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Abstract

Motivated by the rise of artificial intelligence (AI), we set up a quantitative general-
equilibrium model of the labor market impact of occupation-specific technical change.
The highly tractable model crystallizes how three fundamental forces shape the im-
pact of technical change on the occupational wage distribution: the input substitu-
tion elasticity, the final demand elasticity, and the labor supply (reallocation) elastic-
ity. The difference between the former two elasticities determines whether machines
and workers are gross complements, while the reallocation elasticity governs the
magnitude of the distributional effects. We estimate the reallocation elasticities from
group-by-occupation specialization changes, allowing for asymmetric reallocation
and associated ripple effects on wages across occupations. After combining these
estimates with externally disciplined demand and substitution parameters, as well
as AI exposure measures, we shed light on the aggregate and distributional effects of
occupation-specific advances in AI: wages in administrative services grow the least,
ripple effects on less exposed occupations are substantial, AI modestly compresses
the returns to education, and, on average, disproportionately benefits lower-income
groups.
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1 Introduction

Technological change has long reshaped work through occupation-specific channels. Ev-
ery wave of labor-saving innovation revives the now familiar tension between techno-
optimists, who emphasize productivity gains, and techno-pessimists, who warn of job
displacement and income loss. History suggests both forces often operate simultane-
ously. During the First Industrial Revolution, for instance, mechanisation displaced
skilled artisans such as the Luddites, while others benefited from cheaper and more
abundant textiles. A similar pattern emerged in the late twentieth century, when com-
puterization reduced employment in routine occupations, including administration and
bookkeeping. More recently, robotization has transformed manual production, and ad-
vances in generative artificial intelligence, in particular large language models (LLMs),
have renewed job security concerns among programmers and other knowledge work-
ers. These episodes underscore that the incidence of technological change is inherently
occupational (see, e.g., Burstein, Morales, and Vogel 2019; Caunedo, Jaume, and Keller
2023; Feigenbaum and Gross 2024). Understanding this heterogeneity, in turn, is critical
to characterize the incidence of gains and losses from new technologies, in the absence
of redistribution.

This paper studies how occupation-specific technical change affects labor market out-
comes in general equilibrium. The framework is simple and tractable, but designed to
be portable across settings by focusing on a limited set of generally-applicable mecha-
nisms. The model’s key feature is an explicit and transparent joint adjustment of labor de-
mand and labor supply to occupation-level technology shocks. The extent of worker dis-
placement depends, of course, on the nature of the labor-demand response: specifically,
whether substitution or scale effects dominate. Critically, the labor-demand response is
just one side of the story, since workers reallocate in response to shifts in labor demand,
dampening the impact of the shock for the stayers in their origin occupation and generat-
ing ripple effects on wages in other occupations. The interactions between labor demand
and supply therefore jointly determine both the magnitude of displacement among af-
fected workers and the impact on the overall distribution of wage changes. Since the
model also tracks the productivity gains associated with technical change, it delivers a
unified mapping from occupation-level shocks to aggregate outcomes and distributional
incidence.

We parsimoniously integrate the above mechanisms in the framework through a con-
cise set of elasticities. On the labor-demand side, we incorporate the fundamental inter-
play between input substitution and scale effects. Here, the within-occupation substi-
tution elasticity (σo) governs whether new technologies substitute for or complement
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workers. This degree of substitutability is a critical aspect of any labor-market analy-
sis of technical change. Moreover, our formulation accommodates the full range from
almost perfect substitutability to complementarity. This flexibility matters, since some
technologies, including LLMs, may complement labor in some occupations while substi-
tuting for it in others.

In turn, the final-demand elasticity ψ (in absolute value) determines how lower unit
costs translate into expenditure on an occupation’s output: a classic scale effect that can
amplify or offset the within-occupation substitutability (Hicks, 1932; Robinson, 1933).
Indeed, even if improved equipment is a substitute for workers, overall employment
in an occupation might still increase if demand for the occupation’s output picks up
sufficiently.

