.2% lower population growth, whereby increasing mismatch from the 25th to the 75th
percentile county lowers population growth by roughly 35%. This is a large effect—comparable
to the difference between fast-growing industrial counties such as Cook County, IL, and slow-
growing isolated counties such as Dakota County, NE.

We next turn to income per capita using the 1940 Census of Population when income was first
systematically measured. Columns 2–7 of Table 5 report cross-sectional regressions relating
income in 1940 to the average mismatch a county experienced between 1880 and 1920, control-
ling for census-region fixed effects and the year in which the railroad first reached the county.36

While these estimates should be viewed as suggestive, they provide a useful complement to the
panel results above. In column 2, the dependent variable is log average income. The negative
and statistically significant coefficient indicates that counties with higher historical mismatch
had lower income per capita in 1940. Comparing a high (75th percentile) to a low (25th per-
centile) mismatch county, the former is about 10.2% poorer. Column 3 uses (log) average hourly
earnings—income divided by total annual hours. The 2SLS coefficient is again negative and
statistically significant, and is nearly twice as large as the coefficient on total income, indicating
that mismatch substantially reduced labor productivity.

35 According to the 1900 Census of Manufactures, nearly half of U.S. manufacturing gross output was linked to agriculture through
food processing (including grist mills and meatpacking), textiles (such as cotton and leather goods), wood products, tobacco,
and the production of agricultural equipment and inputs.

36 We measure income for men aged 25–64, but results are unchanged when using alternative age restrictions.
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Columns 4–5 and 6–7 replicate columns 2–3, for U.S.-born and immigrant men separately.
The patterns are similar across the two groups. Although coefficients are somewhat larger (in
absolute value) for immigrants, they are negative, statistically significant, and large for U.S.-
born men. This suggests that the adverse effect of mismatch was not confined to migrants who
were directly exposed to unfamiliar climates, but spilled over to the U.S.-born population.

Taken together, these results corroborate the earlier evidence that climate mismatch hindered
local development. Beyond shrinking agricultural activity and reducing farm productivity,
mismatch reduced output per worker in manufacturing, slowed down population growth, and
left a persistent imprint on county-level income. These effects were not limited to immigrants,
but extended also to U.S.-born residents.

3.4 Robustness Checks

The results presented in Section 3.3 are robust to a wide set of inference and specification
checks. All relevant tables can be found in Appendix D.

Panel regressions. As discussed in Section 3.1, one concern with the instrument is that
migrants from colder (or warmer) origins may have arrived during periods when the railroad
network was already expanding into similarly cold (or warm) counties. To address this pos-
sibility, we reconstruct the instrument using migration flows predicted purely from exogenous
weather shocks in European origin countries following Sequeira et al. (2020). Appendix D.1
describes the implementation in detail. Results appear in Panel B of Table D.1 for agricultural
outcomes and Table D.4 for manufacturing outcomes and population growth. We next address
concerns regarding two-way fixed-effects (TWFE) estimators in the presence of heterogeneous
treatment effects (De Chaisemartin and d’Haultfoeuille, 2020; Callaway and Sant’Anna, 2021;
Goodman-Bacon, 2021). Panel C of Tables D.1 and D.4 reports long-difference regressions
that compare 1880 to 1920 directly, thereby avoiding the TWFE structure. Panels D and
E then replace region-by-decade fixed effects with state-by-decade fixed effects—absorbing all
time-varying shocks at the state level—and trim the top and bottom 1% of the mismatch
distribution to mitigate the influence of potential outliers.

Tables D.2 and D.5 then assess whether the instrument might be correlated with baseline or
time-invariant characteristics that differentially shaped local development. First, we control
for the 1880 immigrant population share. Second, when analyzing agriculture, we include
crop-suitability measures based on climate and soil constraints (Ramankutty et al., 2002);
when analyzing manufacturing or population, we instead control for the 1880 non-agricultural
employment share to capture differential pre-trends in industrialization (Eckert and Peters,
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2025). Third, we account for exposure to the frontier using the measure from Bazzi et al.
(2020). Results for these checks are presented in Panels B–D, with Panel E including all
controls jointly. Next, Tables D.3 and D.6 extend the baseline specification (reported in Panel
A) by adding controls for predicted average precipitation distance (Panel B) and predicted
geographic distance (Panel C), constructed analogously to temperature distance. Panel D
includes all predicted distance measures simultaneously.

Taken together, the estimates remain qualitatively stable, supporting the validity of the em-
pirical strategy. In some cases, coefficient magnitudes and precision vary across specifications,
but these fluctuations do not display a systematic pattern across outcomes or checks.

Cross-sectional specification. Finally, we examine the robustness of the cross-sectional
income results (Table 5, columns 2–7) in Tables D.7, D.8, and D.9. In all tables, Panel A
presents the baseline IV estimates. In Table D.7, we use the weather-predicted migration
instrument (Panel B), replace census-region fixed effects with state fixed effects (Panel C), trim
counties with mismatch above the 99th or below the 1st percentile (Panel D), and exclude
farmers to ensure that incomplete reporting of farm income does not drive the results (Panel
E). In Table D.8, we add controls for (i) the 1880 immigrant share (Panel B), (ii) the 1880 non-
agricultural employment share (Panel C), (iii) frontier exposure from Bazzi et al. (2020) (Panel
D), and (iv) all three jointly (Panel E). In Table D.9, we augment the baseline specification
controlling for 1880–1920 average predicted precipitation distance (Panel B), 1880–1920 average
predicted geographic distance (Panel C), and the two jointly (Panel D). Across specifications,
the magnitude and statistical significance of the coefficients remain remarkably stable.

4 Conclusion

In this paper, we provide systematic evidence that individuals tend to settle in places with
climates similar to where they came from. These patterns hold across periods, geography, and
migrant groups, and are not explained by the spatial correlation of climate or by other well-
known determinants of migration—including pre-existing migrant networks and geographic
distance. Across our main specifications, a 1°C reduction in temperature distance increases
migration by 2 to 27%, underscoring that climate similarity is a first-order determinant of
migrant settlement. Exploring the mechanisms, we show that both climate-specific skills and
climate-as-amenity likely contribute to climate matching, suggesting that climate distance acts
as a “shadow border” that constrains the spatial allocation of human capital.

We then examine the implications of climate matching for the economic geography of the
United States. Focusing on international immigration between 1880 and 1920—a period of
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rapid growth and structural transformation (Eckert and Peters, 2025)—we construct a measure
of a county’s climate mismatch as the average temperature distance of the immigrants who
settled there in each decade. To address endogeneity concerns, we develop an instrument that
exploits the interaction between the timing of national immigration waves by country of origin
and the staggered roll-out of the U.S. railroad network.

We document that climate mismatch slowed the growth of agricultural output and productivity.
Although mismatch accelerated the reallocation of labor out of agriculture, it did not translate
into higher manufacturing output, indicating slower productivity growth in more mismatched
counties. Rather than generating a compensating industrial boom, mismatch acted as a friction
to structural transformation—pushing labor out of farming while depressing productivity in the
absorbing manufacturing sector. These effects left an imprint: areas with high climate mismatch
exhibited lower population growth and had lower income per capita in 1940. The income effects
are similar for immigrants and U.S.-born men, indicating that the initial climatic alignment of
a population can shape the long-run economic prosperity of receiving areas. The persistence of
these effects underscores the limits of human adaptation to environmental differences.

Our findings open several avenues for future research. First, while we document that migrants
match on climate, the precise reasons why temperature plays such a central role remain incom-
pletely understood—specifically the degree to which it captures expectations about individual
productivity versus cultural, psychological, or physiological channels. Second, it would be valu-
able to test whether climate matching operates outside the United States, in settings with
different economic structures, mobility constraints, and institutional environments, where the
welfare and distributional consequences of mismatch may differ. Third, our climate-similarity
measure may help refine or complement shift–share strategies that rely on historical settlement
patterns (Altonji and Card, 1991; Card, 2001), offering a new way to predict migration flows
and to study the economic, political, and cultural impacts of immigration. Finally, our results
suggest that climate distance functions as an endogenous migration cost, implying that cli-
mate change may reshape mobility frictions themselves, with important implications for spatial
adjustment and long-run inequality
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Figures and Tables

Figure 1. Temperature Matching for Immigrants in the U.S. (1880)

Notes: The figure plots the relationship between temperature in immigrants’ countries of origin (x-axis) and the weighted average
temperature across U.S. counties in which immigrants from each origin resided in 1880 (y-axis), with weights given by each county’s
share of immigrants from that origin. The sample includes immigrants living in the contiguous United States in 1880 from countries
accounting for at least 0.1% of the foreign-born population at the time. Country boundaries are harmonized to their 1990 definitions
following Burchardi et al. (2019). Temperature, in degrees Celsius, is measured as mean annual temperature over the 1960–2000
period using TerraClimate data (Abatzoglou et al., 2018). Regressions are weighted by the number of individuals from each origin
country residing in the United States. The estimated regression coefficient is 0.593, with a robust standard error of 0.087.
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Figure 2. Temperature Distance Between Selected Countries and U.S. Counties

(A) Norway (B) Germany

(C) China (D) Mexico

Notes: The figure shows the absolute difference in temperature between each U.S. county and four example countries (Norway,
Germany, China, Mexico). Temperature is the mean annual temperature in degrees Celsius averaged over the period 1960–2000
using TerraClimate data (Abatzoglou et al., 2018).
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Figure 3. Change in Temperature Distance Between Selected Countries and U.S. Counties

(A) Norway (B) Germany

(C) China (D) Mexico

Notes: The figure plots the change in the absolute difference in temperature between each U.S. county and four example countries
(Norway, Germany, China, Mexico). Temperature is the mean annual temperature in degrees Celsius. These averages are taken
over the periods 1901–1930 and 1991–2020 using CRU climate data (Harris et al., 2020). Green areas represent climate convergence
over time, and red areas climate divergence.
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Figure 4. Climate Distance and Migration, by Period and Sample

(A) International Migration

(B) U.S. Internal Migration

Notes: The figure plots the coefficient, with corresponding 95% confidence intervals, on the absolute difference in temperature
between (A) international country of birth and U.S. destination county, and (B) U.S. origin and destination counties for internal
movers. Dots refer to the baseline specification, described in the notes of Table 1. Triangles refer to specifications that further
control for lagged number of migrants from a given origin to a given destination county. The dependent variable is the number of
immigrants over the corresponding period. Temperature distances are standardized within the relevant sample to have zero mean
and standard deviation equal to one. Standard errors are clustered at the country (resp., U.S. state) of origin by U.S. state of
destination level.
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Figure 5. Climate Distance and Migration: Heterogeneity by Sector

(A) International Migration

(B) U.S. Internal Migration

Notes: The figure plots the coefficient, with corresponding 95% confidence intervals, on the absolute difference in temperature
between (A) international country of birth and U.S. destination county, and (B) U.S. origin and destination counties for internal
movers. The first dot in Panel A (resp., Panel B) shows the baseline results of column 1 (resp., column 3) of Table 1. From the
second dot onward, the number of migrants refers to migrant men in the sector reported on the x-axis (defined according to 3-digit
IND1950 code from IPUMS). For internal migrants, sector is measured in the baseline decade (before the move). Temperature
distances are standardized within the relevant sample to have zero mean and standard deviation equal to one. Standard errors
are clustered at the country (resp., U.S. state) of origin by U.S. state of destination level.
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Table 1. Climate Distance and Migration: Main Results

Dep. Variable: Number of Migrants
Intl-US

1880–1920
Intl-US

1970–2010
Internal

1850–1940
Internal

2011–2019

(1) (2) (3) (4)

Temperature Distance -0.175*** -0.019* -0.315*** -0.237***
(0.021) (0.011) (0.019) (0.041)

Precipitation Distance -0.002 -0.008*** -0.017*** -0.030***
(0.004) (0.002) (0.002) (0.006)

Distance (100 km) -0.064*** -0.051*** -0.194*** -0.204***
(0.013) (0.004) (0.014) (0.022)

Observations 1,939,195 2,475,100 31,092,699 25,088,936
Pseudo R-squared 0.916 0.893 0.728 0.776
Mean Temp. Dist. 9.622 9.621 4.923 4.989
SD Temp. Dist. 5.754 5.685 3.578 3.632
Mean Precip. Dist. 52.53 53.96 31.01 31.06
SD Precip. Dist. 42.07 43.90 23.76 24.01

Origin×Decade/Year FE Yes Yes Yes Yes
Destination×Decade/Year FE Yes Yes Yes Yes
Notes: The samples in columns 1–2 include U.S. county-country pairs for each decade over the 1880–1920 (except for 1890) and

1970–2010 periods, respectively. The definition of countries of origin is fixed to 1990 boundaries and harmonized following the
procedure in Burchardi et al. (2019). The samples in columns 3–4 include county-pairs in the contiguous U.S. for each decade
from 1850–1860 to 1930–1940 and for each calendar year from 2011–2012 to 2018–2019, respectively. In columns 1–2, Number of
Migrants is the number of individuals from origin country o living in destination county d in census year t arrived in the previous
decade (except for 1880, when information on year of arrival is not available). In column 3, Number of Migrants is the number of
individuals 15+ in the baseline year who moved from the origin to the destination county in the decade. In column 4, Number of
Migrants is the number of people who changed address between origin and destination counties, based on IRS Migration data from
individual income tax returns. Temperature (resp., Precipitation) Distance is the absolute difference in mean annual temperature
(resp., precipitation) between the origin and the destination, measured in degrees Celsius (resp., millimeters). Distance is physical
distance, expressed in 100 km, between the origin and the destination. In columns 1–2 (resp., columns 3–4), Origin o refers to the
origin country (resp., the origin U.S. county). Destination d refers to a U.S. county in all columns. All regressions control for origin
by decade (columns 1–3) or year (column 4) fixed effects and destination by decade (columns 1–3) or year (column 4) fixed effects.
Standard errors, reported in parentheses, are clustered at the country (resp., U.S. state) of origin by U.S. state of destination in
columns 1–2 (resp., columns 3–4) level. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 2. Climate Distance and Migration in the Long Run

Dep. Variable: Number of Migrants
Intl-US Intl-US Internal Internal

(1) (2) (3) (4)

Temperature Distance -0.326*** -0.307*** -0.437*** -0.310***
(0.124) (0.111) (0.102) (0.075)

Precipitation Distance -0.021 -0.016 -0.040*** -0.033***
(0.014) (0.015) (0.009) (0.008)

Observations 814,336 915,866 899,850 2,257,910
Pseudo R-squared 0.991 0.990 0.966 0.966
Mean Temp. Dist. 9.388 9.552 3.174 3.748
SD Temp. Dist. 5.831 5.855 2.859 3.193
Mean Precip. Dist. 50.63 51.77 21.83 24.58
SD Precip. Dist. 40.16 41.10 20.71 21.66

Origin×Period FE Yes Yes Yes Yes
Destination×Period FE Yes Yes Yes Yes
Origin×Destination FE Yes Yes Yes Yes
Distance×Period FE Yes Yes Yes Yes

Migration Historical Period 1900 Avg. 1900–1920 1900–1910 Avg. 1910–1940
Migration Modern Period 2010 Avg. 1990–2010 2018–2019 Avg. 2011–2019
Notes: The samples in columns 1–2 include U.S. county-country pairs for the two periods defined at the bottom of the table.

The definition of countries of origin is fixed to 1990 boundaries and harmonized following the procedure in Burchardi et al. (2019).
The samples in columns 3–4 include county-pairs in the contiguous U.S. for the two periods defined at the bottom of the table.
Temperature (resp., Precipitation) Distance is the absolute difference in mean annual temperature (resp., precipitation), measured
in degrees Celsius (resp., millimeters), between the origin and the destination in the historical (1901-1930) and modern (1991-2020)
periods. In column 1–2 (resp., columns 3–4), Origin o refers to the origin country (resp., the origin U.S. county). Destination
d refers to a U.S. county in all columns. All regressions include the absolute difference in precipitation between the origin and
the destination in the historical and modern periods, origin by period fixed effects, destination by period fixed effects, origin by
destination fixed effects, and the interaction between the modern period dummy and geographic distance. Standard errors, reported
in parentheses, are clustered at the country (resp., U.S. state) of origin by U.S. state of destination level in columns 1–2 (resp.,
columns 3–4). Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
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Table 3. The Effects of Climate Mismatch on Agriculture

Log Value per Acre

Dep. Variable: Log Value
of Crops

Share
Farmland Crop Farm Equipment Log Number

of Farms
Log Avg

Farm Size
(1) (2) (3) (4) (5) (6) (7)

Panel A: OLS
Temperature Mismatch -0.036*** -0.006*** -0.021*** -0.032*** -0.036*** -0.024*** 0.004

(0.006) (0.001) (0.005) (0.004) (0.005) (0.004) (0.005)
R-squared 0.944 0.924 0.948 0.958 0.956 0.923 0.858

Panel B: 2SLS
Temperature Mismatch -0.178*** -0.027*** -0.100*** -0.147*** -0.106*** -0.139*** 0.024

(0.029) (0.007) (0.022) (0.022) (0.019) (0.018) (0.017)
R-squared 0.945 0.925 0.948 0.958 0.956 0.924 0.858
KP F-stat 610.08 610.08 610.08 610.08 610.08 610.08 610.08

Panel C: First Stage
Predicted Mismatch 0.649*** 0.649*** 0.649*** 0.649*** 0.649*** 0.649*** 0.649***

(0.035) (0.035) (0.035) (0.035) (0.035) (0.035) (0.035)
R-squared 0.908 0.908 0.908 0.908 0.908 0.908 0.908

Observations 8,464 8,464 8,464 8,464 8,464 8,464 8,464
1880 Dep. Var. Mean 512,108 0.638 2.121 18.59 0.750 1,774 145.9
County FE Yes Yes Yes Yes Yes Yes Yes
Region×Decade FE Yes Yes Yes Yes Yes Yes Yes
Notes: The sample includes counties in the contiguous U.S. with positive population in 1880 and at least 100 farms in each decade from 1880 to 1920. The year 1890 is excluded,

because it is not possible to construct the measure of climate mismatch. Panels A and B report OLS and 2SLS estimates, respectively. Panel C reports the first stage. Temperature
Mismatch is the weighted average of the absolute temperature difference (in degrees Celsius) between the county of destination and the country of origin of the migrants, with
weights equal to the share of migrants from each origin arriving in the county in each decade, relative to all migrants arriving in the county in that decade. See Section 3.1 and
equation (4). Predicted Mismatch (Panel C) is the corresponding measure of predicted average temperature distance, constructed as described in Section 3.1. The dependent
variables are the log value of crops (column 1), the share of land in farms (column 2), the log per-acre value of crops (column 3), farm value (column 4), and equipment value
(column 5), the log number of farms (column 6), and the log average farm size (column 7). All regressions include county fixed effects, census region by decade fixed effects, and an
indicator equal to one if the county was newly connected to the railroad network in the previous decade. The KP F-statistic refers to the Kleibergen–Paap test for weak instruments.
Standard errors are clustered at the county level and, in Panels B and C, are further adjusted using the block bootstrap procedure described in Section 3.1. Significance levels: ***
p<0.01, ** p<0.05, * p<0.1.
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Table 4. The Effects of Climate Mismatch on Manufacturing

Log Manufacturing

Dep. Variable: Non-Ag Emp
Share

Output
per Worker Avg Wages Output # Establishments

(1) (2) (3) (4) (5)
Panel A: OLS
Temperature Mismatch 0.005*** -0.030*** -0.001 -0.073*** -0.046*

(0.002) (0.008) (0.005) (0.027) (0.025)
R-squared 0.857 0.759 0.906 0.794 0.703

Panel B: 2SLS
Temperature Mismatch 0.037*** -0.089*** -0.011 -0.141 -0.144*

(0.007) (0.029) (0.015) (0.096) (0.083)
R-squared 0.858 0.759 0.906 0.794 0.703
KP F-stat 590.40 415.57 415.57 415.82 415.57

Panel C: First Stage
Predicted Mismatch 0.651*** 0.661*** 0.661*** 0.661*** 0.661***