On the labor-supply side, reallocation elasticities capture how easily workers move
across occupations – a force critical for governing any unequal effects associated with
worker displacement. Indeed if workers are equally talented in all occupations, labor
displacement in one occupation is irrelevant from a distributional perspective. We micro-
found the reallocation elasticities in the dispersion of workers’ comparative advantage:
with low dispersion, workers reallocate easily and distributional effects are small; with
stronger dispersion, reallocation is costly and effects are larger. Assuming Fréchet het-
erogeneity in abilities yields a constant reallocation elasticity (Lagakos and Waugh, 2013),
spanning the extremes from perfectly elastic to perfectly inelastic occupational labor sup-
ply. Furthermore, to capture asymmetric mobility, we allow different elasticities within
and across nests of occupations, κ and µ, which generates differential wage spillovers
(or ripple effects) when displaced workers disproportionately enter some occupations
rather than others (Acemoglu and Restrepo, 2022; Lorentzen, 2024). Incorporating these
asymmetries is therefore critical for capturing the uneven distributional implications of
worker displacement.

This concise, tractable, and flexible combination of labor demand and supply allows
crystallizing how capital-embodied technical change influences the distribution of rela-
tive wages. To inspect the central mechanisms, we first focus on a simplified case with a
single reallocation elasticity κ and a fixed substitution elasticity σ. In that setup, we show
that the log change in the relative wage of an exposed occupation vis-à-vis any other oc-
cupation is proportional to the log change in their relative unit costs, with elasticity

σ − ψ

σ + κ− 1
.

The numerator is the net demand force, measuring gross substitutability between work-
ers and machines. If input substitution dominates (σ > ψ), a technology-induced cost de-
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cline in o reduces that occupation’s relative wage; if scale expansion dominates (ψ > σ),
the relative wage will rise even when the cost share of labor falls (σ > 1). In the de-
nominator, the reallocation elasticity governs the magnitude of the distributional effects:
these are strongest when κ→ 1 (specific factors), while there is no wage inequality when
κ→ ∞ (workers are perfectly mobile); as in Galle, Rodrı́guez-Clare, and Yi (2023).

We use simulations to further illustrate the mechanisms of the model and which dis-
tributional patterns it can capture. The starting point is a productivity shock to machines
in a specific occupation, examined for varying elasticities (σ, ψ, κ, µ). In addition to visu-
alizing the above result, we illustrate the feedback loop between production cost, input
prices, final goods prices, and expenditure shares. For instance, we show that the feed-
back loop between production, wages, and demand may lead to a benign labor-share
decline: a higher final-demand elasticity ψ puts upward pressure on wages, which leads
to input substitution away from labor. This potential for a benign labor-share decline
appears underemphasized in the literature (see, e.g., Karabarbounis 2024). A second in-
teresting pattern is that the expenditure share on an occupation, a final-demand object,
grows as the input-substitution elasticity (σ) rises, driven by the latter’s downward pres-
sure on an occupation’s wage. The two previous patterns are both intuitive, but are only
uncovered when wages are occupation-specific—a central feature of our model, incorpo-
rated in a tractable and transparent manner.

Finally, the same exercises overturn a common presumption that machine-augmenting
shocks cannot produce falling real wages for important demographic subgroups. In-
deed, our model does obtain wage stagnation or declines for plausible degrees of gross
substitutability, and this pattern is further amplified by limited occupational mobility.
This way, the simulations are able to capture the canonical patterns of wage polarization
and clarify when exposure to technical change yields displacement versus expansion, or
wage declines versus wage growth.

After illustrating the model, we estimate the reallocation elasticities with a trans-
parent IV approach. In particular, we estimate the within-nest (κ) and across-nest (µ)
elasticities, which are critical for governing the ripple effects on wages, and we do so
separately for young, middle-aged, and old workers. Here, nests are defined as sets of
routine and non-routine intensive occupations, based on the dichotomy of Autor and
Dorn (2013). Aligned with common intuitions, we find that reallocation is typically more
elastic within than across nests, and that worker mobility tends to fall with age.