(0.036) (0.041) (0.041) (0.041) (0.041)
R-squared 0.907 0.919 0.919 0.919 0.919

Observations 9,196 6,895 6,895 6,896 6,895
1880 Dep. Var. Mean 0.389 9,589 265.5 2,253,570 107.2
County FE Yes Yes Yes Yes Yes
Region×Decade FE Yes Yes Yes Yes Yes
Notes: The sample includes counties in the contiguous U.S. with positive population in 1880, for the period 1880–1920. The year 1890 is excluded, because it is not possible to

construct the measure of climate mismatch. In columns 2–5, 1910 is also excluded, because data from the Census of Manufactures are missing for that year. Panels A and B report
OLS and 2SLS estimates, respectively. Panel C reports the first stage. Temperature Mismatch is the weighted average of the absolute temperature difference (in degrees Celsius)
between the county and the country of origin of the migrants, with weights equal to the share of migrants from each origin arriving in the county in each decade, relative to all
migrants arriving in the county in that decade. See Section 3.1 and equation (4). Predicted Mismatch (Panel C) is the corresponding measure of predicted average temperature
distance, constructed as described in Section 3.1. In column 1, the dependent variable is the number of men 15-64 employed in sectors other than agriculture, relative to all men
15-64 in the labor force. In columns 2–5, the dependent variables are the log: manufacturing output per worker (column 2); average manufacturing wages (column 3); manufacturing
output (column 4); number of establishments (column 5). All regressions include county fixed effects, census region by decade fixed effects, and an indicator equal to one if the
county was newly connected to the railroad network in the previous decade. The KP F-statistic refers to the Kleibergen–Paap test for weak instruments. Standard errors are
clustered at the county level and, in Panels B and C, are further adjusted using the block bootstrap procedure described in Section 3.1. Significance levels: *** p<0.01, ** p<0.05,
* p<0.1.
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Table 5. Climate Mismatch, Population Growth, and 1940 Income per Capita

All men U.S.-born men Immigrant men

Dep. Variable: Log
Population

Log Average
Income

Log Hourly
Earnings

Log Average
Income

Log Hourly
Earnings

Log Average
Income

Log Hourly
Earnings

(1) (2) (3) (4) (5) (6) (7)
Panel A: OLS
Temperature Mismatch -0.044*** -0.034*** -0.050*** -0.036*** -0.051*** 0.008 -0.023***

(0.007) (0.003) (0.004) (0.003) (0.004) (0.006) (0.006)
R-squared 0.895 0.338 0.407 0.351 0.416 0.176 0.148

Panel B: 2SLS
Temperature Mismatch -0.108*** -0.027*** -0.053*** -0.024*** -0.050*** -0.036*** -0.061***

(0.031) (0.005) (0.005) (0.005) (0.005) (0.010) (0.009)
R-squared 0.894 0.317 0.378 0.325 0.381 0.182 0.160
KP F-stat 590.41 644.98 646.36 644.98 646.36 569.77 560.23

Panel C: First Stage
Predicted Mismatch 0.651*** 0.622*** 0.623*** 0.622*** 0.623*** 0.608*** 0.608***

(0.038) (0.024) (0.024) (0.024) (0.024) (0.025) (0.025)
R-squared 0.907 0.747 0.750 0.747 0.750 0.736 0.738

Observations 9,197 2,890 2,867 2,890 2,867 2,752 2,707
County FE Yes
Region×Decade FE Yes
Region FE Yes Yes Yes Yes Yes Yes
Railroad Arrival Year Yes Yes Yes Yes Yes Yes
Notes: The sample includes counties in the contiguous U.S. with positive population in 1880 for the period 1880–1920 (column 1) and for 1940 (columns 2–7). In column 1, the

year 1890 is excluded, because it is not possible to construct the measure of climate mismatch. Panels A and B report OLS and 2SLS estimates, respectively. Panel C reports the
first stage. In column 1, Temperature Mismatch is the weighted average of the absolute temperature difference (in degrees Celsius) between the county and the country of origin
of the migrants, with weights equal to the share of migrants from each origin arriving in the county in each decade, relative to all migrants arriving in the county in that decade.
See Section 3.1 and equation (4). In columns 2–7, Temperature Mismatch is averaged over the 1880–1920 period. Predicted Mismatch (Panel C) is the corresponding measure of
predicted average temperature distance, constructed as described in Section 3.1. In column 1, the dependent variable is log county population. In columns 2–3, the dependent
variables are log income per capita and log hourly earnings for men aged 25–64; columns 4–5 (resp., 6–7) report the same outcomes for U.S.-born men (resp., immigrant men).
Column 1 includes county fixed effects, census region by decade fixed effects, and an indicator equal to one if the county was newly connected to the railroad network in the previous
decade. Columns 2–7 include census region fixed effects and the year in which a county was first connected to the railroad. The KP F-statistic refers to the Kleibergen–Paap test
for weak instruments. Standard errors are clustered at the county level and, in Panels B and C, are further adjusted using the block bootstrap procedure described in Section 3.1.
Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
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A Additional Table and Figures

Figure A.1. U.S. County Temperature (1960–2000)

Notes: The figure displays mean annual temperature in each U.S. county in degrees Celsius averaged over the period 1960–2000
using TerraClimate data (Abatzoglou et al., 2018).
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Figure A.2. Temperature Distances Between U.S. Counties

(A) Relative to the Delta Region

(B) Relative to the U.S. Northeast

Notes: The figure plots the absolute temperature difference between each U.S. county and the U.S. county indicated by the red
dot. Temperature is defined as the annual mean in degrees Celsius averaged over the period 1960–2000 using TerraClimate data
(Abatzoglou et al., 2018). For reference, temperature distance between the Delta region and New York City is 12° C.
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Figure A.3. U.S. Foreign Born Population, 1850 - 2010

(A) U.S. Foreign Born Population by Origin

(B) U.S. Foreign Born Population Share

Notes: Panel A displays the U.S. foreign-born population share by origin region from 1850 to 2010. Panel B displays the immigrant
population share from 1850-2010. Data for 1850 to 1940 come from full count U.S. Censuses (Ruggles et al., 2021). Data for
1970–2010 come from IPUMS micro-samples and from the American Community Survey (ACS).
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Figure A.4. Immigrant Population Share

(A) 1920

(B) 2010

Notes: The figure displays the foreign-born population share (%) across U.S. counties in 1920 (Panel A) and 2010 (Panel B), using
data from the full count U.S. Census and the American Community Survey (ACS), respectively.
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Figure A.5. Distribution of U.S. Population, by Decade

(A) 1860 (B) 1880

(C) 1920 (D) 1940

Notes: Each map plots county population density (individuals per square km) in a given decade, using data from full count U.S.
Censuses (Ruggles et al., 2021).
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Figure A.6. Historical Change in Temperature Distance Between U.S. Counties

(A) Relative to the Delta Region

(B) Relative to the U.S. Northeast

Notes: The figure plots the change in the absolute difference in temperature between each U.S. county and the U.S. county indicated
by the red dot. Temperature is defined as the annual mean in degrees Celsius. These averages are taken over the period 1901–1930
and 1991–2020 using CRU data. To interpret the figure, note that in Panel A, the distance in temperature between the Delta
region and New York City decreased by 1° C: (from 7.2° C to 6.2° C); New York City today remains colder on average than the
Delta region but the difference is smaller than it was 100 years ago. As a result New York City appears bright green on the map
in Panel A, representing climate convergence.
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Figure A.7. Climate Distance and Migration: Heterogeneity by Occupation

(A) International Migration

(B) U.S. Internal Migration

Notes: The figure plots the coefficient, with corresponding 95% confidence intervals, on the absolute difference in temperature
between (A) international country of birth and U.S. destination county, and (B) U.S. origin and destination counties for internal
movers. The first dot in Panel A (resp., Panel B) shows the baseline results of column 1 (resp., column 3) of Table 1. From
the second dot onward, the number of migrants refers to migrant men in the sector reported on the x-axis (defined according to
3-digit OCC1950 code from IPUMS). For internal migrants, occupation is measured in the baseline decade (before the move).
Temperature distances are standardized within the relevant sample to have zero mean and standard deviation equal to one.
Standard errors are clustered at the country (resp., U.S. state) of origin by U.S. state of destination level.
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Figure A.8. Temperature Mismatch Maps: Actual and Predicted

(A) Actual Mismatch: 1880 (B) Actual Mismatch: 1920

(C) Predicted Mismatch: 1880 (D) Predicted Mismatch: 1920

Notes: The figure plots actual (Panels A and B) and predicted (Panels C and D) temperature mismatch across U.S. counties in
1880 and 1920. Actual mismatch is defined in equation (4), while predicted mismatch is constructed from the fitted values of
equation (6), as explained in Section 3.1. Higher values correspond to a larger temperature distance between origin countries and
destination counties. Modern day Oklahoma is missing from the 1880 maps, as it was part of Indian Territory.
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Table A.1. Top-10 Immigrant Sending Countries, 1920 and 2010

Year 1920 2010

Rank Country Immigrant Share (%) Country Immigrant Share (%)

1 Germany 11.77 Mexico 28.93
2 Italy 11.49 China 5.213
3 USSR 11.46 Philippines 4.304
4 Canada 9.017 India 3.250
5 United Kingdom 8.231 Germany 2.949
6 Poland 7.652 Vietnam 2.931
7 Ireland 7.391 El Salvador 2.807
8 Austria 4.777 USSR 2.698
9 Sweden 4.461 Cuba 2.576
10 Mexico 3.525 Canada 2.331

Notes: The table reports the share of immigrants from each sending country, relative to all foreign-born individuals living in the
U.S. in 1920 and 2010. Data come from the full-count U.S. Census and the ACS 5-year sample for 1920 and 2010, respectively.
Country definitions are harmonized to 1990 as in Burchardi et al. (2019).
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Table A.2. Spatial Correlation of Climate: Flexibly Predicting Temperature Distance

Dep. Variable: Temperature Distance
International Migration U.S. Internal Migration

(1) (2) (3) (4) (5) (6)
Distance (in 100km) -37.55 -37.55 -37.55 3,649*** 3,650*** 3,650***

(47.97) (49.84) (50.27) (228.2) (180.4) (180.2)
Distance (in 100km)2 473.9*** 473.9*** -3,505*** -3,505***

(51.09) (50.90) (199.6) (197.0)
Distance (in 100km)3 -264.1*** 530.6***

(54.49) (170.3)

Observations 553,046 553,046 553,046 9,650,342 9,650,342 9,650,342
R-squared 0.000 0.013 0.016 0.102 0.197 0.199
Notes: The sample includes U.S. county-country pairs in columns 1–3 and county pairs in the contiguous U.S. in columns 4–6.

Temperature Distance is the absolute difference in mean annual temperature between the origin and the destination, measured in
degrees Celsius. Distance is the physical distance between the origin and the destination, expressed in 100 km. In columns 1–3
(resp., columns 4–6), Origin o refers to the origin country (resp., the origin U.S. county). Destination d refers to a U.S. county
in all columns. Standard errors, reported in parentheses, are clustered at the country (resp., U.S. state) of origin by U.S. state of
destination level. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
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Table A.3. Climate and Migration: Controlling for Lagged Migrants

Dep. Variable: Number of Migrants
Intl-US

1900–1920
Intl-US

1970–2010
Internal

1860–1940
Internal

2011–2019

(1) (2) (3) (4)

Temperature Distance -0.153*** -0.016 -0.307*** -0.231***
(0.019) (0.010) (0.018) (0.040)

Past Migrant Stock 1.179*** 0.056* 1.424** 6.729***
(0.260) (0.033) (0.577) (2.065)

Observations 1,442,644 2,475,100 28,823,701 25,088,936
Pseudo R-squared 0.916 0.894 0.731 0.778
Mean Temp. Dist. 9.597 9.621 4.956 4.989
SD Temp. Dist. 5.747 5.685 3.600 3.632

Origin×Decade/Year FE Yes Yes Yes Yes
Destination×Decade/Year FE Yes Yes Yes Yes
Notes: The table replicates the baseline specification from Table 1, additionally controlling for pre-existing migrant stocks (ex-

pressed per 100,000 individuals). In columns 1–2, Past Migrant Stock is the immigrant stock in the destination county in the
previous decade; for 1970, we use the 1940 stock. In column 3, Past Migrant Stock is measured as the cumulated lagged flows
from the linked sample up to the previous decade. In column 4, Past Migrant Stock is measured as the average origin–destination
flows from the linked sample over 1910–1940. Lagged migration controls cannot be constructed for the first observation in each
historical sample (1880 for international migration and 1860 for internal migration), which is therefore omitted from the corre-
sponding regressions. All regressions include precipitation and geographic distances, origin-by-decade (or, origin-by-year) fixed
effects and destination-by-decade (or, destination-by-year) fixed effects. Standard errors, reported in parentheses, are clustered at
the country-of-origin by U.S. state-of-destination level in columns 1–2 and at the U.S. state-of-origin by U.S. state-of-destination
level in columns 3–4. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.4. Climate Distance and Migration: Evidence from the U.S. Frontier

Dep. Variable: Number of Migrants
International Migration U.S. Internal Migration

(1) (2) (3) (4) (5) (6) (7) (8)
Temperature Distance -0.227*** -0.254*** -0.204*** -0.199*** -0.268*** -0.144*** -0.177*** -0.175***

(0.026) (0.030) (0.031) (0.022) (0.032) (0.028) (0.031) (0.023)

Observations 62,274 36,000 26,274 612,554 150,711 147,853 165,332 148,658
Pseudo R-squared 0.904 0.890 0.917 0.472 0.478 0.456 0.488 0.441
Mean Temp. Dist. 10.79 11.35 10.01 4.401 4.670 4.083 4.347 4.506
SD Temp. Dist. 6.726 6.773 6.582 3.258 3.432 3.062 3.150 3.354
Origin×Decade FE Yes Yes Yes Yes Yes Yes Yes Yes
Destination×Decade FE Yes Yes Yes Yes Yes Yes Yes Yes
Period 1880–1900 1880 1900 1850–1900 1850–1860 1860–1870 1870–1880 1880–1900
Notes: The table replicates the baseline specifications for historical international and internal migration (Table 1, columns 1 and 3) restricting attention to destination counties on

the U.S. frontier (as defined in Bazzi et al., 2020) in each decade. Columns 1–3 report estimates for international immigration; columns 4–8 report estimates for internal migration,
restricting attention to origin counties that were never on the frontier. Column 1 pools 1880 and 1900; columns 2–3 report each decade separately; column 4 pools all decades from
1850 to 1900; columns 5–8 report each decade separately. The dependent variable is the number of migrants from the origin to the destination. Temperature Distance is the absolute
difference in temperature between the origin and the destination. All regressions include the absolute difference in precipitation, physical distance, origin by decade fixed effects,
and destination by decade fixed effects. Standard errors, reported in parentheses, are clustered at the country-of-origin (resp., U.S. state of origin) by U.S. state-of-destination level
in columns 1–3 (resp., in columns 4–8). Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.5. Climate Distance and Migration: The Role of Air Conditioning

Dep. Variable: Number of Migrants
Historical: 1880–1920 Modern: 1970–2010

(1) (2) (3) (4) (5) (6) (7) (8)
Annual Temp. Dist. -0.175*** -0.019*

(0.021) (0.011)
January Temp. Dist. -0.053*** -0.042** -0.013** -0.008 -0.016 -0.008

(0.014) (0.017) (0.006) (0.006) (0.010) (0.006)
July Temp. Dist. -0.030* 0.001 -0.042** -0.080*** -0.074*** -0.081***

(0.017) (0.020) (0.019) (0.022) (0.022) (0.022)
South × Jan. Temp. Dist. -0.062*** -0.026*** -0.052*** -0.019**

(0.023) (0.009) (0.017) (0.008)
South × July Temp. Dist. -0.052* 0.059*** -0.011 0.046**

(0.028) (0.020) (0.028) (0.019)

Observations 1,939,195 1,939,195 1,939,195 2,475,100 2,475,100 2,475,100 1,956,231 2,470,464
Pseudo R-squared 0.916 0.913 0.914 0.893 0.892 0.893 0.918 0.895
Temp. Dist. Mean 9.622 9.621
Jan. Temp. Dist. Mean 17.93 17.93 18.08 18.08 18.14 18.05
July Temp. Dist. Mean 5.258 5.258 5.187 5.187 5.162 5.190
Origin×Decade FE Yes Yes Yes Yes Yes Yes Yes Yes
Destination×Decade FE Yes Yes Yes Yes Yes Yes Yes Yes
Notes: The sample includes U.S. county-country pairs for each decade over the 1880–1920 period (except for 1890) in columns 1–3, and over the 1970–2010 period in columns 4

to 6. The definition of countries of origin is fixed to 1990 boundaries and harmonized following the procedure in Burchardi et al. (2019). Columns 1 and 4 replicate the baseline
specification of Table 1, columns 1 and 2. Columns 2 and 5 replace the absolute difference in mean annual temperature with temperature measured in January and July. Columns
3 and 6 interact the absolute difference in January and July temperature with an indicator equal to one if the destination county’s average July temperature is above the national
median. Columns 7 and 8 replicate column 6 separately for farmers and non-farmers, respectively. All regressions include the absolute difference in precipitation, geographic
distance, country of origin by decade fixed effects, and destination county by decade fixed effects. Standard errors, reported in parentheses, are clustered at the country of origin
by U.S. state of destination level. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.6. Predicting Migration Flows Using Push-Pull Shocks

Dep. Variable: Number of Migrants
Placebo

(1) (2)

log(Mot) × Rdt 0.296***
(0.037)

log(Mot+1) × Rdt+1 0.018
(0.017)

Temperature distance -0.142*** -0.182∗∗∗

(0.030) (0.015)
Precipitation distance -0.006 0.0003

(0.005) (0.003)
Distance -0.001 -0.087∗∗∗

(0.036) (0.008)

Observations 281,819 245,852
Pseudo R-squared 0.899 0.962

Destination×Decade FE Yes Yes
Origin×Decade FE Yes Yes

Notes: The sample includes U.S. county-country pairs for each decade over the 1880–1920
(except for 1890). The definition of countries of origin is fixed to 1990 boundaries and
harmonized following the procedure in Burchardi et al. (2019). Number of Migrants is
the number of individuals from origin country o living in destination county d in census
year t arrived in the previous decade (except for 1880, when information on year of arrival
is not available). log(Mot) × Rdt is the interaction between the log number of migrants
arriving from origin o between decade t − 1 and t and an indicator for whether a county
d was first connected to the rail during the same period. log(Mot+1) × Rdt+1 is the same
interaction measured in the decade spanning t and t+1. Temperature (resp., Precipitation)
Distance is the absolute difference in temperature (resp., precipitation) between the origin
and destination. Distance is geographic distance, expressed in 100 km, between the origin
and the destination. Origin o refers to the origin country. Destination d refers to a U.S.
county. All regressions also control for precipitation and geographic distances, origin by
decade fixed effects and destination by decade fixed effects. Standard errors, reported in
parentheses, are clustered at the country of origin by U.S. state of destination. Significance
levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.7. Climate Mismatch and Crop Yields

Corn Wheat

Dep. Variable: Log
Acres

Log
Output

Log
Yield

Log
Acres

Log
Output

Log
Yield

(1) (2) (3) (4) (5) (6)

Panel A: OLS
Temperature Mismatch -0.023*** -0.035*** -0.012*** 0.153*** 0.147*** -0.005

(0.009) (0.009) (0.003) (0.042) (0.042) (0.005)
R-squared 0.923 0.918 0.879 0.856 0.864 0.729

Panel B: 2SLS
Temperature Mismatch -0.170*** -0.125** 0.045*** 0.181** 0.180** -0.001

(0.047) (0.051) (0.012) (0.083) (0.086) (0.013)
R-squared 0.923 0.918 0.879 0.856 0.864 0.729
KP F-stat 609.67 609.67 609.67 598.67 598.61 598.67

Panel C: First Stage
Predicted Mismatch 0.649*** 0.649*** 0.649*** 0.648*** 0.648*** 0.648***

(0.036) (0.036) (0.036) (0.036) (0.036) (0.036)
R-squared 0.908 0.908 0.908 0.906 0.906 0.906

Observations 8,463 8,463 8,463 8,273 8,279 8,273
1880 Dep. Var. Mean 27,902 805,425 24.52 16,626 217,309 10.85
County FE Yes Yes Yes Yes Yes Yes
Region×Decade FE Yes Yes Yes Yes Yes Yes
Notes: The sample includes counties in the contiguous U.S. with positive population in 1880 and at least 100 farms in each decade

from 1880 to 1920. The year 1890 is excluded, because it is not possible to construct the measure of climate mismatch. Panels
A and B report OLS and 2SLS estimates, respectively. Panel C reports the first stage. Temperature Mismatch is the weighted
average of the absolute temperature difference (in degrees Celsius) between the county and the country of origin of the migrants,
with weights equal to the share of migrants from each origin arriving in the county in each decade, relative to all migrants arriving
in the county in that decade. See Section 3.1 and equation (4). Predicted Mismatch (Panel C) is the corresponding measure of
predicted average temperature distance, constructed as described in Section 3.1. The dependent variables are the log corn acres
(column 1), the log corn output (column 2), the log corn yield (column 3), the log wheat acres (column 4), the log wheat output
(column 5), and the log wheat yield (column 6). All regressions include county fixed effects, census region by decade fixed effects,
and an indicator equal to one if the county was newly connected to the railroad network in the previous decade. The KP F-statistic
refers to the Kleibergen–Paap test for weak instruments. Standard errors are clustered at the county level and, in Panels B and C,
are further adjusted using the block bootstrap procedure described in Section 3.1. Significance levels: *** p<0.01, ** p<0.05, *
p<0.1.
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B Data Appendix

Table B.1. Summary of Data Sources

Source Description Area Spatial
Resolution

Period Time
Resolution

Climate

TerraClimate (Abatzoglou
et al., 2018)

Mean annual temperature (°C) and precipitation (mm) from
monthly gridded dataset; (i) For U.S. counties, county-level
values are population-weighted averages of gridcells within
county borders. For countries outside the U.S., values are
population-weighted averages over gridcells within national
borders; (ii) Robustness using averages within a 25 km ra-
dius around national capital cities.

Global 4.6 km × 4.6
km (at the
equator)

1960-2000 Averaged
over period

Climatic Research Unit (CRU)
(Harris et al., 2020)

Mean temperature (°C) and precipitation (mm/month) de-
rived from a monthly gridded observational product (no un-
derlying climate model).

Global 55.7 km × 55.7
km (at the
equator)

1901-1930;
1991-2020

Averaged
over period

Immigration

U.S. Census of Population
(Ruggles et al., 2021)

International immigration to the U.S.; individual character-
istics of the U.S. population. Full-count data for 1880-1920;
1% Form 1 Metro sample for 1970; 5% State sample for
1980 and 1990; 5% sample of 2000 Census; and ACS 5-Year
sample of the 2010 Census.

U.S. Individual 1880-1920 (ex-
cluding 1890);
1970-2010

Decade

European Immigration to the
U.S. (Willcox, 1929)

Number of immigrants from each European country enter-
ing the U.S. in a given decade.

U.S. Country 1870-1920 Decade

Census Tree Project (Price
et al., 2021; Buckles et al.,
2025)

Linked samples of individuals between censuses. Combined
with the Census Place Project (Berkes et al., 2023) to con-
struct historical internal migration matrices. Restricted to
individuals 15 or older in the baseline decade. Because the
1890 Census is unavailable, we link individuals observed in
1880 to 1900.

U.S. Individual 1850-1940 Decade

Census Place Project (Berkes
et al., 2023)

Individual harmonized addresses. Combined with the Cen-
sus Tree Project to construct historical internal migration
matrices. Because the 1890 Census is unavailable, we link
individuals observed in 1880 directly to 1900.

U.S. Individual 1850-1940 Decade

A
ppendix

-17



IRS Statistics of Income Divi-
sion (https://www.irs.gov/st
atistics/soi-tax-stats-mig
ration-data)

Modern internal migration matrices. Constructed from IRS
Change-of-Address Tables for 2011–2022, which draw upon
year-to-year address changes reported on individual income
tax returns.

U.S. County-to-
county

2011-2019 Calendar
year

Economic Indicators

Census of Agriculture (Haines
and Inter-university Consor-
tium for Political and Social
Research, 2000)

County-level agricultural characteristics. Restricted to
counties with at least 100 farms in each census year.

U.S. County 1880-1920 Decade

Census of Manufactures
(Haines and Inter-university
Consortium for Political and
Social Research, 2010; Haines
et al., 2018)

County-level manufacturing characteristics. U.S. County 1880-1920 (ex-
cluding 1910)

Decade

U.S. Census of Population
(Ruggles et al., 2021)

Individual income and hours worked. Restricted to men
25–64.

U.S. Individual 1940 Decade

Miscellaneous

Geographic Crosswalks (Eck-
ert et al., 2020; Berkes et al.,
2023)

Crosswalks between historical and modern county bound-
aries.

U.S. County-to-
county

1850-2000 Decade

Replication files from Bur-
chardi et al. (2019)

Crosswalks between historical and modern country bound-
aries; crosswalks between U.S. county-groups and U.S.
counties.

U.S., Global Country-
to-country;
County-to-
county

1880-2010 Decade

U.S. Frontier (Bazzi et al.,
2020)

Total frontier experience; dummy for being on the frontier
in a decade.

U.S. County 1850-1890 Decade

Connection to Railroads (At-
ack and Margo, 2011)

Railroads connection data. U.S. County 1850-1930 Decade

Replication package from Don-
aldson and Hornbeck (2016)

Market access; Lowest-cost county-to-county freight routes
resulting in time-varying transportation costs.

U.S. County 1850-1940 Decade
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Geographic Features Elevation (Danielson and Gesch, 2011); Ruggedness, calcu-
lated as the spatial standard deviation of elevation values
within a 4.5 km square neighborhood; Distance to coast
(Carroll et al., 2009). Countries and U.S. counties values
are processed in Google Earth Engine and constructed as
spatial averages of gridded values within U.S. county bor-
ders and national borders, respectively.

Global 11.1 × 11.1 km
(at the equa-
tor)

1960-2000 Average

Soil Characteristics Bulk density (Hengl, 2018a), organic matter (Hengl and
Wheeler, 2018), soil pH (Hengl, 2018b), water content
(Hengl and Gupta, 2019).

Global 0.25 × 0.25 km
(at the equa-
tor)

1960-2000 Average
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C Robustness Checks — Evidence of Climate Matching

C.1 Assessing Sensitivity to Controls and Alternate Specifications

Gradual inclusion of controls. In Tables C.1–C.4, we replicate the baseline results from Ta-
ble 1, introducing controls and fixed effects sequentially. Tables C.1 and C.2 focus on historical
and modern immigration to the U.S., respectively. Column 1 estimates a parsimonious speci-
fication that includes only temperature and precipitation distance. Column 2 adds geographic
distance (measured analogously to climate distance, as the distance between the county cen-
troid and the origin-country capital). Column 3 further includes year dummies. In all cases, the
coefficient on temperature distance remains negative and statistically significant. Columns 4
and 5 sequentially introduce continent-of-origin and U.S. state-of-destination fixed effects, and
then country-of-origin and U.S. county-of-destination fixed effects. Finally, column 6 reports
the baseline specification from Table 1, columns 1 and 2, which interacts year dummies with
country and county fixed effects. Across the two tables, the number of observations declines as
additional controls and fixed effects are included, reflecting the increasingly demanding sources
of identifying variation.

Tables C.3 and C.4 present the internal migration results for both the historical linked sample
(1850–1940) and the modern IRS data (2011–2019). Column 1 reports a very parsimonious
specification; column 2 adds geographic distance, which reduces the coefficient on tempera-
ture distance from -0.448 to -0.325 (historical migration) and from -0.393 to -0.243 (modern
migration) but leaves it highly statistically significant. Column 3 introduces county-of-origin,
county-of-destination, and period fixed effects (decade for the historical sample; calendar year
for the modern sample). Column 4 interacts period dummies with state-of-origin and state-
of-destination fixed effects. Column 5 presents the baseline specification, interacting county-
of-origin and county-of-destination fixed effects with period fixed effects. For the modern IRS
data, our baseline excludes moves after 2019 to avoid potential distortions from the COVID-
19 pandemic, but column 6 of Table C.4 shows that including moves from 2019–2020 and
2020–2021 yields virtually identical results. As with the international analysis—and even more
so here—the number of observations falls sharply as fixed effects become more demanding,
reflecting the increasingly stringent identifying variation.

International immigration: sample and climate measurement. Table C.5 combines
the historical and modern international immigration results. Columns 1–4 report estimates for
the Age of Mass Migration. Column 1 presents the baseline historical specification. In column
2, we restrict the sample to European immigrants—who accounted for over 85% of arrivals
during this period (Abramitzky and Boustan, 2017). Despite the resulting reduction in sample
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size and climate variation, the estimates remain closely aligned with the baseline. Column 3
excludes immigrants arriving in 1880, addressing concerns that the absence of year-of-arrival
information in that census year implies a stock rather than flow measure of migration; the
results are unchanged.37 Column 4 replaces population-weighted origin-country climate with
capital-city temperatures, yielding estimates similar in magnitude and statistical significance
to the baseline.

Columns 5–7 turn to modern international immigration. Column 5 reports the baseline mod-
ern specification. Column 6 excludes European immigrants, showing that the results are not
driven by relatively small sending regions in the contemporary period. Column 7 again mea-
sures origin-country climate using capital-city temperatures. While the point estimate remains
negative, it is estimated less precisely than in the historical sample and is no longer statisti-
cally significant—consistent with greater within-country climatic heterogeneity in the modern
period.

Clustering structure. In the baseline specifications, standard errors are clustered at the
country of origin by U.S. state of destination level (for international migration) or the U.S.
state of origin by U.S. state of destination level (for internal migration). Table C.6 shows that
the coefficients remain statistically significant when we instead cluster at the country of origin
by U.S. Census region level (international immigration) or the U.S. Census region of origin by
U.S. Census region of destination level (internal migration).

37 In 1880, year of arrival is not reported, so immigrant counts reflect stocks rather than flows; excluding 1880 therefore alleviates
concerns about mixing stock and flow measures or allowing the results to be driven by this difference in measurement.

Appendix - 21



Table C.1. International Immigration (1880-1920): Gradual Inclusion of Controls

Dep. variable: Number of Migrants

(1) (2) (3) (4) (5) (6)

Temperature Distance -0.349*** -0.384*** -0.384*** -0.245*** -0.163*** -0.175***
(0.021) (0.023) (0.023) (0.023) (0.020) (0.021)

Precipitation Distance -0.029*** -0.026*** -0.026*** -0.013*** 0.001 -0.002
(0.004) (0.004) (0.004) (0.003) (0.004) (0.004)

Distance (100 km) -0.028*** -0.028*** -0.048*** -0.064*** -0.064***
(0.002) (0.002) (0.008) (0.014) (0.013)

Observations 2,202,216 2,202,216 2,202,216 2,190,415 2,041,380 1,939,195
Pseudo R-squared 0.210 0.279 0.282 0.482 0.850 0.916
Mean Temp. Dist. 9.775 9.775 9.775 9.786 9.677 9.622
SD Temp. Dist. 5.694 5.694 5.694 5.698 5.742 5.754
Mean Precip. Dist. 55.81 55.81 55.81 55.85 52.54 52.53
SD Precip. Dist. 45.89 45.89 45.89 45.96 41.77 42.07

Decade FE Yes Yes Yes
Origin Continent FE Yes
Destination State FE Yes
Origin FE Yes
Destination FE Yes
Origin×Decade FE Yes
Destination×Decade FE Yes
Notes: This table replicates the baseline results from Table 1 for historical immigration to the U.S., introducing controls and fixed

effects sequentially across columns. The sample includes U.S. county-country pairs for each decade over the 1880–1920 (except
for 1890). Column 1 includes only Temperature Distance and Precipitation Distance, defined as the absolute temperature and
precipitation differences between the country of origin and the county of destination, measured in degrees Celsius and millimeters
respectively. Column 2 adds Distance, defined as the physical distance between the origin country and the destination county,
expressed in 100 km. Column 3 includes census year fixed effects. Column 4 adds continent-of-origin and U.S. state-of-destination
fixed effects, and column 5 adds country-of-origin and U.S. county-of-destination fixed effects. Column 6 reports the baseline
specification from Table 1, column 1, which interacts census year dummies with country-of-origin and county-of-destination fixed
effects. Standard errors, reported in parentheses, are clustered at the country of origin by U.S. state of destination level. Significance
levels: *** p< 0.01, ** p< 0.05, * p< 0.10.
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Table C.2. International Immigration (1970-2010): Gradual Inclusion of Controls

Dep. variable: Number of Migrants

(1) (2) (3) (4) (5) (6)

Temperature Distance -0.112*** -0.128*** -0.128*** -0.128*** -0.020* -0.019*
(0.025) (0.030) (0.030) (0.026) (0.010) (0.011)

Precipitation Distance -0.003 -0.001 -0.001 -0.005** -0.008*** -0.008***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Distance (100 km) -0.022*** -0.022*** -0.034*** -0.051*** -0.051***
(0.006) (0.006) (0.009) (0.004) (0.004)

Observations 2,765,230 2,765,230 2,765,230 2,750,410 2,749,695 2,475,100
Pseudo R-squared 0.035 0.090 0.113 0.367 0.871 0.893
Mean Temp. Dist. 9.791 9.791 9.791 9.798 9.770 9.621
SD Temp. Dist. 5.697 5.697 5.697 5.703 5.697 5.685
Mean Precip. Dist. 55.67 55.67 55.67 55.71 55.14 53.96
SD Precip. Dist. 45.71 45.71 45.71 45.78 45.25 43.90

Decade FE Yes Yes Yes
Origin Continent FE Yes
Destination State FE Yes
Origin FE Yes
Destination FE Yes
Origin×Decade FE Yes
Destination×Decade FE Yes
Notes: This table replicates the baseline results from Table 1 for modern immigration to the U.S., introducing controls and fixed

effects sequentially across columns. The sample includes U.S. county-country pairs for each decade over the 1970–2010 period.
Column 1 includes only Temperature Distance and Precipitation Distance, defined as the absolute temperature and precipitation
differences between the country of origin and the county of destination, measured in degrees Celsius and millimeters respectively.
Column 2 adds Distance, defined as the physical distance between the origin country and the destination county, expressed in
100 km. Column 3 includes census year fixed effects. Column 4 adds continent-of-origin and U.S. state-of-destination fixed effects,
and column 5 adds country-of-origin and U.S. county-of-destination fixed effects. Column 6 reports the baseline specification from
Table 1, column 2, which interacts census year dummies with country-of-origin and county-of-destination fixed effects. Standard
errors, reported in parentheses, are clustered at the country of origin by U.S. state of destination level. Significance levels: ***
p< 0.01, ** p< 0.05, * p< 0.10.
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Table C.3. U.S. Internal Migration (1850-1940): Gradual Inclusion of Controls

Dep. Variable: Number of Migrants

(1) (2) (3) (4) (5)

Temperature Distance -0.448*** -0.325*** -0.318*** -0.316*** -0.315***
(0.037) (0.023) (0.019) (0.019) (0.019)

Precipitation Distance -0.057*** -0.027*** -0.018*** -0.017*** -0.017***
(0.006) (0.004) (0.002) (0.002) (0.002)

Distance (100 km) -0.196*** -0.193*** -0.193*** -0.194***
(0.036) (0.014) (0.014) (0.014)

Observations 38,428,111 38,428,111 38,031,643 36,367,197 31,092,699
Pseudo R-squared 0.213 0.268 0.700 0.712 0.728
Mean Temp. Dist. 5.062 5.062 5.052 5.029 4.923
SD Temp. Dist. 3.667 3.667 3.660 3.649 3.578
Mean Precip. Dist. 32.85 32.85 32.81 32.49 31.01
SD Precip. Dist. 24.43 24.43 24.42 24.29 23.76

Decade FE Yes Yes
Origin FE Yes Yes
Destination FE Yes Yes
Origin State×Decade FE Yes
Destination State×Decade FE Yes
Origin×Decade FE Yes
Destination×Decade FE Yes
Notes: The table replicates the baseline results from Table 1 for historical internal-migration, introducing controls and fixed effects

sequentially across columns. The sample includes county-pairs in the contiguous U.S. for each decade from 1850–1860 to 1930–1940.
Number of Migrants is the number of people aged 15+ in the baseline year who moved from the origin to the destination county
over the subsequent decade. Column 1 includes only Temperature Distance and Precipitation Distance, defined as the absolute
temperature and precipitation differences between the origin and the destination county, measured in degrees Celsius and millimeters
respectively. Column 2 adds Distance, defined as the physical distance between counties, expressed in 100 km. Column 3 introduces
census year, county-of-origin, and county-of-destination fixed effects. Column 4 adds the interaction of census year dummies with
U.S. state-of-origin and U.S. state-of-destination fixed effects. Column 5 reports the baseline specification from Table 1, column 3,
which interacts census year dummies with county-of-origin and county-of-destination fixed effects. Standard errors, reported in
parentheses, are clustered at the U.S. state of origin by U.S. state of destination level. Significance levels: *** p< 0.01, ** p< 0.05,
* p< 0.10.
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Table C.4. U.S. Internal Migration (2011-2019): Gradual Inclusion of Controls

Dep. Variable: Number of Migrants

(1) (2) (3) (4) (5) (6)

Temperature Distance -0.404*** -0.223*** -0.237*** -0.237*** -0.237*** -0.235***
(0.066) (0.052) (0.041) (0.041) (0.041) (0.041)

Precipitation Distance -0.059*** -0.023*** -0.030*** -0.030*** -0.030*** -0.030***
(0.007) (0.006) (0.006) (0.006) (0.006) (0.006)

Distance (100 km) -0.272*** -0.203*** -0.204*** -0.204*** -0.204***
(0.056) (0.022) (0.022) (0.022) (0.022)

Observations 38,601,368 38,601,368 31,823,048 31,823,048 25,088,936 31,045,614
Pseudo R-squared 0.147 0.206 0.783 0.783 0.776 0.777
Mean Temp. Dist. 5.052 5.052 5.016 5.016 4.989 4.987
SD Temp. Dist. 3.662 3.662 3.644 3.644 3.632 3.632
Mean Precip. Dist. 32.87 32.87 32.00 32.00 31.06 31.01
SD Precip. Dist. 24.43 24.43 24.24 24.24 24.01 23.99

Year FE Yes Yes
Origin FE Yes Yes
Destination FE Yes Yes
Origin State×Year FE Yes
Destination State×Year FE Yes
Origin×Year FE Yes Yes
Destination×Year FE Yes Yes
Notes: The table replicates the baseline results from Table 1 for modern internal-migration, introducing controls and fixed effects

sequentially across columns. The sample includes county-pairs in the contiguous U.S. for each calendar year from 2011–2012 to
2018–2019. Number of Migrants is the number of people who changed address between origin and destination counties, based on
IRS Migration data from individual income tax returns. Column 1 includes only Temperature Distance and Precipitation Distance,
defined as the absolute temperature and precipitation differences between the origin and the destination county, measured in
degrees Celsius and millimeters respectively. Column 2 adds Distance, defined as the physical distance between counties, expressed
in 100 km. Column 3 introduces year, county-of-origin, and county-of-destination fixed effects. Column 4 adds the interaction of
year dummies with U.S. state-of-origin and U.S. state-of-destination fixed effects. Column 5 reports the baseline specification from
Table 1, column 4, which interacts calendar year dummies with county-of-origin and county-of-destination fixed effects. Column 6
replicate column 5 including moves from 2019–2020 and 2020–2021. Standard errors, reported in parentheses, are clustered at the
U.S. state of origin by U.S. state of destination level. Significance levels: *** p< 0.01, ** p< 0.05, * p< 0.10.
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Table C.5. International Immigration: Additional Robustness

Dep. Variable: Number of Migrants
Historical: 1880–1920 Modern: 1970–2010

(1) (2) (3) (4) (5) (6) (7)
Temperature Distance -0.175*** -0.144*** -0.162*** -0.142*** -0.019* -0.034* -0.017