Because our framework is organized around a few interpretable elasticities, the ma-
chinery is portable to various settings, including historical waves of technical change,
such as computerization (Burstein et al., 2019) or capital-embodied technical change
more broadly (Caunedo et al., 2023). To illustrate the relevance of the model, we use
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it to shed light on the GE impact of occupation-specific advances in artificial intelligence
(AI), more specifically LLMs such as ChatGPT, Claude, or various others. Given the
very recent rise of these models, an estimation of the model’s parameters based on LLM-
induced shocks is outside the scope of the current paper. Nevertheless, whenever pos-
sible, our calibration builds on findings from the emerging reduced-form literature on
this topic, which finds displacement of workers in highly exposed occupations (see, e.g.,
Brynjolfsson, Chandar, and Chen, 2025), in particular in occupations where LLM use is
more automation rather than augmentation oriented (measured as in Handa, Tamkin,
McCain, Huang, Durmus, Heck, Mueller, Hong, Ritchie, Belonax, et al., 2025).

Our findings are intuitive and matter economically. First, all occupations experience
real wage gains, driven by the broad applicability of LLMs across the majority of occupa-
tions (Eloundou, Manning, Mishkin, and Rock, 2024). Second, although everyone gains
in absolute terms, scientific technicians and workers in administrative services gain the
least. Both occupations combine high exposure to LLMs with fairly high gross substi-
tutability of LLMs with human labor. Third, our estimated labor-supply elasticities im-
ply that employment reallocation is a stronger margin of adjustment than inequality in
wage changes. In other words, the ripple effects on wages from high to low-exposed oc-
cupations are substantial and compress the unequal effects of the introduction of LLMs.

To offer a more comprehensive analysis of the labor market impacts of technical
change, we extend our model with frictional unemployment and intensive margin ad-
justment, following Kim and Vogel (2021). In this setup, we obtain an aggregate real
income growth of 8.7%. Approximately 20% of this growth is accounted for by the in-
crease in hours worked, while 30% is driven by a rise in the employment rate. Notably,
income changes resulting from the rise of LLMs show a pro-poor distribution across de-
mographic groups. Specifically, income changes exhibit a negative correlation of 27%
with initial income levels. Moreover, AI has a modest negative effect on the education
premium, with high-school dropouts experiencing the largest gains in real income. These
findings indicate that LLMs have a labor market impact that strongly contrasts with pre-
vious episodes of “skill-biased” technical change.

Literature Our study is inspired by seminal papers on the distributional effects of tech-
nical change in a setting with labor reallocation (e.g., Autor, Levy, and Murnane, 2003;
Acemoglu and Restrepo, 2022). We generalize these papers by considering the full spec-
trum of substitutability between human and machine labor instead of focusing only on
perfect substitutability. Moreover, our Roy-Fréchet setup tractably generalizes the clas-
sic Ricardo-Roy reallocation framework with step-wise occupational labor supply func-
tions (Acemoglu and Autor, 2011; Acemoglu and Restrepo, 2022) by allowing for strictly
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upward-sloping labor supply to any discrete number of occupations.1 2 Finally, in con-
trast to models with two or three worker groups (e.g., low, middle, and high skill as in
Acemoglu and Autor, 2011), we allow for any number of groups, allowing for a detailed
demographic breakdown of occupational specialization.

This model of occupation-specific technical change with tractable labor reallocation
across any number of occupations builds on the foundational work of Burstein et al.
(2019), and Caunedo et al. (2023) – henceforth BMV and CJK respectively – as well as on
the closely-related framework in Galle and Lorentzen (2024).3 In contrast to BMV who
use Cobb-Douglas, CJK has a general CES production function at the occupation level.
This way, the CJK framework nests workhorse models such as Katz and Murphy (1992);
Krusell, Ohanian, Rı́os-Rull, and Violante (2000) and Acemoglu and Autor (2011).4

In this paper, we inspect the interplay between the central mechanisms in the BMV-
CJK model. First, we pin down how the impact of technical change critically depends
on the confluence of the input substitution, final demand, and labor supply elasticities.
Second, we provide detailed quantitative comparative statics on the impact of these key
elasticities. And third, we apply our framework to the rise of generative AI, more specif-
ically LLMs, to shed light on the GE labor market impacts of this new and growing
technology.

We also further generalize the BMV-CJK model by allowing for ripple effects arising
from asymmetric reallocation. Such ripple effects have been extensively documented in
the local labor market literature (Beaudry, Green, and Sand, 2012; Fortin and Lemieux,
2015; Tschopp, 2015), and have recently been incorporated in labor-market models of
technical change (Acemoglu and Restrepo, 2022; Ocampo Dı́az, 2022).5 In the context of

1This way, we span the two extremes of perfectly inelastic and perfectly elastic labor supply, considered
in Caselli and Manning (2019), and allow for a quantitative analysis of the intermediate cases.

2Recent related work employing a Roy (1951) model includes Gola (2021), who examines how the in-
terplay of Roy-type selection across sectors and within-sector firm heterogeneity shapes the distributional
effects of technical change, and Bernon and Magerman (2024), who study the role of the input-output net-
work in affecting income inequality after sector-specific productivity shocks.

3BMV and CJK assume CES preferences, while Galle and Lorentzen (2024) has Cobb-Douglas prefer-
ences across sectors and includes a gravity framework for world trade. This enables Galle and Lorentzen
(2024) to compare the impact of trade and automation on US manufacturing. In a recent contribution,
Adachi (2025) also examines the interplay of robotization and trade and estimates the input substitution
elasticity between robots and labor. Relatedly, Berlingieri, Boeri, Lashkari, and Vogel (2024) employ a flex-
ible framework to study how skill-bias in productivity at the firm level aggregates up to aggregate capital-
skill complementarity. In the context of migration instead of technical change, Burstein, Hanson, Tian, and
Vogel (2020) set up a model closely related to ours.

4Another closely related paper is Humlum (2022), who examines the labor market impacts of robotiza-
tion. Compared to Humlum (2022), the model in our paper is more stylized, and we put heavy emphasis on
understanding the interplay of the model’s elasticities.

5Relatedly, minimum wage regulations have also been shown to generate substantial wage spillover
effects (Giupponi, Joyce, Lindner, Waters, Wernham, and Xu, 2024), as has the decentralization of one occu-
pation’s wage determination (Willén, 2021).
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displacement after an oil price drop, Lorentzen (2024) combines clean reduced-form evi-
dence with novel structural methods to show that asymmetric ripple effects significantly
influence the wage distribution in Norway.6

Finally, by dividing the population of workers into any finite number of demographic
groups (Hsieh, Hurst, Jones, and Klenow, 2019), this type of model yields detailed in-
sights on between-group inequality. Indeed, closely related to BMV, the model can yield
insights on the college premium or the (non-causal) “returns to education,” the gender
wage gap, the impact of technical change for older versus younger workers, or any com-
bination of the above. Two contributions of our paper are to, first, further generalize this
versatile model, and second, to shed light on the underlying mechanisms in the model.

2 Model

2.1 Setup

We write down a model with occupation-specific labor supply and demand. Labor de-
mand is governed by a CES demand function across occupations, and a CES production
function in each occupation, with machines and labor as inputs. Labor supply across oc-
cupations has a nested constant-elasticity setup, arising from a Roy-Fréchet foundation.
The economy is perfectly competitive.

Labor demand The final good is produced by aggregating occupation outputs with a
CES technology (as in BMV):

Ỹ =

[∑
o

ν
1
ψ
o Y

ψ−1
ψ

o

] ψ
ψ−1

,

where Yo is the output produced by occupation o, νo is a demand shifter for this occupa-
tion, and ψ > 0 is the elasticity of substitution across occupations’ output. The final good
has a price P . It is used both for consumption and to produce machine input. We model
machines as linearly produced from the final good, so the unit price of machine input is
P and total machine use is M =

∑
oMo.