(0.021) (0.030) (0.021) (0.021) (0.011) (0.018) (0.013)
Precipitation Distance -0.002 -0.006 0.003 0.002 -0.008*** -0.010*** -0.007***

(0.004) (0.005) (0.004) (0.005) (0.002) (0.002) (0.002)
Distance (100 km) -0.064*** -0.001 -0.060*** -0.083*** -0.051*** -0.054*** -0.051***

(0.013) (0.036) (0.013) (0.014) (0.004) (0.004) (0.004)

Observations 1,939,195 376,782 1,450,765 1,914,683 2,475,100 2,003,462 2,445,142
Pseudo R-squared 0.916 0.906 0.915 0.915 0.893 0.903 0.893
Mean Temp. Dist. 9.622 5.070 9.605 9.462 9.621 10.68 9.446
SD Temp. Dist. 5.754 3.701 5.754 5.844 5.685 5.549 5.772
Mean Precip. Dist. 52.53 33.47 52.54 54.09 53.96 58.71 55.28
SD Precip. Dist. 42.07 29.41 42.13 47.91 43.90 45.37 48.71
Origin×Decade FE Yes Yes Yes Yes Yes Yes Yes
Destination×Decade FE Yes Yes Yes Yes Yes Yes Yes
Intl Mig Period 1880–1920 1880–1920 1900–1920 1880–1920 1970–2010 1970–2010 1970–2010
Origin Climate Weighted

Avg
Weighted

Avg
Weighted

Avg
Capital

City
Weighted

Avg
Weighted

Avg
Capital

City
Countries Any Europe only Any Any Any Non-Europe only Any
Notes: The table reports robustness checks for historical (columns 1–4) and modern (columns 5–7) immigration to the U.S. with respect to alternative climate definitions and

sample restrictions. Temperature (resp., Precipitation) Distance is the absolute difference in mean annual temperature (resp., precipitation) between the origin and the destination,
measured in degrees Celsius (resp., millimeters). Distance refers to the physical distance between the origin country and the destination county (expressed in 100 km). Columns 1
replicates the historical baseline specification from Table 1, column 1. Column 2 restricts the sample to European origin countries only. Column 3 drops 1880 from the sample.
Column 4 replaces the origin-country climate with capital-city TerraClimate temperature and precipitation. Column 5 replicates the modern baseline specification from Table 1,
column 2. Column 6 drops European origin countries. Column 7 replaces the origin-country climate with capital-city TerraClimate temperature and precipitation. Standard errors,
reported in parentheses, are clustered at the country of origin by U.S. state of destination level. Significance levels: *** p< 0.01, ** p< 0.05, * p< 0.10.
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Table C.6. Climate Distance and Migration: Clustering by U.S. Census Region

Dep. Variable: Number of Migrants
Intl-US

1880–1920
Intl-US

1970–2010
Internal

1850–1940
Internal

2011–2019

(1) (2) (3) (4)

Temperature Distance -0.175*** -0.019* -0.315*** -0.237***
(0.030) (0.011) (0.035) (0.061)

Precipitation Distance -0.002 -0.008*** -0.017*** -0.030***
(0.005) (0.002) (0.004) (0.009)

Distance (100 km) -0.064*** -0.051*** -0.194*** -0.204***
(0.021) (0.005) (0.026) (0.038)

Observations 1,939,195 2,475,100 31,092,699 25,088,936
Pseudo R-squared 0.916 0.893 0.728 0.776
Mean Temp. Dist. 9.622 9.621 4.923 4.989
SD Temp. Dist. 5.754 5.685 3.578 3.632
Mean Precip. Dist. 52.53 53.96 31.01 31.06
SD Precip. Dist. 42.07 43.90 23.76 24.01

Origin×Decade/Year FE Yes Yes Yes Yes
Destination×Decade/Year FE Yes Yes Yes Yes
Notes: The table replicates all columns of Table 1. Standard errors, reported in parentheses, are clustered at the country of origin

by U.S. Census region of destination level (columns 1-2) and the U.S. Census region of origin by U.S. Census region of destination
level (columns 3-4). Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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C.2 Addressing the Spatial Correlation of Climate

Because climate is spatially correlated, a concern is that our estimates may reflect migrants’
aversion to traveling long distances rather than responses to climate distance. As discussed
in the main text (Section 2.2), physical distance explains at most 1.6% of the variation in
temperature distance between countries of origin and U.S. counties (Table A.2, columns 1–3).
In the internal migration context, physical distance explains up to 20% of the variation in
temperature distance (Table A.2, columns 4–6). This is higher than in the international context,
but remains modest, leaving substantial independent variation in climate distance beyond what
can be attributed to geographic distance alone.

While we find these patterns reassuring, we seek to address any remaining concerns about the
spatial correlation of climate in different ways. In the main specification, we control for the
geographic distance between county of origin and county of destination—accounting for the fact
that most people make short-distance moves to places that mechanically have similar climates.
However, since controlling linearly for physical distance may not adequately address all concerns
related to the spatial correlation of climate, we perform a series of additional exercises.

In Table C.7, we replicate the baseline specification (reported in column 1) separately by direc-
tion of movement. For historical internal migration (Panel A), the coefficient on temperature
distance remains negative and statistically significant for most directions, with the exception
of North–South moves (column 7). For modern internal migration (Panel B), the estimates
remain quantitatively and qualitatively similar to the baseline for horizontal moves (columns
2–4). By contrast, coefficients are less precisely estimated for vertical migration (columns 5–7),
and the coefficient for South–North moves (column 6) is positive and statistically significant.
Overall, the results indicate that the relationship between temperature distance and migration
is stronger for horizontal than for vertical moves, consistent with historical accounts emphasiz-
ing the role of east–west migration in shaping U.S. settlement patterns (Steckel, 1983). Notably,
this horizontal gradient persists into the modern period.

In Table C.8, we assess the robustness of the results to excluding various subsets of moves: adja-
cent counties (column 2), next-to-adjacent counties (column 3), moves within 100 km (column
4), within-state migration (column 5), moves across adjacent states (column 6), and states with
potentially distinctive migration patterns, such as California (column 7) and Florida (column
8). Despite the substantial reduction in sample size, the coefficients remain negative and statis-
tically significant in both the historical (Panel A) and modern (Panel B) migration samples. In
both cases, the magnitude of the estimates declines when short-distance moves are excluded—a
pattern that is more pronounced for modern migration—but the coefficients remain precisely
estimated.
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In Table C.9, we subject the baseline specification to a particularly demanding robustness test
by flexibly controlling for geographic distance using quadratic, cubic, and quartic polynomials.
These controls absorb a large share of the spatial variation that could potentially confound
the relationship between climate distance and migration. In the historical internal migration
sample (Panel A), the coefficient on temperature distance remains negative and statistically
significant, though somewhat attenuated in magnitude, indicating that the relationship is not
driven by simple nonlinearities in geographic distance. In the modern sample (Panel B), the
estimates become smaller and less stable, consistent with the weaker climate–migration rela-
tionship documented elsewhere in the paper. Taken together, these patterns suggest that while
this specification places substantial demands on the data, the climate-distance effect remains ro-
bust in the historical context—when climate-specific skills were likely more important—whereas
it is understandably weaker in the modern period, when adaptation technologies such as air
conditioning may have reduced the relevance of climate matching.
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Table C.7. Climate Distance and Migration, by Direction of Move

Dep. Variable: Number of Migrants

(1) (2) (3) (4) (5) (6) (7)

Panel A: U.S. Internal Migration, 1850–1940
Temperature Distance -0.315*** -0.254*** -0.074*** -0.105*** -0.176*** -0.133* -0.030

(0.019) (0.019) (0.024) (0.022) (0.031) (0.078) (0.040)

Observations 31,092,709 20,437,696 11,152,402 9,096,593 10,458,754 4,175,383 6,189,623
Pseudo R-squared 0.728 0.713 0.768 0.769 0.816 0.856 0.848

Panel B: U.S. Internal Migration, 2011–2019
Temperature Distance -0.237*** -0.234*** -0.284*** -0.137** -0.041 0.171** 0.017

(0.041) (0.038) (0.074) (0.058) (0.065) (0.071) (0.084)

Observations 25,088,941 12,364,382 3,551,971 4,403,901 6,454,843 2,625,742 1,779,170
Pseudo R-squared 0.776 0.773 0.847 0.816 0.834 0.872 0.914

Direction All Horizontal East–West West–East Vertical South–
North

North–
South

Origin×Decade/Year FE Yes Yes Yes Yes Yes Yes Yes
Destination×Decade/Year FE Yes Yes Yes Yes Yes Yes Yes
Notes: The samples in Panels A–B include county-pairs in the contiguous U.S. for each decade from 1850–1860 to 1930–1940 and for each year from 2011–2012 to 2018–2019,

respectively. Number of Migrants in Panel A is the number of individuals 15+ in the baseline year who moved from the origin to the destination county in the decade. Number
of Migrants in Panel B is the number of people who changed address between origin and destination counties, based on IRS Migration data from individual income tax returns.
Temperature (resp., Precipitation) Distance is the absolute difference in mean annual temperature (resp., precipitation) between the origin and the destination, measured in degrees
Celsius (resp., millimeters). Distance is physical distance, expressed in 100 km, between the origin and the destination. Column 1 replicates the internal baseline specifications
from Table 1 columns 3–4. Columns 2-7 retain only specific directions of county pairs. All regressions include precipitation and geographic distances, county-of-origin by decade
(Panel A) or year (Panel B) and county-of-destination by decade/year fixed effects. Standard errors, reported in parentheses, are clustered at the U.S. state of origin by U.S. state
of destination level. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table C.8. Climate Distance and Migration: Dropping Selected Counties

Dep. Variable: Number of Migrants

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: U.S. Internal Migration, 1850–1940
Temperature Distance -0.315*** -0.221*** -0.192*** -0.190*** -0.199*** -0.107*** -0.319*** -0.317***

(0.019) (0.011) (0.010) (0.010) (0.012) (0.011) (0.019) (0.019)

Observations 31,092,709 31,011,575 30,857,496 30,858,031 29,956,219 25,859,734 31,079,703 31,075,493
Pseudo R-squared 0.728 0.710 0.691 0.690 0.672 0.668 0.724 0.729

Panel B: U.S. Internal Migration, 2011–2019
Temperature Distance -0.237*** -0.074*** -0.033*** -0.043*** -0.042*** -0.041*** -0.247*** -0.253***

(0.041) (0.018) (0.012) (0.013) (0.013) (0.013) (0.042) (0.039)

Observations 25,088,941 14,187,151 8,428,499 8,820,539 5,818,035 5,747,484 24,941,618 24,755,769
Pseudo R-squared 0.776 0.795 0.816 0.829 0.763 0.764 0.762 0.774

Sample Full
Drop

Adjacent
Counties

Drop Adjacent &
Next to Adjacent

Counties

Drop
Moves

< 100km

Between
States
Only

Drop
Adjacent

States

Drop
California

Drop
Florida

Origin×Decade/Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Destination×Decade/Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Notes: The samples in Panels A–B include county-pairs in the contiguous U.S. for each decade from 1850–1860 to 1930–1940 and for each year from 2011–2012 to 2018–2019, respectively. Number of Migrants in Panel A is the number of individuals

15+ in the baseline year who moved from the origin to the destination county in the decade. Number of Migrants in Panel B is the number of people who changed address between origin and destination counties, based on IRS Migration data from
individual income tax returns. Temperature (resp., Precipitation) Distance is the absolute difference in mean annual temperature (resp., precipitation) between the origin and the destination, measured in degrees Celsius (resp., millimeters). Distance is
physical distance, expressed in 100 km, between the origin and the destination. Column 1 replicates the internal baseline specifications from Table 1 columns 3–4. Column 2 drops adjacent county pairs. Column 3 drops adjacent and next-to-adjacent
county pairs. Column 4 removes county pairs with a migration distance of less than 100 km. Column 5 retains only county pairs across different states. Column 6 drops county pairs from adjacent states. Column 7 removes county pairs where both
origin and destination are in California. Column 8 removes county pairs where both origin and destination are in Florida. All regressions include precipitation and geographic distances, county-of-origin by decade (Panel A) or year (Panel B) and
county-of-destination by decade/year fixed effects. Standard errors, reported in parentheses, are clustered at the U.S. state of origin by U.S. state of destination level. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table C.9. U.S. Internal Migration: Non-Linear Geographic Distance Controls

Dep. Variable: Number of Migrants

(1) (2) (3) (4) (5)

Panel A: U.S. Internal Migration, 1850–1940
Temperature Distance -0.315*** -0.208*** -0.117*** -0.116*** -0.097***

(0.019) (0.015) (0.011) (0.010) (0.009)

Observations 31,092,699 31,092,699 31,092,699 31,092,699 31,092,699
Pseudo R-squared 0.728 0.767 0.794 0.811 0.830
Mean Temp. Dist. 4.923 4.923 4.923 4.923 4.923
SD Temp. Dist. 3.578 3.578 3.578 3.578 3.578

Panel B: U.S. Internal Migration, 2011–2019
Temperature Distance -0.237*** -0.045 0.053** 0.018 0.071***

(0.041) (0.032) (0.022) (0.017) (0.018)

Observations 25,088,936 25,088,936 25,088,936 25,088,936 25,088,936
Pseudo R-squared 0.776 0.827 0.867 0.885 0.904
Mean Temp. Dist. 4.989 4.989 4.989 4.989 4.989
SD Temp. Dist. 3.632 3.632 3.632 3.632 3.632

Physical distance controls Linear Quadratic Cubic Quartic Log
Origin×Decade/Year FE Yes Yes Yes Yes Yes
Destination×Decade/Year FE Yes Yes Yes Yes Yes
Notes: The samples in Panels A–B include county-pairs in the contiguous U.S. for each decade from 1850–1860 to 1930–1940 and

for each year from 2011–2012 to 2018–2019, respectively. Number of Migrants in Panel A is the number of individuals 15+ in the
baseline year who moved from the origin to the destination county in the decade. Number of Migrants in Panel B is the number
of people who changed address between origin and destination counties, based on IRS Migration data from individual income tax
returns. Temperature (resp., Precipitation) Distance is the absolute difference in mean annual temperature (resp., precipitation)
between the origin and the destination, measured in degrees Celsius (resp., millimeters). Distance is physical distance, expressed in
100 km, between the origin and the destination. Column 1 replicates the internal baseline specifications from Table 1 columns 3–4.
Columns 2, 3, and 4 control, respectively, for the second, third, and fourth order polynomials of physical distance, always including
lower-order terms. Column 5 controls for log geographic distance. All regressions also control for precipitation and geographic
distances, county-of-origin by decade (Panel A) or year (Panel B) and county-of-destination by decade/year fixed effects. Standard
errors, reported in parentheses, are clustered at the country of origin by U.S. state of destination level. Significance levels: ***
p < 0.01, ** p < 0.05, * p < 0.1.
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C.3 Including Bilateral Controls

In this section, we assess the robustness of the baseline results to the inclusion of bilateral con-
trols. We begin by controlling for additional geographic attributes—such as elevation, rugged-
ness, and coastal access—that may be correlated with climate distance and may independently
shape migration patterns (Albouy et al., 2021). Tables C.10 and C.11 report results for interna-
tional immigration and U.S. internal migration, respectively. In both tables, Panel A presents
estimates for historical migration, while Panel B reports results for modern migration. With
the exception of specifications that add ruggedness distance in the modern international con-
text (Table C.10, columns 3 and 5), the point estimates remain in line with the baseline results
reported in column 1.

Next, we turn to latitude and longitude. Especially in the context of historical internal mi-
gration, latitude was often cited as a key factor shaping predominantly horizontal migration
patterns (Steckel, 1983). Tables C.12 and C.13 report results for international and internal
migration, respectively. In both tables, Panel A presents estimates for historical migration,
while Panel B reports results for modern migration. Given the prominence of these variables
in the migration literature, we also report the coefficients on the additional controls. Columns
2 and 3 introduce latitude and longitude distance separately; column 4 includes both measures
jointly while excluding geographic distance; column 5 further controls for geographic distance.

Across specifications, the results are broadly robust. The main exception arises for modern
international migration (Table C.12, Panel B), where the coefficient on temperature distance
becomes statistically insignificant in columns 3–5 once latitude and longitude controls are in-
troduced. For historical internal migration (Table C.13, Panel A), the coefficient on latitude
distance is consistently negative and statistically significant, confirming long-standing historical
accounts that emphasize the importance of latitudinal sorting in U.S. migration (Steckel, 1983).
Notably, this latitudinal pattern persists in the modern internal migration sample as well (Panel
B), suggesting a durable role for north–south climatic differences in shaping internal mobility
even as other climate-related mechanisms have weakened.

Another feature that may be correlated with climate—and that may matter for migration deci-
sions, particularly among farmers—is soil type. Soil formation is a long-run geological process
shaped in part by local biomes and vegetation histories, which themselves reflect historical cli-
matic conditions. Although formal soil science concepts—such as soil pH—were not articulated
until the early 20th century, farmers likely possessed practical knowledge of soil characteristics
through experience. Using gridded soil data, we construct county-level averages of four soil at-
tributes: bulk density (column 2), organic matter content (column 3), soil pH (column 4), and
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water-holding capacity (column 5). Column 6 includes all soil measures jointly.38 We report
results for each of the four contexts—historical international, modern international, historical
internal, and modern internal migration—in Tables C.14 through C.17.

Across specifications, the coefficient on temperature distance remains close to its baseline value.
By contrast, the coefficients on the various soil-distance measures are unstable in the inter-
national immigration setting (Tables C.14 and C.15). For internal migration, however, soil
distance is strongly negatively associated with migration in most specifications and is often
precisely estimated (Tables C.16 and C.17). This pattern is consistent with historical and
anecdotal accounts suggesting that farmer migrants actively sought destinations with soil char-
acteristics similar to those of their places of origin.39

In Table C.18, we address the concern that the historical internal migration results may be
driven by large changes in transportation costs over the long period we study (1850–1940). In
column 2, we interact geographic distance with decade dummies to allow its effect to vary flex-
ibly over time, capturing potential correlations between distance-related frictions and climate
distance. Reassuringly, the coefficient on temperature distance remains close to the baseline
estimate reported in column 1.

Next, we use data on the U.S. railroad network expansion from Donaldson and Hornbeck (2016)
to compute bilateral time-varying transportation costs for each U.S. county-pair. To this end, we
augment the railroad network with straight connections within and between county centroids,
which are meant to proxy stagecoach connections. Then, we assign a weight to each edge of
the resulting network. Transportation costs can be expressed either in hours or in dollars. In
the former case, we use as weights 25 miles per hour for a railroad edge and 8 miles per hour
for all other edges. In the latter case, we use $1.5 per mile for a train ride and $0.03 for all
other edges.40 With this weighted network at hand, we compute the least-cost paths between
each county pair, for each decade between 1860 and 1920.41

In columns 3 and 4, we augment the baseline specification by controlling for time-varying
county-pair travel costs, measured in hours and dollars, respectively. Columns 5 and 6 replicate

38 Bulk density is the weight of dry soil per unit volume, with higher values indicating compacted soil. Organic matter concentration
is the percentage of decomposed plant and animal material in the soil—features that can influence soil fertility and structure. Soil
pH is a measure of soil acidity that affects nutrient availability and the types of crops that can be grown. Soil water content refers
to the water holding capacity of the soil, which depends on soil texture and structure. Spatial averages of each soil characteristic
for each county were computed using the OpenLandMap product available on Google Earth Engine with data from Hengl (2018a),
Hengl and Wheeler (2018), Hengl (2018b), and Hengl and Gupta (2019).

39 Steckel (1983) also conjectured that the east-west migration gradient prevailing in the U.S. during the 19th century was partly
explained by farmers seeking similar soil types. Another anecdotal example is that of the “Cajun Prairie” region of Southwest
Louisiana, which was first intensively farmed by Midwestern migrants in the 1880s who were attracted by the similar Mollisol-type
prairie soils (see https://www.loc.gov/item/sn88064676/).

40 These numbers were gathered from various sources, including the Poor’s Railroad Manuals available at http://www.pacificng.
com/template.php?page=/ref/rrmanuals/index.htm and the Annual report on the railroads of New York.

41 Since railroad expansion data are available only through 1920, we assign the 1920 values to 1930 and 1940. The results are
unchanged when excluding observations from 1930 and 1940 from the analysis.
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columns 3 and 4 but exclude geographic distance. As expected, the coefficient on travel costs is
negative and statistically significant. More importantly, the coefficient on temperature distance
remains similar in magnitude to that in the baseline specification.

Finally, one may be concerned that origin–destination differences in economic or demographic
characteristics correlated with climate distance could confound the relationship between climate
and migration. The long-difference analysis in Table 2 mitigates this concern by controlling for
origin-by-destination fixed effects. For historical internal migration, we further assess robustness
by controlling for a rich set of origin–destination characteristics measured at the beginning of
each decade using the full-count U.S. Census of Population. Figure C.1 replicates the baseline
specification from Table 1, column 3 (shown by the leftmost dot), and sequentially adds county-
pair differences in these characteristics.

The second, third, and fourth dots from the left control for the county-pair difference in labor
force participation, manufacturing employment share, and agricultural employment share, re-
spectively.42 The subsequent dots include the difference in, respectively: the Black, the urban,
and the immigrant population share; sex ratios; and population density. Finally, we consider
three forces that have been shown to shape population movement and economic activity during
our sample period: exposure to the frontier (Bazzi et al., 2020); market access (Donaldson and
Hornbeck, 2016); and connection to railroads (Atack and Margo, 2011).43 The very last dot
includes all variables simultaneously. Coefficients on climate distances always remain negative,
precisely estimated, and close to those from the baseline specification.

42 In all cases, the variables are defined for men 15–64 in the baseline decade. Results are unchanged when using different age
thresholds, extending the sample to women, or when considering a larger set of economic outcomes.

43 We measure frontier exposure as the total number of years a county was on the frontier, according to Bazzi et al. (2020). Because
this is a time-invariant control, we interact it with decade fixed effects to allow for differential trends over time. Both market
access and dummies for being connected to railroads in a given decade are taken from Donaldson and Hornbeck (2016). The
measure of market access is constant after 1920, and so we use this value for subsequent decades.
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Table C.10. International Immigration: Controlling for Distance in Geographic Features

Dep. Variable: Number of Migrants

(1) (2) (3) (4) (5)

Panel A: International Immigration, 1880–1920
Temperature Distance -0.175*** -0.185*** -0.175*** -0.175*** -0.187***

(0.021) (0.020) (0.021) (0.021) (0.021)

Observations 1,939,195 1,914,683 1,914,683 1,939,195 1,914,683
Pseudo R-squared 0.916 0.918 0.916 0.916 0.918
Mean Temp. Dist. 9.622 9.625 9.625 9.622 9.625
SD Temp. Dist. 5.754 5.761 5.761 5.754 5.761

Panel B: International Immigration, 1970–2010
Temperature Distance -0.019* -0.020* -0.008 -0.019* -0.009

(0.011) (0.011) (0.009) (0.011) (0.009)

Observations 2,475,100 2,445,142 2,445,142 2,475,100 2,445,142
Pseudo R-squared 0.893 0.894 0.895 0.893 0.896
Mean Temp. Dist. 9.621 9.626 9.626 9.621 9.626
SD Temp. Dist. 5.685 5.691 5.691 5.685 5.691

Geographic controls Elevation Ruggedness Coastal All
Origin×Decade FE Yes Yes Yes Yes Yes
Destination×Decade FE Yes Yes Yes Yes Yes
Notes: The samples in Panels A–B include U.S. county–country pairs for each decade over the 1880–1920 (except 1890) and

1970–2010 periods, respectively. Number of Migrants is the number of individuals from origin country o living in destination county
d in census year t arrived in the previous decade (except for 1880, when information on year of arrival is not available). Temperature
(resp., Precipitation) Distance is the absolute difference in mean annual temperature (resp., precipitation) between the origin and
the destination, measured in degrees Celsius (resp., millimeters). Distance is physical distance, expressed in 100 km, between the
origin and the destination. Column 1 replicates the international baseline specifications from Table 1 columns 1–2. Column 2
additionally controls for the distance in elevation between o and d. Column 3 additionally controls for the distance in the standard
deviation of elevation. Column 4 additionally controls for a dummy equal to one if both origin and destination are coastal (distance
to coast equal to zero). Column 5 includes all three geographic controls. All regressions also control for precipitation and geographic
distances, country of origin by decade and county of destination by decade fixed effects. Standard errors, reported in parentheses,
are clustered at the country of origin by U.S. state of destination level. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table C.11. U.S. Internal Migration: Controlling for Distance in Geographic Features

Dep. Variable: Number of Migrants

(1) (2) (3) (4) (5)

Panel A: U.S. Internal Migration, 1850–1940
Temperature Distance -0.315*** -0.302*** -0.315*** -0.315*** -0.300***

(0.019) (0.018) (0.019) (0.019) (0.019)

Observations 31,092,699 31,092,699 31,092,699 31,092,699 31,092,699
Pseudo R-squared 0.729 0.730 0.729 0.729 0.730
Mean Temp. Dist. 4.923 4.923 4.923 4.923 4.923
SD Temp. Dist. 3.578 3.578 3.578 3.578 3.578

Panel B: U.S. Internal Migration, 2011–2019
Temperature Distance -0.237*** -0.197*** -0.231*** -0.237*** -0.195***

(0.041) (0.040) (0.041) (0.041) (0.042)

Observations 25,088,936 25,088,936 25,088,936 25,088,936 25,088,936
Pseudo R-squared 0.776 0.783 0.781 0.776 0.785
Mean Temp. Dist. 4.989 4.989 4.989 4.989 4.989
SD Temp. Dist. 3.632 3.632 3.632 3.632 3.632

Geographic controls Elevation Ruggedness Coastal All
Origin×Decade/Year FE Yes Yes Yes Yes Yes
Destination×Decade/Year FE Yes Yes Yes Yes Yes
Notes: The samples in Panels A–B include county-pairs in the contiguous U.S. for each decade from 1850–1860 to 1930–1940 and

for each year from 2011–2012 to 2018–2019, respectively. Number of Migrants in Panel A is the number of individuals 15+ in the
baseline year who moved from the origin to the destination county in the decade. Number of Migrants in Panel B is the number
of people who changed address between origin and destination counties, based on IRS Migration data from individual income tax
returns. Temperature (resp., Precipitation) Distance is the absolute difference in mean annual temperature (resp., precipitation)
between the origin and the destination, measured in degrees Celsius (resp., millimeters). Distance is physical distance, expressed in
100 km, between the origin and the destination. Column 1 replicates the internal baseline specifications from Table 1 columns 3–4.
Column 2 additionally controls for the distance in elevation between the county of origin and the county of destination. Column 3
additionally controls for the distance in the standard deviation of elevation. Column 4 additionally controls for a dummy equal to
one if both origin and destination counties are coastal. Column 5 includes all three geographic controls. All regressions also control
for precipitation and geographic distances, county of origin by decade (Panel A) or year (Panel B) and county of destination by
decade (Panel A) or year (Panel B) fixed effects. Standard errors, reported in parentheses, are clustered at the U.S. state of origin
by U.S. state of destination level. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table C.12. International Immigration: Controlling for Latitude and Longitude Distance

Dep. Variable: Number of Migrants

(1) (2) (3) (4) (5)

Panel A: International Immigration, 1880–1920
Temperature Distance -0.175*** -0.166*** -0.174*** -0.168*** -0.173***

(0.021) (0.026) (0.021) (0.026) (0.027)
Distance (latitude) -0.016 -0.013 -0.076***

(0.025) (0.024) (0.028)
Distance (longitude) 0.029 0.029 -0.012

(0.022) (0.022) (0.020)

Observations 1,939,195 1,914,683 1,914,683 1,914,683 1,914,683
Pseudo R-squared 0.916 0.916 0.917 0.917 0.914
Mean Temp. Dist. 9.622 9.625 9.625 9.625 9.625
SD Temp. Dist. 5.754 5.761 5.761 5.761 5.761

Panel B: International Immigration, 1970–2010
Temperature Distance -0.019* -0.049** -0.011 -0.022 -0.004

(0.011) (0.021) (0.009) (0.018) (0.021)
Distance (latitude) 0.036* 0.013 -0.040***

(0.019) (0.015) (0.015)
Distance (longitude) -0.030*** -0.030*** -0.043***

(0.004) (0.004) (0.005)

Observations 2,475,100 2,445,142 2,445,142 2,445,142 2,445,142
Pseudo R-squared 0.893 0.894 0.898 0.899 0.888
Mean Temp. Dist. 9.621 9.626 9.626 9.626 9.626
SD Temp. Dist. 5.685 5.691 5.691 5.691 5.691

Origin×Decade FE Yes Yes Yes Yes Yes
Destination×Decade FE Yes Yes Yes Yes Yes
Notes: The samples in Panels A–B include U.S. county-country pairs for each decade over the 1880–1920 (except for 1890) and

1970–2010 periods, respectively. Number of Migrants is the number of individuals from origin country o living in destination county
d in census year t arrived in the previous decade (except for 1880, when information on year of arrival is not available). Temperature
(resp., Precipitation) Distance is the absolute difference in mean annual temperature (resp., precipitation) between the origin and
the destination, measured in degrees Celsius (resp., millimeters). Distance is physical distance, expressed in 100 km, between the
origin and the destination. Column 1 replicates the international baseline specifications from Table 1 columns 1–2. Columns 2–3
add controls for the distance in latitude and longitude, respectively. Column 4 includes both measures simultaneously. Column 5
replicates column 4 without controlling for geographic distance. All regressions also control for precipitation distance, country of
origin by decade and county of destination by decade fixed effects. Standard errors, reported in parentheses, are clustered at the
country of origin by U.S. state of destination level. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table C.13. U.S. Internal Migration: Controlling for Latitude and Longitude Distance

Dep. Variable: Number of Migrants

(1) (2) (3) (4) (5)

Panel A: U.S. Internal Migration, 1850–1940
Temperature Distance -0.315*** -0.156*** -0.188*** -0.155*** -0.158***

(0.019) (0.023) (0.020) (0.022) (0.023)
Distance (latitude) -0.225*** -0.112*** -0.339***

(0.022) (0.032) (0.023)
Distance (longitude) 0.219*** 0.140*** -0.131***

(0.024) (0.035) (0.009)

Observations 31,092,699 31,092,699 31,092,699 31,092,699 31,092,699
Pseudo R-squared 0.728 0.733 0.733 0.734 0.730
Mean Temp. Dist. 4.923 4.923 4.923 4.923 4.923
SD Temp. Dist. 3.578 3.578 3.578 3.578 3.578

Panel B: U.S. Internal Migration, 2011–2019
Temperature Distance -0.237*** -0.148*** -0.221*** -0.147*** -0.147***

(0.041) (0.042) (0.042) (0.042) (0.042)
Distance (latitude) -0.125** -0.231*** -0.253***

(0.049) (0.052) (0.050)
Distance (longitude) 0.025 -0.119** -0.143***

(0.050) (0.053) (0.015)

Observations 25,088,936 25,088,936 25,088,936 25,088,936 25,088,936
Pseudo R-squared 0.776 0.777 0.777 0.778 0.778
Mean Temp. Dist. 4.989 4.989 4.989 4.989 4.989
SD Temp. Dist. 3.632 3.632 3.632 3.632 3.632

Origin×Decade/Year FE Yes Yes Yes Yes Yes
Destination×Decade/Year FE Yes Yes Yes Yes Yes
Notes: The samples in Panels A–B include county-pairs in the contiguous U.S. for each decade from 1850–1860 to 1930–1940 and

for each year from 2011–2012 to 2018–2019, respectively. Number of Migrants in Panel A is the number of individuals 15+ in the
baseline year who moved from the origin to the destination county in the decade. Number of Migrants in Panel B is the number
of people who changed address between origin and destination counties, based on IRS Migration data from individual income tax
returns. For the modern internal sample (Panel B), latitude/longitude controls are computed using population-weighted coordinates
from 2010 and held constant across all years in the sample. Temperature (resp., Precipitation) Distance is the absolute difference
in mean annual temperature (resp., precipitation) between the origin and the destination, measured in degrees Celsius (resp.,
millimeters). Distance is physical distance, expressed in 100 km, between the origin and the destination. Column 1 replicates the
internal baseline specifications from Table 1 columns 3–4. Columns 2–3 add controls for the distance in latitude and longitude,
respectively. Column 4 includes both measures simultaneously. Column 5 replicates column 4 without controlling for geographic
distance. All regressions also control for precipitation distance, county of origin by decade (Panel A) or year (Panel B) and county
of destination by decade (Panel A) or year (Panel B) fixed effects. Standard errors, reported in parentheses, are clustered at the
U.S. state of origin by U.S. state of destination level. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table C.14. International Immigration (1880–1920): Controlling for Soil Type Distance

Dep. Variable: Number of Migrants

(1) (2) (3) (4) (5) (6)

Temperature Distance -0.175*** -0.176*** -0.176*** -0.176*** -0.176*** -0.176***
(0.021) (0.020) (0.020) (0.020) (0.020) (0.020)

Bulk Density Distance -0.003** -0.002
(0.001) (0.002)

Organic Matter Distance -0.015*** -0.013**
(0.005) (0.006)

pH Distance -0.003 -0.003
(0.003) (0.003)

Water Content Distance -0.002 0.002
(0.005) (0.005)

Observations 1,939,195 1,780,907 1,780,907 1,780,907 1,780,907 1,780,907
Pseudo R-squared 0.916 0.918 0.918 0.918 0.918 0.918
Mean Temp. Dist. 9.622 9.622 9.622 9.622 9.622 9.622
SD Temp. Dist. 5.754 5.756 5.756 5.756 5.756 5.756
Origin×Decade FE Yes Yes Yes Yes Yes Yes
Destination×Decade FE Yes Yes Yes Yes Yes Yes
Notes: The sample includes U.S. county-country pairs for each decade over the 1880–1920 (except for 1890). Number of Migrants

is the number of individuals from origin country o living in destination county d in census year t arrived in the previous decade
(except for 1880, when information on year of arrival is not available). Temperature (resp., Precipitation) Distance is the absolute
difference in mean annual temperature (resp., precipitation) between the origin and the destination, measured in degrees Celsius
(resp., millimeters). Distance is physical distance, expressed in 100 km, between the origin and the destination. Column 1 replicates
the historical international baseline specification from Table 1 column 1. Columns 2–5 add, separately, distance in each soil measure
(bulk density, organic matter, pH, and water content). Column 6 includes all four soil distances. All regressions also control for
precipitation and geographic distances, country of origin by decade and county of destination by decade fixed effects. Standard
errors are clustered at the country of origin by U.S. state of destination level. Significance levels: *** p < 0.01, ** p < 0.05, *
p < 0.1.
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Table C.15. International Immigration (1970–2010): Controlling for Soil Type Distance

Dep. Variable: Number of Migrants

(1) (2) (3) (4) (5) (6)

Temperature Distance -0.019* -0.019* -0.019* -0.019* -0.019 -0.019*
(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

Bulk Density Distance -0.000 -0.001
(0.001) (0.002)

Organic Matter Distance 0.002 0.004
(0.005) (0.006)

pH Distance -0.000 -0.000
(0.002) (0.003)

Water Content Distance -0.001 -0.001
(0.003) (0.004)

Observations 2,475,100 2,271,350 2,271,350 2,271,350 2,271,350 2,271,350
Pseudo R-squared 0.893 0.896 0.896 0.896 0.896 0.896
Mean Temp. Dist. 9.621 9.621 9.621 9.621 9.621 9.621
SD Temp. Dist. 5.685 5.686 5.686 5.686 5.686 5.686
Origin×Decade FE Yes Yes Yes Yes Yes Yes
Destination×Decade FE Yes Yes Yes Yes Yes Yes
Notes: The sample includes U.S. county-country pairs for each decade over the 1970–2010 periods. Number of Migrants is

the number of individuals from origin country o living in destination county d in census year t arrived in the previous decade.
Temperature (resp., Precipitation) Distance is the absolute difference in mean annual temperature (resp., precipitation) between
the origin and the destination, measured in degrees Celsius (resp., millimeters). Distance is physical distance, expressed in 100 km,
between the origin and the destination. Column 1 replicates the modern international baseline specification from Table 1 column
2. Columns 2–5 add, separately, distance in each soil measure (bulk density, organic matter, pH, and water content). Column 6
includes all four soil distances. All regressions also control for precipitation and geographic distances, country of origin by decade
and county of destination by decade fixed effects. Standard errors are clustered at the country of origin by U.S. state of destination
level. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

Appendix - 41



Table C.16. U.S. Internal Migration (1850–1940): Controlling for Soil Type Distance

Dep. Variable: Number of Migrants

(1) (2) (3) (4) (5) (6)

Temperature Distance -0.315*** -0.299*** -0.296*** -0.315*** -0.305*** -0.283***
(0.019) (0.018) (0.018) (0.018) (0.018) (0.017)

Bulk Density Distance -0.057*** -0.041***
(0.006) (0.007)

Organic Matter Distance -0.301*** -0.212***
(0.032) (0.033)

pH Distance -0.022*** -0.011
(0.007) (0.007)

Water Content Distance -0.145*** -0.115***
(0.013) (0.013)

Observations 31,092,699 31,092,699 31,092,699 31,092,699 31,092,699 31,092,699
Pseudo R-squared 0.728 0.733 0.732 0.729 0.733 0.738
Mean Temp. Dist. 4.923 4.923 4.923 4.923 4.923 4.923
SD Temp. Dist. 3.578 3.578 3.578 3.578 3.578 3.578
Origin×Decade FE Yes Yes Yes Yes Yes Yes
Destination×Decade FE Yes Yes Yes Yes Yes Yes
Notes: The sample includes county-pairs in the contiguous U.S. for each decade from 1850–1860 to 1930–1940. Number of

Migrants is the number of individuals 15+ in the baseline year who moved from the origin to the destination county in the decade.
Temperature (resp., Precipitation) Distance is the absolute difference in mean annual temperature (resp., precipitation) between
the origin and the destination, measured in degrees Celsius (resp., millimeters). Distance is physical distance, expressed in 100
km, between the origin and the destination. Column 1 replicates the historical internal baseline specification from Table 1 column
3. Columns 2–5 add, separately, distance in each soil measure (bulk density, organic matter, pH, and water content). Column 6
includes all four soil distances. All regressions also control for precipitation and geographic distances, county of origin by decade
and county of destination by decade fixed effects. Standard errors, reported in parentheses, are clustered at the U.S. state of origin
by U.S. state of destination level. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table C.17. U.S. Internal Migration (2011–2019): Controlling for Soil Type Distance

Dep. Variable: Number of Migrants

(1) (2) (3) (4) (5) (6)

Temperature Distance -0.237*** -0.222*** -0.225*** -0.234*** -0.225*** -0.216***
(0.041) (0.041) (0.041) (0.040) (0.039) (0.039)

Bulk Density Distance -0.064*** -0.056***
(0.012) (0.010)

Organic Matter Distance -0.133** 0.044
(0.059) (0.070)

pH Distance -0.055*** -0.036***
(0.010) (0.010)

Water Content Distance -0.213*** -0.187***
(0.025) (0.023)

Observations 25,088,936 25,088,936 25,088,936 25,088,936 25,088,936 25,088,936
Pseudo R-squared 0.776 0.781 0.777 0.778 0.782 0.786
Mean Temp. Dist. 4.989 4.989 4.989 4.989 4.989 4.989
SD Temp. Dist. 3.632 3.632 3.632 3.632 3.632 3.632
Origin×Year FE Yes Yes Yes Yes Yes Yes
Destination×Year FE Yes Yes Yes Yes Yes Yes
Notes: The sample includes county-pairs in the contiguous U.S. for each year from 2011–2012 to 2018–2019. Number of Migrants

is the number of people who changed address between origin and destination counties, based on IRS Migration data from individual
income tax returns. Temperature (resp., Precipitation) Distance is the absolute difference in mean annual temperature (resp.,
precipitation) between the origin and the destination, measured in degrees Celsius (resp., millimeters). Distance is physical distance,
expressed in 100 km, between the origin and the destination. Column 1 replicates the modern internal baseline specification from
Table 1 column 4. Columns 2–5 add, separately, distance in each soil measure (bulk density, organic matter, pH, and water content).
Column 6 includes all four soil distances. All regressions also control for precipitation and geographic distances, county of origin
by year and county of destination by year fixed effects. Standard errors, reported in parentheses, are clustered at the U.S. state of
origin by U.S. state of destination level. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table C.18. U.S. Internal Migration (1850–1940): Controlling for Time-Varying Travel Distance

Dep. Variable: Number of Migrants

(1) (2) (3) (4) (5) (6)

Temperature Distance -0.315*** -0.312*** -0.296*** -0.321*** -0.299*** -0.357***
(0.019) (0.018) (0.018) (0.019) (0.019) (0.024)

Distance (in 100km) -0.194*** -0.090*** -0.187***
(0.014) (0.016) (0.015)

Transportation Cost -0.023*** -0.005 -0.037*** -0.082***
(0.003) (0.004) (0.002) (0.009)

Observations 31,092,699 31,092,699 29,961,412 29,961,412 29,961,412 29,961,412
Pseudo R-squared 0.728 0.729 0.739 0.730 0.733 0.710
Mean Temp. Dist. 4.923 4.923 4.932 4.932 4.932 4.932
SD Temp. Dist. 3.578 3.578 3.583 3.583 3.583 3.583
Origin×Decade FE Yes Yes Yes Yes Yes Yes
Destination×Decade FE Yes Yes Yes Yes Yes Yes
Notes: The sample includes county-pairs in the contiguous U.S. for each decade from 1850–1860 to 1930–1940. Number of

Migrants is the number of individuals 15+ in the baseline year who moved from the origin to the destination county in the decade.
Temperature (resp., Precipitation) Distance is the absolute difference in mean annual temperature (resp., precipitation) between
the origin and the destination, measured in degrees Celsius (resp., millimeters). Distance is physical distance, expressed in 100 km,
between the origin and the destination. Column 1 replicates the historical internal baseline specification from Table 1 column 3.
Column 2 replicates column 1 by interacting geographic distance with decade dummies. Columns 3–4 add time-varying travel costs
(hours or dollars) in addition to physical distance; columns 5–6 replicate columns 3–4 without controlling for geographic distance.
All regressions also control for precipitation and geographic distances, county of origin by decade and county of destination by
decade fixed effects. Standard errors, reported in parentheses, are clustered at the U.S. state of origin by U.S. state of destination
level. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Figure C.1. U.S. Internal Migration (1850–1940): Including County-Pair Controls

Notes: The figure plots the coefficient, with corresponding 95% confidence intervals, on the absolute difference in temperature
between U.S. origin and destination counties for internal movers. The first dot represents the baseline specification from Table 1,
column 3. Dots 2 through 12 represent results obtained by including, one at a time, the absolute value of the difference in the
following county-pair variables (measured in the baseline decade): employment share; manufacturing employment share; agriculture
employment share; black population share; urban population share; immigrant population share; sex ratios; population density;
frontier exposure from Bazzi et al. (2020); market access from Donaldson and Hornbeck (2016); and a dummy equal to one for
being connected to railroads. The final dot 13 reports results obtained by including all variables simultaneously. Standard errors
are clustered at the U.S. state of origin by U.S. state of destination level.
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C.4 Alternative Climate Statistics

In this section, we consider additional measures of climate distance. First, we consider season-
ality. Mean annual temperature is the basis for the primary climate distance measure used in
all of our analyses. While this measure is one of the simplest and most commonly used climate
metrics, it masks a large degree of variation: Washington, DC, and San Francisco, for example,
have similar annual mean temperatures, but very different seasonal patterns. To account for
this dimension, Tables C.19 and C.20 replicate our preferred specifications for international
and internal migration, reporting results for the historical and modern periods in columns 1–3
and 4–6, respectively. We augment the baseline by controlling for distance in climate season-
ality using two approaches: the standard deviation of temperature and precipitation over the
year (columns 2 and 5), and the difference between average annual maximum and minimum
temperature and precipitation (columns 3 and 6).44

In all cases, similarity in climate variability increases migration, suggesting that migrants take
seasonality into account. However, the coefficient on average temperature remains negative and
statistically significant. Moreover, its size is an order of magnitude larger (in absolute value)
than that of climate variability.

We also verify that our results are robust to alternative definitions of climate distance. Previous
work has linked U.S. population growth patterns to seasonal temperature extremes, often prox-
ied by January and July temperatures (Glaeser and Tobio, 2007). Tables C.21 and C.22 report
results for international and internal migration, with historical and modern periods shown in
columns 1–4 and 5–8, respectively. The estimated effects remain similar when temperature
distance is constructed using the mean of annual maximum temperatures (columns 2 and 6),
average summer temperatures from April to September (columns 3 and 7), or average win-
ter temperatures from October to March (columns 4 and 8). These estimates can be directly
compared to those based on annual mean temperature in the main paper (Table 1).

44 Using the above example, San Francisco would have a lower values for its temperature seasonality given its mild climate year
round compared to the summer and winter extremes in Washington, DC.
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Table C.19. International Immigration: Controlling for Distance in Seasonality

Dep. Variable: Number of Migrants

Historical: 1880–1920 Modern: 1970–2010

(1) (2) (3) (4) (5) (6)

Temperature Distance -0.175*** -0.192*** -0.190*** -0.019* -0.010 -0.010
(0.021) (0.023) (0.023) (0.011) (0.011) (0.011)

Temp. SD Distance 0.051 -0.055***
(0.037) (0.016)

Temp. Range Distance 0.017 -0.019***
(0.013) (0.006)

Observations 1,939,195 1,939,195 1,939,195 2,475,100 2,475,100 2,475,100
Pseudo R-squared 0.916 0.917 0.917 0.893 0.894 0.894
Mean Temp. Dist. 9.775 9.775 9.775 9.791 9.791 9.791
SD Temp. Dist. 5.694 5.694 5.694 5.697 5.697 5.697
Origin×Decade FE Yes Yes Yes Yes Yes Yes
Destination×Decade FE Yes Yes Yes Yes Yes Yes

Notes: The samples in columns 1–3 and 4–6 include U.S. county-country pairs for each decade over the 1880–1920 (except for 1890) and 1970–2010 periods,
respectively. Number of Migrants is the number of individuals from origin country o living in destination county d in census year t arrived in the previous
decade (except for 1880, when information on year of arrival is not available). Temperature (resp., Precipitation) Distance is the absolute difference in
mean annual temperature (resp., precipitation) between the origin and the destination, measured in degrees Celsius (resp., millimeters). Distance is physical
distance, expressed in 100 km, between the origin and the destination. Columns 1 and 4 replicate the U.S. international baseline specifications from Table
1 columns 1 and 2, respectively. Columns 2 and 5 add controls for Temperature and Precipitation SD Distance, the absolute difference in the standard
deviation of temperature and precipitation over the year. Columns 3 and 6 control for Temperature and Precipitation Range Distance, the absolute difference
in the range of temperatures experienced over a year. Each measure of variability is first calculated at the annual level, and then averaged across years. All
regressions also control for precipitation and geographic distances, country of origin by decade and county of destination by decade fixed effects. Standard
errors are clustered at the country of origin by U.S. state of destination level. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table C.20. U.S. Internal Immigration: Controlling for Distance in Seasonality

Dep. Variable: Number of Migrants

Historical: 1850–1940 Modern: 2011–2019

(1) (2) (3) (4) (5) (6)

Temperature Distance -0.315*** -0.306*** -0.302*** -0.237*** -0.190*** -0.186***
(0.019) (0.020) (0.020) (0.041) (0.039) (0.039)

Temp. SD Distance -0.058 -0.317***
(0.045) (0.071)

Temp. Range Distance -0.030* -0.117***
(0.016) (0.026)

Observations 31,092,709 31,092,709 31,092,709 25,088,941 25,088,941 25,088,941
Pseudo R-squared 0.729 0.729 0.729 0.776 0.779 0.779
Mean Temp. Dist. 5.062 5.062 5.062 5.052 5.052 5.052
SD Temp. Dist. 3.667 3.667 3.667 3.662 3.662 3.662
Origin×Decade/Year FE Yes Yes Yes Yes Yes Yes
Destination×Decade/Year FE Yes Yes Yes Yes Yes Yes

Notes: The samples in columns 1–3 and 4–6 include county-pairs in the contiguous U.S. for each decade from 1850–1860 to 1930–1940 and for each calendar year from
2011–2012 to 2018–2019, respectively. In columns 1–3, Number of Migrants is the number of individuals 15+ in the baseline year who moved from the origin to the destination
county in the decade. In columns 4–6, Number of Migrants is the number of people who changed address between origin and destination counties, based on IRS Migration
data from individual income tax returns. Temperature (resp., Precipitation) Distance is the absolute difference in mean annual temperature (resp., precipitation) between
the origin and the destination, measured in degrees Celsius (resp., millimeters). Distance is physical distance, expressed in 100 km, between the origin and the destination.
Columns 1 and 4 replicate the internal baseline specifications from Table 1 columns 3 and 4, respectively. Columns 2 and 5 add controls for Temperature and Precipitation
SD Distance, the absolute difference in the standard deviation of temperature and precipitation over the year. Columns 3 and 6 control for Temperature and Precipitation
Range Distance, the absolute difference in the range of temperatures experienced over a year. Each measure of variability is first calculated at the annual level, and then
averaged across years. All regressions also control for precipitation and geographic distances, county of origin by decade (columns 1–3) or year (columns 4–6) and county of
destination by decade (columns 1–3) or year (columns 4–6) fixed effects. Standard errors, reported in parentheses, are clustered at the U.S. state of origin by U.S. state of
destination level. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table C.21. International Immigration: Alternative Climate Definitions

Dep. Variable: Number of Migrants

Historical: 1880–1920 Modern: 1970–2010

(1) (2) (3) (4) (5) (6) (7) (8)

Temperature Distance -0.175*** -0.087*** -0.125*** -0.097*** -0.019* -0.037*** -0.022** -0.013**
(0.021) (0.022) (0.023) (0.015) (0.011) (0.011) (0.011) (0.006)

Observations 1,939,195 1,939,195 1,939,195 1,939,195 2,475,100 2,475,100 2,475,100 2,475,100
Pseudo R-squared 0.916 0.910 0.911 0.915 0.893 0.893 0.893 0.893
Mean Temp. Dist. 9.784 5.136 6.710 15.16 9.784 5.136 6.710 15.16
SD Temp. Dist. 5.696 4.329 4.839 8.103 5.696 4.329 4.839 8.103
Origin × Decade FE Yes Yes Yes Yes Yes Yes Yes Yes
Destination × Decade FE Yes Yes Yes Yes Yes Yes Yes Yes
Temperature Measurement Yearly Avg. Yearly Max Summer Winter Yearly Avg. Yearly Max Summer Winter

Notes: The samples in columns 1–4 and 5–8 include U.S. county-country pairs for each decade over the 1880–1920 (except for 1890) and 1970–2010 periods, respectively. Number of Migrants is the number
of individuals from origin country o living in destination county d in census year t arrived in the previous decade (except for 1880, when information on year of arrival is not available). Temperature (resp.,
Precipitation) Distance is the absolute difference in mean annual temperature (resp., precipitation) between the origin and the destination, measured in degrees Celsius (resp., millimeters). Distance is physical
distance, expressed in 100 km, between the origin and the destination. Columns 1 and 5 replicate the U.S. international baseline specifications from Table 1 columns 1 and 2, respectively. The other columns
replicate this specification by calculating temperature distance with alternate definitions of temperature. Columns 2 and 6 use annual maximum, columns 3 and 7 use summer temperature (averaged from
April–September), and columns 4 and 8 use winter temperature (averaged from October–March). All regressions also control for precipitation and geographic distances, country of origin by decade and county of
destination by decade fixed effects. Standard errors are clustered at the country of origin by U.S. state of destination level. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table C.22. U.S. Internal Migration: Alternative Climate Definitions

Dep. Variable: Number of Migrants

Historical: 1850–1940 Modern: 2011–2019

(1) (2) (3) (4) (5) (6) (7) (8)

Temperature Distance -0.315*** -0.281*** -0.319*** -0.243*** -0.237*** -0.142*** -0.170*** -0.191***
(0.019) (0.023) (0.022) (0.016) (0.041) (0.040) (0.043) (0.033)

Observations 31,092,709 31,092,709 31,092,709 31,092,709 25,088,941 25,088,941 25,088,941 25,088,941
Pseudo R-squared 0.729 0.718 0.724 0.727 0.776 0.771 0.772 0.777
Mean Temp. Dist. 5.062 3.570 4.283 6.337 5.052 3.575 4.288 6.341
SD Temp. Dist. 3.667 2.758 3.178 4.620 3.662 2.762 3.183 4.624
Origin × Decade/Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Destination × Decade/Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Temperature Measurement Yearly Avg. Yearly Max Summer Winter Yearly Avg. Yearly Max Summer Winter

Notes: The samples in columns 1–4 and 5–8 include county-pairs in the contiguous U.S. for each decade from 1850–1860 to 1930–1940 and for each calendar year from 2011–2012 to 2018–2019, respectively. In columns 1–4,
Number of Migrants is the number of individuals 15+ in the baseline year who moved from the origin to the destination county in the decade. In columns 5–8, Number of Migrants is the number of people who changed
address between origin and destination counties, based on IRS Migration data from individual income tax returns. Temperature (resp., Precipitation) Distance is the absolute difference in mean annual temperature (resp.,
precipitation) between the origin and the destination, measured in degrees Celsius (resp., millimeters). Distance is physical distance, expressed in 100 km, between the origin and the destination. Columns 1 and 5 replicate
the internal baseline specifications from Table 1 columns 3 and 4, respectively. The other columns replicate this specification by calculating temperature distance with alternate definitions of temperature. Columns 2 and 6
use annual maximum, columns 3 and 7 use summer temperature (averaged from April–September), and columns 4 and 8 use winter temperature (averaged from October–March). All regressions also control for precipitation
and geographic distances, county of origin by decade (columns 1–4) or year (columns 5–8) and county of destination by decade (columns 1–4) or year (columns 5–8) fixed effects. Standard errors, reported in parentheses, are
clustered at the U.S. state of origin by U.S. state of destination level. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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C.5 Additional Robustness Checks (Historical Internal Migration)

In Table C.23, we show that the historical internal migration results are robust to alternative
sample restrictions and to using different datasets to measure migration. Column 1 reports the
baseline specification, which includes all county pairs in the contiguous United States in each
decade. Column 2 restricts the sample to counties already existing in 1860, while columns 3 and
4 further limit the sample to county pairs observed in all decades and to pairs with a strictly
positive number of migrants, respectively. Across these exercises, the coefficient on temperature
distance remains close to the baseline estimate.

We next address potential concerns related to the linked sample used to construct internal
migration flows. In the baseline specification, we include all individuals aged 15 and older. In
column 5, we restrict the sample to men aged 15 and above, reflecting the more traditional
approach in the linked-census literature (Abramitzky et al., 2021). In column 6, we instead
use the linked sample of men aged 15 and above constructed by Abramitzky et al. (2020).45

Finally, in column 7, we address remaining concerns related to record linkage by exploiting
a feature unique to the 1940 Census, which asked respondents about their place of residence
five years earlier. We use this information to construct a migration matrix capturing moves
between 1935 and 1940.46 For consistency with the linked-sample analysis, we restrict attention
to individuals who were at least 20 years old in 1940 and thus at least 15 years old at their
location of origin in 1935. In all cases, the estimated effect of temperature distance remains
stable in sign, magnitude, and statistical significance.

45 The data from Abramitzky et al. (2020) and Price et al. (2021) both draw on the full-count U.S. Census but differ in scope and
linking methodology: Price et al. (2021) provide broader coverage using machine-learning approaches, while Abramitzky et al.
(2020) construct smaller samples using more conservative linking algorithms.

46 As with the linked sample, we harmonize destination county boundaries using the Census Place Project for 1940 (Berkes et al.,
2023). Because the Census Place Project cannot be applied to counties of origin in 1935, we rely instead on the crosswalk provided
by Eckert et al. (2020).
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Table C.23. U.S. Internal Migration: Sample Restrictions and Alternative Datasets

Dep. Variable: Number of Migrants
(1) (2) (3) (4) (5) (6) (7)

Temperature Distance -0.315*** -0.312*** -0.312*** -0.253*** -0.306*** -0.254*** -0.236***
(0.019) (0.023) (0.023) (0.025) (0.018) (0.014) (0.022)

Observations 31,092,699 15,660,641 15,573,129 2,387,764 31,086,215 30,992,489 4,825,169
Pseudo R-squared 0.729 0.750 0.750 0.663 0.723 0.726 0.764
Mean Temp. Dist. 4.923 4.590 4.580 2.691 4.923 4.917 5.062
SD Temp. Dist. 3.578 3.321 3.312 2.523 3.578 3.575 3.667
Origin×Decade FE Yes Yes Yes Yes Yes Yes Yes
Destination×Decade FE Yes Yes Yes Yes Yes Yes Yes
Notes: The sample includes county-pairs in the contiguous U.S. for each decade from 1850–1860 to 1930–1940, unless otherwise stated. Temperature Distance (resp., Precipitation

Distance) is the absolute difference in mean annual temperature (resp., precipitation) between the origin and the destination county, measured in degrees Celsius (resp., millimeters).
Distance refers to the physical distance between counties (expressed in 100 km). Column 1 reports the baseline specification from Table 1, column 3. Column 2 restricts the sample
to counties already existing in 1860. Column 3 and 4 further restricts the sample to county-pairs observed in all decades and with a strictly positive number of migrants, respectively.
Columns 5 and 6 use alternative linked-census samples to construct internal migration flows: column 5 restricts the linked sample to men aged 15+ (Abramitzky et al., 2021),
while column 6 uses the linked sample of men aged 15+ constructed by Abramitzky et al. (2020). Column 7 uses 1940 Census information on place of residence five years earlier
to construct migration flows between 1935 and 1940; destination county boundaries are harmonized using the Census Place Project for 1940 (Berkes et al., 2023), while counties of
origin in 1935 are harmonized using the crosswalk provided by Eckert et al. (2020). In column 7, the sample is restricted to individuals aged 20+ in 1940 (and thus 15+ at origin in
1935). All regressions also control for precipitation and geographic distances, county of origin by decade and county of destination by decade fixed effects. Standard errors, reported
in parentheses, are clustered at U.S. state of origin by U.S. state of destination level. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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D Robustness Checks — Effects of Climate Mismatch

D.1 Deriving Predicted Migration from Weather Shocks

To address concerns that aggregate inflows from specific origin countries may be endogenous to
U.S. economic conditions, we construct an alternative measure of predicted migration that is
driven solely by exogenous weather shocks in origin countries. Our approach follows Sequeira
et al. (2020).

We obtain historical temperature data from Luterbacher et al. (2004) and precipitation data
from Pauling et al. (2006), measured at a 0.5◦ spatial resolution and at a seasonal frequency
(spring, summer, autumn, winter) for each year between 1850 and 1929. For each origin country
o, we compute country-level seasonal averages by aggregating gridcells weighted by the share of
land under cultivation, using historical cropland maps from Ramankutty et al. (2002).47 This
yields a country-by-year panel of seasonal temperature and precipitation.

For each country and season, we categorize the distribution of temperature (and precipitation)
into six bins: (i) 3+ standard deviations below the historical mean; (ii) 2–3 standard deviations
below; (iii) 1–2 standard deviations below; (iv) 1–2 standard deviations above; (v) 2–3 standard
deviations above; and (vi) 3+ standard deviations above. The omitted category consists of
realizations within one standard deviation of the mean. This yields 24 temperature indicators
and 24 precipitation indicators per country and year.

For each origin country o, we estimate the following equation separately:

ln EmigrantFlowo,t+1 =
∑
s∈S

∑
k∈K

βo,s,k 1{Tempo,s,t ∈ k} +
∑
s∈S

∑
k∈K

γo,s,k 1{Precipo,s,t ∈ k} + εc,t,

(7)
where ln EmigrantFlowo,t+1 is the log number of migrants from origin o entering the United
States in year t + 1, taken from Willcox (1929). The coefficients βo,s,k and γo,s,k capture how
extreme temperature or precipitation events in season s affect subsequent emigration. Estimat-
ing (7) separately for each origin allows the response to weather shocks to vary flexibly across
countries.

Using the estimated coefficients, we construct predicted flows for each country and year:

̂ln EmigrantFlowo,t+1 =
∑
s,k

β̂o,s,k 1{Tempo,s,t ∈ k} +
∑
s,k

γ̂o,s,k 1{Precipo,s,t ∈ k}.

47 We use the 1850–1929 time period to calculate the long-run averages, following Sequeira et al. (2020). Results are virtually
unchanged when using alternative time windows.
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This yields the predicted total inflow of migrants from each country o into the United States
in decade t due solely to weather shocks in sending countries.48

Finally, we interact ̂ImmigrantFlowo,t−1 with the timing of local railroad access, following our
baseline design.

D.2 Tables

48 Consistent with Sequeira et al. (2020), we find that predicted flows are strongly correlated with actual flows.
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Table D.1. The Effects of Climate Mismatch on Agriculture: Robustness

Log Value per Acre

Dep. Variable: Log Value
of Crops

Share
Farmland Crop Farm Equipment Log Number

of Farms
Log Avg

Farm Size
(1) (2) (3) (4) (5) (6) (7)

Panel A: Baseline
Temperature Mismatch -0.178∗∗∗ -0.027∗∗∗ -0.100∗∗∗ -0.147∗∗∗ -0.106∗∗∗ -0.139∗∗∗ 0.024

(0.029) (0.007) (0.022) (0.022) (0.019) (0.018) (0.017)
Observations 8,464 8,464 8,464 8,464 8,464 8,464 8,464
R-squared 0.945 0.925 0.948 0.958 0.956 0.924 0.858
KP F-stat 610.1 610.1 610.1 610.1 610.1 610.1 610.1

Panel B: Predicted Migration Flows
Temperature Mismatch -0.173∗∗∗ -0.023∗∗∗ -0.104∗∗∗ -0.140∗∗∗ -0.102∗∗∗ -0.128∗∗∗ 0.021

(0.029) (0.007) (0.023) (0.023) (0.019) (0.017) (0.017)
Observations 8,464 8,464 8,464 8,464 8,464 8,464 8,464
R-squared 0.944 0.924 0.948 0.958 0.956 0.923 0.858
KP F-stat 527.7 527.7 527.7 527.7 527.7 527.7 527.7

Panel C: Long Differences (1920-1880)
Temperature Mismatch -0.153∗∗∗ -0.031∗∗∗ -0.079∗∗∗ -0.183∗∗∗ -0.123∗∗∗ -0.159∗∗∗ 0.043∗∗

(0.034) (0.008) (0.026) (0.026) (0.022) (0.021) (0.021)
Observations 2,116 2,116 2,116 2,116 2,116 2,116 2,116
R-squared 0.305 0.427 0.291 0.483 0.272 0.403 0.416
KP F-stat 420.8 420.8 420.8 420.8 420.8 420.8 420.8

Panel D: State×Decade FE
Temperature Mismatch -0.238∗∗∗ -0.052∗∗∗ -0.093∗∗∗ -0.072∗∗∗ -0.048∗∗ -0.186∗∗∗ 0.012

(0.032) (0.009) (0.025) (0.022) (0.024) (0.024) (0.018)
Observations 8,464 8,464 8,464 8,464 8,464 8,464 8,464
R-squared 0.954 0.938 0.957 0.969 0.963 0.939 0.876
KP F-stat 286.7 286.7 286.7 286.7 286.7 286.7 286.7

Panel E: Trim Temperature Mismatch
Temperature Mismatch -0.169∗∗∗ -0.024∗∗∗ -0.100∗∗∗ -0.126∗∗∗ -0.097∗∗∗ -0.126∗∗∗ 0.029∗

(0.028) (0.007) (0.021) (0.021) (0.017) (0.017) (0.017)
Observations 8,283 8,283 8,283 8,283 8,283 8,283 8,283
R-squared 0.946 0.925 0.950 0.959 0.957 0.925 0.861
KP F-stat 701.0 701.0 701.0 701.0 701.0 701.0 701.0

County FE Yes Yes Yes Yes Yes Yes Yes
Region×Decade FE Yes Yes Yes Yes Yes Yes Yes
1880 Dep. Var. Mean 512,108 0.638 2.121 18.59 0.750 1,774 145.9
Notes: The sample includes counties in the contiguous U.S. with positive population in 1880 and at least 100 farms in each decade from 1880 to 1920. The year 1890 is excluded

because it is not possible to construct the measure of climate mismatch. Panel A reports the 2SLS estimates of Table 3. Panel B replaces the baseline instrument with a version
that uses origin-specific migration flows predicted from weather shocks following Sequeira et al. (2020). Panel C reports 1920-1880 long-difference regressions. Panel D replaces
census region-by-decade fixed effects with state-by-decade fixed effects. Panel E excludes counties with mismatch values above the 99th percentile or below the 1st percentile. All
regressions include county fixed effects, census region by decade fixed effects (except for Panel D), and an indicator equal to one if the county was newly connected to the railroad
network in the previous decade. The KP F-statistic refers to the Kleibergen–Paap test for weak instruments. Standard errors are clustered at the county level and further adjusted
using the baseline block bootstrap procedure. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
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Table D.2. The Effects of Climate Mismatch on Agriculture: Robustness/2

Log Value per Acre

Dep. Variable: Log Value
of Crops

Share
Farmland Crop Farm Equipment Log Number

of Farms
Log Avg

Farm Size
(1) (2) (3) (4) (5) (6) (7)

Panel A: Baseline
Temperature Mismatch -0.178∗∗∗ -0.027∗∗∗ -0.100∗∗∗ -0.147∗∗∗ -0.106∗∗∗ -0.139∗∗∗ 0.024

(0.029) (0.007) (0.022) (0.022) (0.019) (0.018) (0.017)
Observations 8,464 8,464 8,464 8,464 8,464 8,464 8,464
R-squared 0.945 0.925 0.948 0.958 0.956 0.924 0.858
KP F-stat 610.1 610.1 610.1 610.1 610.1 610.1 610.1

Panel B: 1880 Immigrant Share×Decade FE
Temperature Mismatch -0.174∗∗∗ -0.027∗∗∗ -0.099∗∗∗ -0.149∗∗∗ -0.102∗∗∗ -0.137∗∗∗ 0.027∗

(0.028) (0.006) (0.022) (0.022) (0.018) (0.018) (0.016)
Observations 8,400 8,400 8,400 8,400 8,400 8,400 8,400
R-squared 0.946 0.927 0.949 0.959 0.956 0.926 0.859
KP F-stat 612.5 612.5 612.5 612.5 612.5 612.5 612.5

Panel C: Crop Suitability×Decade FE
Temperature Mismatch -0.143∗∗∗ -0.021∗∗∗ -0.088∗∗∗ -0.141∗∗∗ -0.097∗∗∗ -0.117∗∗∗ 0.025

(0.028) (0.006) (0.023) (0.022) (0.019) (0.016) (0.017)
Observations 8,448 8,448 8,448 8,448 8,448 8,448 8,448
R-squared 0.948 0.927 0.949 0.958 0.957 0.927 0.859
KP F-stat 581.4 581.4 581.4 581.4 581.4 581.4 581.4

Panel D: Frontier Experience×Decade FE
Temperature Mismatch -0.174∗∗∗ -0.026∗∗∗ -0.098∗∗∗ -0.138∗∗∗ -0.104∗∗∗ -0.134∗∗∗ 0.024

(0.028) (0.007) (0.022) (0.021) (0.018) (0.018) (0.017)
Observations 8,420 8,420 8,420 8,420 8,420 8,420 8,420
R-squared 0.945 0.925 0.950 0.959 0.957 0.924 0.860
KP F-stat 599.1 599.1 599.1 599.1 599.1 599.1 599.1

Panel E: All Controls
Temperature Mismatch -0.139∗∗∗ -0.019∗∗∗ -0.088∗∗∗ -0.137∗∗∗ -0.095∗∗∗ -0.112∗∗∗ 0.027

(0.027) (0.006) (0.022) (0.021) (0.018) (0.016) (0.017)
Observations 8,340 8,340 8,340 8,340 8,340 8,340 8,340
R-squared 0.949 0.929 0.950 0.960 0.958 0.929 0.862
KP F-stat 571.9 571.9 571.9 571.9 571.9 571.9 571.9

County FE Yes Yes Yes Yes Yes Yes Yes
Region×Decade FE Yes Yes Yes Yes Yes Yes Yes
1880 Dep. Var. Mean 512,108 0.638 2.121 18.59 0.750 1,774 145.9
Notes: The sample includes counties in the contiguous U.S. with positive population in 1880 and at least 100 farms in each decade from 1880 to 1920. The year 1890 is excluded

because it is not possible to construct the measure of climate mismatch. Panel A reports the 2SLS estimates of Table 3. Panels B–D add controls for: (i) 1880 immigrant population
share (Panel B), (ii) crop-suitability measure based on climate and soil constraint from Ramankutty et al. (2002) (Panel C), and (iii) total frontier experience from Bazzi et al.
(2020) (Panel D). Panel E includes all three controls jointly. All regressions include county fixed effects, census region by decade fixed effects, and an indicator equal to one if
the county was newly connected to the railroad network in the previous decade. The KP F-statistic refers to the Kleibergen–Paap test for weak instruments. Standard errors are
clustered at the county level and further adjusted using the baseline block bootstrap procedure. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
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Table D.3. The Effects of Climate Mismatch on Agriculture: Robustness/3

Log Value per Acre

Dep. Variable: Log Value
of Crops

Share
Farmland Crop Farm Equipment Log Number

of Farms
Log Avg

Farm Size
(1) (2) (3) (4) (5) (6) (7)

Panel A: Baseline
Temperature Mismatch -0.178∗∗∗ -0.027∗∗∗ -0.100∗∗∗ -0.147∗∗∗ -0.106∗∗∗ -0.139∗∗∗ 0.024

(0.029) (0.007) (0.022) (0.022) (0.019) (0.018) (0.017)
Observations 8,464 8,464 8,464 8,464 8,464 8,464 8,464
R-squared 0.945 0.925 0.948 0.958 0.956 0.924 0.858
KP F-stat 610.1 610.1 610.1 610.1 610.1 610.1 610.1

Panel B: Predicted Precipitation Distance
Temperature Mismatch -0.240∗∗∗ -0.043∗∗∗ -0.125∗∗∗ -0.153∗∗∗ -0.105∗∗∗ -0.147∗∗∗ -0.009

(0.028) (0.006) (0.022) (0.021) (0.018) (0.018) (0.015)
Observations 8,464 8,464 8,464 8,464 8,464 8,464 8,464
R-squared 0.952 0.936 0.950 0.958 0.956 0.925 0.868
KP F-stat 644.9 644.9 644.9 644.9 644.9 644.9 644.9

Panel C: Predicted Geographic Distance
Temperature Mismatch -0.178∗∗∗ -0.027∗∗∗ -0.100∗∗∗ -0.147∗∗∗ -0.106∗∗∗ -0.139∗∗∗ 0.024

(0.029) (0.007) (0.022) (0.022) (0.019) (0.018) (0.017)
Observations 8,464 8,464 8,464 8,464 8,464 8,464 8,464
R-squared 0.945 0.925 0.948 0.958 0.956 0.924 0.858
KP F-stat 609.9 609.9 609.9 609.9 609.9 609.9 609.9

Panel D: Both Distance Controls
Temperature Mismatch -0.240∗∗∗ -0.043∗∗∗ -0.125∗∗∗ -0.153∗∗∗ -0.105∗∗∗ -0.147∗∗∗ -0.009

(0.028) (0.006) (0.022) (0.021) (0.018) (0.018) (0.015)
Observations 8,464 8,464 8,464 8,464 8,464 8,464 8,464
R-squared 0.952 0.936 0.950 0.958 0.956 0.925 0.868
KP F-stat 644.7 644.7 644.7 644.7 644.7 644.7 644.7

County FE Yes Yes Yes Yes Yes Yes Yes
Region×Decade FE Yes Yes Yes Yes Yes Yes Yes
1880 Dep. Var. Mean 512,108 0.638 2.121 18.59 0.750 1,774 145.9
Notes: The sample includes counties in the contiguous U.S. with positive population in 1880 and at least 100 farms in each decade from 1880 to 1920. The year 1890 is excluded

because it is not possible to construct the measure of climate mismatch. Panel A reports the 2SLS estimates of Table 3. Panel B replicates Panel A controlling for predicted
precipitation distance, constructed analogously to predicted temperature distance (see Section 3.1). Panel C replicates Panel A controlling for predicted geographic distance,
constructed analogously to predicted temperature and precipitation distance. Panel D includes both controls simultaneously. All regressions include county fixed effects, census
region by decade fixed effects, and an indicator equal to one if the county was newly connected to the railroad network in the previous decade. The KP F-statistic refers to the
Kleibergen–Paap test for weak instruments. Standard errors are clustered at the county level and further adjusted using the baseline block bootstrap procedure. Significance levels:
*** p<0.01, ** p<0.05, * p<0.1.
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Table D.4. The Effects of Climate Mismatch on Manufacturing and Population: Robustness

Log Manufacturing Log

Dep. Variable: Non-Ag
Emp Share

Output
per Worker

Avg
Wages Output # Establish. Population

(1) (2) (3) (4) (5) (6)
Panel A: Baseline
Temperature Mismatch 0.037∗∗∗ -0.089∗∗∗ -0.011 -0.141 -0.144∗ -0.108∗∗∗

(0.007) (0.029) (0.015) (0.096) (0.083) (0.028)
Observations 9,196 6,895 6,895 6,896 6,895 9,197
R-squared 0.858 0.759 0.906 0.794 0.703 0.894
KP F-stat 590.4 415.6 415.6 415.8 415.6 590.4

Panel B: Predicted Migration Flows
Temperature Mismatch 0.030∗∗∗ -0.093∗∗∗ -0.003 -0.140 -0.116 -0.096∗∗∗

(0.007) (0.028) (0.015) (0.089) (0.078) (0.026)
Observations 9,196 6,895 6,895 6,896 6,895 9,197
R-squared 0.857 0.759 0.906 0.794 0.702 0.894
KP F-stat 502.5 375.6 375.6 375.7 375.6 502.5

Panel C: Long Differences (1920-1880)
Temperature Mismatch 0.044∗∗∗ -0.054 0.006 -0.035 -0.078 -0.085∗∗∗

(0.008) (0.034) (0.017) (0.109) (0.096) (0.031)
Observations 2,303 2,265 2,265 2,266 2,265 2,304
R-squared 0.100 0.034 0.151 0.067 0.097 0.166
KP F-stat 426.0 408.8 408.8 409.1 408.8 426.0

Panel D: State×Decade FE
Temperature Mismatch 0.018∗∗ -0.101∗∗∗ -0.032 -0.073 -0.230∗∗ -0.128∗∗∗

(0.008) (0.034) (0.020) (0.114) (0.095) (0.037)
Observations 9,196 6,895 6,895 6,896 6,895 9,197
R-squared 0.873 0.777 0.917 0.855 0.805 0.913
KP F-stat 280.0 244.7 244.7 244.5 244.7 280.0

Panel E: Trim Temperature Mismatch
Temperature Mismatch 0.030∗∗∗ -0.089∗∗∗ -0.022 -0.151∗ -0.110 -0.096∗∗∗

(0.006) (0.027) (0.014) (0.091) (0.078) (0.027)
Observations 9,008 6,706 6,706 6,707 6,706 9,009
R-squared 0.859 0.761 0.908 0.795 0.703 0.896
KP F-stat 665.2 516.6 516.6 516.8 516.6 665.2

County FE Yes Yes Yes Yes Yes Yes
Region×Decade FE Yes Yes Yes Yes Yes Yes
1880 Dep. Var. Mean 0.389 9,589 265.5 2,253,570 107.2 19,612
Notes: The sample includes counties in the contiguous U.S. with positive population in 1880, for the period 1880–1920. The year 1890 is excluded, because it is not possible to

construct the measure of climate mismatch. In columns 2–5, 1910 is also excluded, because data from the Census of Manufactures are missing for that year. Panel A reports the
2SLS estimates of Table 4. Panel B replaces the baseline instrument with a version that uses origin-specific migration flows predicted from weather shocks following Sequeira et al.
(2020). Panel C reports 1920–1880 long-difference regressions. Panel D replaces census region-by-decade fixed effects with state-by-decade fixed effects. Panel E excludes counties
with mismatch values above the 99th percentile or below the 1st percentile. All regressions include county fixed effects, census region by decade fixed effects (except for Panel D),
and an indicator equal to one if the county was newly connected to the railroad network in the previous decade. The KP F-statistic refers to the Kleibergen–Paap test for weak
instruments. Standard errors are clustered at the county level and further adjusted using the baseline block bootstrap procedure. Significance levels: *** p<0.01, ** p<0.05, *
p<0.1.
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Table D.5. The Effects of Climate Mismatch on Manufacturing and Population: Robustness/2

Log Manufacturing Log

Dep. Variable: Non-Ag
Emp Share

Output
per Worker

Avg
Wages Output #

Establish. Population

(1) (2) (3) (4) (5) (6)
Panel A: Baseline
Temperature Mismatch 0.037∗∗∗ -0.089∗∗∗ -0.011 -0.141 -0.144∗ -0.108∗∗∗

(0.007) (0.029) (0.015) (0.096) (0.083) (0.028)
Observations 9,196 6,895 6,895 6,896 6,895 9,197
R-squared 0.858 0.759 0.906 0.794 0.703 0.894
KP F-stat 590.4 415.6 415.6 415.8 415.6 590.4

Panel B: 1880 Immigrant Share×Decade FE
Temperature Mismatch 0.035∗∗∗ -0.079∗∗∗ -0.017 -0.126 -0.137∗ -0.095∗∗∗

(0.007) (0.028) (0.015) (0.095) (0.082) (0.027)
Observations 9,132 6,844 6,844 6,845 6,844 9,133
R-squared 0.862 0.762 0.907 0.797 0.707 0.900
KP F-stat 585.7 418.4 418.4 418.6 418.4 585.8

Panel C: 1880 Non-Ag Share×Decade FE
Temperature Mismatch 0.035∗∗∗ -0.089∗∗∗ -0.010 -0.141 -0.146∗ -0.106∗∗∗

(0.006) (0.029) (0.015) (0.096) (0.084) (0.027)
Observations 9,196 6,895 6,895 6,896 6,895 9,197
R-squared 0.877 0.759 0.910 0.794 0.703 0.898
KP F-stat 593.0 417.5 417.5 417.7 417.5 593.1

Panel D: Frontier Experience×Decade FE
Temperature Mismatch 0.036∗∗∗ -0.090∗∗∗ -0.007 -0.154 -0.153∗ -0.108∗∗∗

(0.007) (0.028) (0.014) (0.095) (0.081) (0.028)
Observations 9,116 6,838 6,838 6,839 6,838 9,117
R-squared 0.858 0.763 0.907 0.792 0.699 0.893
KP F-stat 591.0 429.2 429.2 429.5 429.2 591.1

Panel E: All Controls
Temperature Mismatch 0.036∗∗∗ -0.080∗∗∗ -0.010 -0.132 -0.135∗ -0.096∗∗∗

(0.007) (0.028) (0.014) (0.094) (0.080) (0.027)
Observations 9,052 6,787 6,787 6,788 6,787 9,053
R-squared 0.879 0.766 0.911 0.795 0.704 0.901
KP F-stat 577.4 424.3 424.3 424.5 424.3 577.5

County FE Yes Yes Yes Yes Yes Yes
Region×Decade FE Yes Yes Yes Yes Yes Yes
1880 Dep. Var. Mean 0.389 9,589 265.5 2,253,570 107.2 19,612
Notes: The sample includes counties in the contiguous U.S. with positive population in 1880, for the period 1880–1920. The year 1890 is excluded, because it is not possible to

construct the measure of climate mismatch. In columns 2–5, 1910 is also excluded, because data from the Census of Manufactures are missing for that year. Panel A reports the
2SLS estimates of Table 4. Panels B–D add controls for: (i) the 1880 immigrant population share (Panel B), (ii)the 1880 non-agricultural employment share (Panel C), and (iii)
total frontier experience from Bazzi et al. (2020) (Panel D). Panel E includes all three controls jointly. All regressions include county fixed effects, census region by decade fixed
effects, and an indicator equal to one if the county was newly connected to the railroad network in the previous decade. The KP F-statistic refers to the Kleibergen–Paap test for
weak instruments. Standard errors are clustered at the county level and further adjusted using the baseline block bootstrap procedure. Significance levels: *** p<0.01, ** p<0.05,
* p<0.1.
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Table D.6. The Effects of Climate Mismatch on Manufacturing and Population: Robustness/3

Log Manufacturing Log

Dep. Variable: Non-Ag
Emp Share

Output
per Worker

Avg
Wages Output # Establish. Population

(1) (2) (3) (4) (5) (6)
Panel A: Baseline
Temperature Mismatch 0.037∗∗∗ -0.089∗∗∗ -0.011 -0.141 -0.144∗ -0.108∗∗∗

(0.007) (0.029) (0.015) (0.096) (0.083) (0.028)
Observations 9,196 6,895 6,895 6,896 6,895 9,197
R-squared 0.858 0.759 0.906 0.794 0.703 0.894
KP F-stat 590.4 415.6 415.6 415.8 415.6 590.4

Panel B: Predicted Precipitation Distance
Temperature Mismatch 0.040∗∗∗ -0.104∗∗∗ -0.010 -0.217∗∗ -0.226∗∗∗ -0.136∗∗∗

(0.006) (0.027) (0.015) (0.093) (0.080) (0.028)
Observations 9,196 6,895 6,895 6,896 6,895 9,197
R-squared 0.860 0.761 0.906 0.798 0.710 0.898
KP F-stat 623.5 452.6 452.6 452.8 452.6 623.5

Panel C: Predicted Geographic Distance
Temperature Mismatch 0.036∗∗∗ -0.089∗∗∗ -0.011 -0.140 -0.144∗ -0.108∗∗∗

(0.007) (0.029) (0.015) (0.095) (0.083) (0.028)
Observations 9,196 6,895 6,895 6,896 6,895 9,197
R-squared 0.858 0.759 0.906 0.794 0.703 0.894
KP F-stat 590.8 416.1 416.1 416.4 416.1 590.9

Panel D: Both Distance Controls
Temperature Mismatch 0.040∗∗∗ -0.104∗∗∗ -0.010 -0.217∗∗ -0.226∗∗∗ -0.137∗∗∗

(0.006) (0.027) (0.015) (0.093) (0.079) (0.028)
Observations 9,196 6,895 6,895 6,896 6,895 9,197
R-squared 0.860 0.761 0.906 0.798 0.710 0.898
KP F-stat 623.9 453.3 453.3 453.5 453.3 623.9

County FE Yes Yes Yes Yes Yes Yes
Region×Decade FE Yes Yes Yes Yes Yes Yes
1880 Dep. Var. Mean 0.389 9,589 265.5 2,253,570 107.2 19,612
Notes: The sample includes counties in the contiguous U.S. with positive population in 1880, for the period 1880–1920. The year 1890 is excluded, because it is not possible to

construct the measure of climate mismatch. In columns 2–5, 1910 is also excluded, because data from the Census of Manufactures are missing for that year. Panel A reports the
2SLS estimates of Table 4. Panel B replicates Panel A controlling for predicted precipitation distance, constructed analogously to predicted temperature distance (see Section 3.1)
and entered directly as a control (i.e., we do not instrument actual precipitation distance). Panel C replicates Panel A controlling for predicted geographic distance, constructed
analogously to predicted temperature and precipitation distance. Panel D includes both controls simultaneously. All regressions include county fixed effects, census region by decade
fixed effects, and an indicator equal to one if the county was newly connected to the railroad network in the previous decade. The KP F-statistic refers to the Kleibergen–Paap
test for weak instruments. Standard errors are clustered at the county level and further adjusted using the baseline block bootstrap procedure. Significance levels: *** p<0.01, **
p<0.05, * p<0.1.
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Table D.7. Climate Mismatch and 1940 Income: Robustness

All men U.S.-born men Immigrant men

Dep. Variable: Log Average
Income

Log Hourly
Earnings

Log Average
Income

Log Hourly
Earnings

Log Average
Income

Log Hourly
Earnings

(1) (2) (3) (4) (5) (6)

Panel A: Baseline
Temperature Mismatch -0.027*** -0.053*** -0.024*** -0.050*** -0.036*** -0.061***

(0.005) (0.005) (0.005) (0.005) (0.009) (0.009)
Observations 2,890 2,867 2,890 2,867 2,752 2,707
R-squared 0.317 0.378 0.325 0.381 0.182 0.160
KP F-stat 644.98 646.36 644.98 646.36 569.77 560.23

Panel B: Predicted Migration Flows
Temperature Mismatch -0.028*** -0.054*** -0.024*** -0.051*** -0.036*** -0.061***

(0.005) (0.005) (0.005) (0.005) (0.009) (0.009)
Observations 2,890 2,867 2,890 2,867 2,752 2,707
R-squared 0.317 0.379 0.325 0.382 0.182 0.160
KP F-stat 665.98 667.61 665.98 667.61 588.58 578.87

Panel C: State FE
Temperature Mismatch -0.035*** -0.041*** -0.026** -0.033*** -0.101*** -0.093***

(0.012) (0.011) (0.011) (0.011) (0.025) (0.024)
Observations 2,889 2,866 2,889 2,866 2,751 2,706
R-squared 0.437 0.500 0.451 0.508 0.228 0.200
KP F-stat 137.63 141.34 137.63 141.34 123.00 124.24

Panel D: Trim Temperature Mismatch
Temperature Mismatch -0.033*** -0.060*** -0.029*** -0.056*** -0.038*** -0.064***

(0.006) (0.006) (0.006) (0.006) (0.011) (0.010)
Observations 2,829 2,806 2,829 2,806 2,691 2,646
R-squared 0.318 0.376 0.326 0.379 0.184 0.159
KP F-stat 534.06 534.51 534.06 534.51 460.15 450.51

Panel E: Excluding Agricultural Workers
Temperature Mismatch -0.016*** -0.044*** -0.014*** -0.042*** -0.027*** -0.060***

(0.004) (0.004) (0.004) (0.004) (0.008) (0.008)

Observations 2,890 2,867 2,890 2,867 2,727 2,672
R-squared 0.316 0.427 0.325 0.429 0.141 0.136
KP F-stat 644.98 646.36 644.98 646.36 556.05 543.56
Notes: The sample includes counties in the contiguous U.S. with positive population in 1880 for 1940. Panel A reports the 2SLS estimates of Table 5. Panel B replaces the baseline

instrument with a version that uses origin-specific migration flows predicted from weather shocks following Sequeira et al. (2020). Panel C replaces census-region fixed effects with
state fixed effects (with all other aspects of the specification unchanged). Panel D trims counties with mismatch values above the 99th percentile or below the 1st percentile. Panel
E excludes farmers. All regressions include census region fixed effects (except for Panel C) and an indicator equal to one if the county was newly connected to the railroad network
in the previous decade. The KP F-statistic refers to the Kleibergen–Paap test for weak instruments. Standard errors are clustered at the county level and further adjusted using
the baseline block bootstrap procedure. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
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Table D.8. Climate Mismatch and 1940 Income: Robustness/2

All men U.S.-born men Immigrant men

Dep. Variable: Log Average
Income

Log Hourly
Earnings

Log Average
Income

Log Hourly
Earnings

Log Average
Income

Log Hourly
Earnings

(1) (2) (3) (4) (5) (6)

Panel A: Baseline
Temperature Mismatch -0.027*** -0.053*** -0.024*** -0.050*** -0.036*** -0.061***

(0.005) (0.005) (0.005) (0.005) (0.009) (0.009)
Observations 2,890 2,867 2,890 2,867 2,752 2,707
R-squared 0.317 0.378 0.325 0.381 0.182 0.160
KP F-stat 644.98 646.36 644.98 646.36 569.77 560.23

Panel B: 1880 Immigrant Share
Temperature Mismatch -0.029*** -0.056*** -0.028*** -0.054*** -0.014 -0.051***

(0.005) (0.005) (0.005) (0.005) (0.009) (0.009)
Observations 2,288 2,270 2,288 2,270 2,176 2,140
R-squared 0.399 0.434 0.413 0.440 0.158 0.135
KP F-stat 787.27 778.74 787.27 778.74 680.14 660.32

Panel C: 1880 Non-Ag Share
Temperature Mismatch -0.038*** -0.065*** -0.037*** -0.063*** -0.020** -0.057***

(0.004) (0.005) (0.004) (0.005) (0.009) (0.009)
Observations 2,299 2,281 2,299 2,281 2,184 2,148
R-squared 0.472 0.512 0.483 0.520 0.171 0.153
KP F-stat 700.24 691.59 700.24 691.59 597.50 577.79

Panel D: Frontier Experience
Temperature Mismatch -0.019*** -0.048*** -0.015*** -0.044*** -0.036*** -0.060***

(0.005) (0.005) (0.005) (0.005) (0.009) (0.009)
Observations 2,845 2,822 2,845 2,822 2,710 2,666
R-squared 0.347 0.396 0.356 0.400 0.175 0.156
KP F-stat 591.50 590.85 591.50 590.85 534.69 525.25

Panel E: All Controls
Temperature Mismatch -0.034*** -0.063*** -0.032*** -0.060*** -0.020** -0.057***

(0.005) (0.005) (0.005) (0.005) (0.009) (0.009)

Observations 2,271 2,253 2,271 2,253 2,161 2,125
R-squared 0.484 0.513 0.497 0.520 0.173 0.158
KP F-stat 706.78 696.77 706.78 696.77 624.97 606.73
Notes: The sample includes counties in the contiguous U.S. with positive population in 1880 for 1940. Panel A reports the 2SLS estimates of Table 5. Panels B–D add controls

for: (i) the 1880 immigrant population share (Panel B), (ii) the 1880 non-agricultural employment share (Panel C), and (iii) total frontier experience from Bazzi et al. (2020)
(Panel D). Panel E includes all three controls jointly. All regressions include census region fixed effects and the year in which a county was first connected to the railroad. The
KP F-statistic refers to the Kleibergen–Paap test for weak instruments. Standard errors are clustered at the county level and further adjusted using the baseline block bootstrap
procedure. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
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Table D.9. Climate Mismatch and 1940 Income: Robustness/3

All men U.S.-born men Immigrant men

Dep. Variable: Log Average
Income

Log Hourly
Earnings

Log Average
Income

Log Hourly
Earnings

Log Average
Income

Log Hourly
Earnings

(1) (2) (3) (4) (5) (6)

Panel A: Baseline
Temperature Mismatch -0.027*** -0.053*** -0.024*** -0.050*** -0.036*** -0.061***

(0.005) (0.005) (0.005) (0.005) (0.009) (0.009)
Observations 2,890 2,867 2,890 2,867 2,752 2,707
R-squared 0.317 0.378 0.325 0.381 0.182 0.160
KP F-stat 644.98 646.36 644.98 646.36 569.77 560.23

Panel B: Predicted Precipitation Distance
Temperature Mismatch -0.021*** -0.050*** -0.016*** -0.046*** -0.056*** -0.075***

(0.006) (0.006) (0.006) (0.006) (0.011) (0.010)
Observations 2,890 2,867 2,890 2,867 2,752 2,707
R-squared 0.324 0.382 0.334 0.386 0.195 0.163
KP F-stat 479.86 481.01 479.86 481.01 427.07 422.70

Panel C: Predicted Geographic Distance
Temperature Mismatch -0.033*** -0.055*** -0.031*** -0.053*** -0.020* -0.045***

(0.007) (0.007) (0.007) (0.007) (0.012) (0.012)
Observations 2,890 2,867 2,890 2,867 2,752 2,707
R-squared 0.317 0.379 0.325 0.381 0.184 0.162
KP F-stat 435.50 436.78 435.50 436.78 395.34 390.41

Panel D: Both Distance Controls
Temperature Mismatch -0.026*** -0.052*** -0.023*** -0.049*** -0.042*** -0.060***

(0.008) (0.008) (0.008) (0.008) (0.013) (0.013)

Observations 2,890 2,867 2,890 2,867 2,752 2,707
R-squared 0.324 0.383 0.334 0.386 0.197 0.166
KP F-stat 315.69 317.43 315.69 317.43 284.52 283.42
Notes: The sample includes counties in the contiguous U.S. with positive population in 1880 for 1940. Panel A reports the 2SLS estimates of Table 5. Panel B replicates Panel A

controlling for predicted precipitation distance, constructed analogously to predicted temperature distance (see Section 3.1). Panel C replicates Panel A controlling for predicted
geographic distance, constructed analogously to predicted temperature and precipitation distance. Panel D includes both controls simultaneously. All regressions include census
region fixed effects and the year in which a county was first connected to the railroad. The KP F-statistic refers to the Kleibergen–Paap test for weak instruments. Standard errors
are clustered at the county level and further adjusted using the baseline block bootstrap procedure. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
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E A Simple Two-Sector Model

This appendix presents a highly stylized model that formalizes the mechanisms discussed in
Section 3.

Environment. A county is endowed with a fixed labor force L̄, allocated between agriculture
(A) and manufacturing (M):

LA + LM = L̄.

Let δ denote the average climate mismatch (i.e., the absolute difference in temperature) between
local conditions and the climates of resident workers. Mismatch weakly reduces effective labor
input in sector s ∈ {A, M} through ms(δ), where ms(δ) ≤ 0.

Technology. Agriculture uses land T and manufacturing uses capital K. Output in each
sector is Cobb–Douglas:

YA = AA [mA(δ)LA]αT 1−α, (8)

YM = AM g(YA) [mM(δ)LM ]βK1−β. (9)

The term g(YA) captures input–output linkages: higher agricultural output boosts manufac-
turing productivity such that g′(YA) > 0.

Sectoral wages equal marginal products:

wA = αAAmA(δ)αLα−1
A T 1−α, (10)

wM = βAMg(YA)mM(δ)βLβ−1
M K1−β. (11)

Labor is perfectly mobile across sectors, so wages equal marginal products in equilibrium:
wA = wM = w.

E.1 Labor Reallocation

To understand how climate mismatch affects the allocation of labor across sectors, note that
equilibrium requires equality of wages in agriculture and manufacturing. Let

F (LA, δ) ≡ wA(LA, δ) − wM(LA, δ)
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denote the wage gap. The equilibrium labor allocation solves F (LA, δ) = 0. Differentiating this
condition with respect to d gives

dLA

dδ
= − Fδ

FLA

.

Since FLA
< 0 (marginal products decline in own labor), the sign of dLA

dδ
depends entirely on

Fδ—that is, on how mismatch shifts the relative marginal products of labor in the two sectors.

Differentiating F with respect to δ gives

Fδ = αAA

(
mA(δ)LA

T

)α−1

m′
A(δ) − βAMg(YA)

(
mM(δ)LM

K

)β−1

m′
M(δ)

− AMmM(δ)β
(

LM

K

)β−1
g′(YA)∂YA

∂δ
(12)

Three forces shape the sign of Fδ. First, mismatch directly reduces agricultural labor productiv-
ity. Because agriculture relies heavily on climate-specific human capital, even modest mismatch
can lower the marginal product of labor in this sector. This tends to lower the agricultural wage
relative to the manufacturing wage, pushing labor out of agriculture.

Second, mismatch may reduce productivity in manufacturing, though the degree of sensitiv-
ity may differ across sectors. If manufacturing is also climate-sensitive, mismatch lowers its
marginal product of labor as well, raising the relative attractiveness of agriculture. This pushes
labor in the opposite direction.

Third, input–output linkages propagate agricultural shocks into manufacturing. Because local
manufacturing productivity depends on agricultural output through g(YA), any decline in YA

induced by mismatch (see Section E.2) reduces manufacturing productivity. This indirect
channel again raises agricultural wages relative to manufacturing wages, counteracting the
initial outflow of labor from agriculture.

Taken together, these forces imply that the effect of mismatch on labor allocation is theoretically
ambiguous. In the empirically relevant case we emphasize in the main text, agriculture is
sufficiently more climate-sensitive than manufacturing and input–output linkages are not strong
enough to overturn this:

|m′
A(δ)| large relative to |m′

M(δ)| and g′(YA) moderate.

Under this parametric restriction,

Fδ < 0 ⇒ dLA

dδ
< 0,

dLM

dδ
> 0,
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so climate mismatch reallocates labor from agriculture to manufacturing.

E.2 Output

Agriculture. Agricultural output depends on effective labor input mA(δ)LA. Differentiating
ln YA yields

d ln YA

dδ
= α

m′
A(δ)

mA(δ) + α
d ln LA

dδ
.

The first term reflects the direct effect of mismatch on agricultural productivity, which is
strongly negative given the high climate sensitivity of the sector. The second term captures la-
bor reallocation. Under our maintained assumption that the direct productivity loss dominates
labor-adjustment forces, agricultural output declines with mismatch. Thus,

dYA

dδ
< 0.

Manufacturing. In addition to effective labor, manufacturing output depends on agricultural
output through the linkage g(YA). Differentiating ln YM gives

d ln YM

dδ
= β

m′
M(δ)

mM(δ) + β
d ln LM

dδ
+ g′(YA)

g(YA)
dYA

dδ
.

The first term reflects direct climate sensitivity in manufacturing, which is small but weakly
negative. The second term captures the inflow of labor into manufacturing, which pushes output
upward. The third term captures the spillover from agriculture and is negative because g′(YA) >

0 and we have established dYA

dδ
< 0. Hence, the net effect of mismatch on manufacturing output

is ambiguous.

E.3 Wages

Mismatch affects wages through its impact on effective labor productivity and through the
reallocation of workers across sectors. Given the comparative static results above—namely,
that mismatch reduces agricultural productivity, draws labor out of agriculture, and induces
a corresponding inflow into manufacturing—we can characterize the wage responses in each
sector.

Agriculture. Agricultural wages depend on both the effective productivity of agricultural
workers and the amount of labor employed in the sector. Differentiating the expression for wA
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yields
∂ ln wA

∂δ
= α

m′
A(δ)

mA(δ) + (α − 1)d ln LA

dδ
.

The first term is strictly negative because agricultural productivity declines with mismatch. The
second term is positive under our maintained assumption that mismatch reduces agricultural
employment (i.e., dLA/dδ < 0), which raises marginal products in a concave production tech-
nology. These two forces work in opposite directions; as a result, the net effect on agricultural
wages is ambiguous.

Manufacturing. Manufacturing wages respond to mismatch through three channels:

d ln wM

dδ
= β

m′
M(δ)

mM(δ) + g′(YA)
g(YA)

dYA

dδ
+ (β − 1)d ln LM

dδ
. (13)

The first term reflects the direct climate sensitivity of manufacturing and is weakly negative.
The second term captures input–output spillovers: because g′(YA) > 0 and we have established
dYA

dδ
< 0, agricultural decline reduces manufacturing productivity, making this term negative as

well. The final term is also negative: mismatch induces an inflow of labor into manufacturing
(dLM/dδ > 0), and with β < 1, this lowers marginal products. Under the parametric restric-
tions used throughout this appendix, all three forces move manufacturing wages in the same
direction. Hence,

dwM

dδ
< 0.

E.4 Additional predictions

Farmland. Let pA denote the price of agricultural output and let rT be the rental rate of land.
The first-order condition for land in the agricultural sector implies

rT = (1 − α) pAAA(mA(δ)LA)αT −α.

Solving for land demand yields

T (δ) =
(

(1 − α)pAAA

rT

)1/α

mA(δ) LA(δ). (14)

The effect of mismatch on farmland use therefore depends on how mismatch alters both effec-
tive labor productivity and the amount of labor employed in agriculture. Under the assumption
that mismatch reduces agricultural productivity and induces an outflow of labor from agricul-
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ture—both mA(δ) and LA(δ) decline with mismatch, farmland demand falls as well:

dT

dδ
< 0.
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