6Specifically, Lorentzen (2024) draws on reduced-form microdata evidence and presents a log-normally
distributed Roy model to generate rich reallocation patterns. In this paper, we focus on constant reallocation
elasticities within and across nests, as we prioritize tractability in a less rich but more transparent frame-
work. These constant reallocation elasticities arise from a Roy-type discrete choice model with extreme-
value distributed heterogeneity (Lagakos and Waugh, 2013; Curuk and Vannoorenberghe, 2017), where we
introduce a nesting structure similar to Kim and Vogel (2021); Zárate (2022) and Galle et al. (2023) to capture
asymmetric reallocation within versus across nests.
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Each occupation produces an output

Yo =

[
δ

1
σo
o (γoMo)

σo−1
σo + (1− δo)

1
σoZ

σo−1
σo

o

] σo
σo−1

,

with inputsMo as machines and Zo the effective units of labor supplied to an occupation,
and with σo the elasticity of substitution between machines and labor.7 Below, we will
focus on technical change as shocks to γo, which is occupation-specific productivity of
machines.

Given this setup, the price of machines P , and the wage per effective unit of labor in
an occupation wo,8 the marginal cost for a unit of Yo is

Po =
[
δo(P/γo)

1−σo + (1− δo)w
1−σo
o

] 1
1−σo .

Cost minimization then implies that the cost share of labor in production of Yo is

ωo ≡
woZo
PoYo

= (1− δo)

(
wo
Po

)1−σo
. (1)

Demand for occupation o is given by Yo = νo (Po/P )
−ψ Ỹ , with P ≡

[∑
o νoP

1−ψ
o

] 1
1−ψ .

This implies that the expenditure share on goods from occupation o is:

βo ≡
PoYo

PỸ
= νo

(
Po
P

)1−ψ
. (2)

In turn, this implies that labor demand in occupation o is given by ωoβoPỸ /wo.

Labor supply In our Roy model, workers are heterogeneous in their comparative ad-
vantage acrossO occupations. The set O ≡ {1, ..., O} of occupations is partitioned intoM
sets (or nests) with O = ∪mOm. Below, this nesting structure will be important for differ-
ential reallocation patterns within versus across nests. In addition, workers are split into
demographic groups of workers (as in BMV and Hsieh et al. (2019)), where the definition
of a group can be based on any pre-determined demographic variable – entailing that
workers cannot switch group. This way, we can examine between-group inequality. In
practice, we haveG groups of workers, indexed by g; Lg denotes the measure of workers
in a group.

7As in Burstein et al. (2020), the equilibrium conditions we derive can also be obtained from a setup
with perfect substitutability between machines and workers at the task level, where the substitutability at
the occupation level arises from the dispersion in comparative advantage between the two inputs.

8Factor demand is: Mo =
δoγ

σo−1
o P−σoYo

[δo(P/γo)1−σo+(1−δo)w1−σo
o ]

σo
σo−1

, Zo =
(1−δo)w−σo

o Yo

[δo(P/γo)1−σo+(1−δo)w1−σo
o ]

σo
σo−1

.
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Labor supply follows a Roy–Fréchet structure with nests. Conceptually, workers first
choose a nest (e.g., routine vs. non-routine) based on nest-level comparative advantage,
and then choose an occupation within that nest based on occupation-level comparative
advantage. This structure yields two distinct reallocation elasticities: within-nest mobil-
ity (κ) and across-nest mobility (µ).

Indeed, workers within each group differ in their productivity across occupations. To
allow for flexibility in reallocation patterns, each worker’s productivity is determined in
two steps (following Galle et al. (2023), Section 8).9 In step 1, workers learn about their
nest-specific productivity zOm and decide in which nest to work. Then, in step 2, they
learn about their occupation-specific productivity zo. Total productivity of a worker in
an occupation o ∈ Om is therefore zozOm . Here, all productivity draws zo in nest Om

are drawn independently from a nest-specific Fréchet distribution with shape parameter
κgm and scale parameters Ãgo. In turn, the nest-specific productivities are also drawn
independently from a Fréchet distribution, but now with shape parameter µg and scale
parameters Agm.

Workers’ earnings are given by wozozOm : the product of their productivity with the
occupation-specific wage wo. Workers sort into the occupation where they obtain the
highest earnings.

We work backwards and start in step 2. Conditional on sorting in nest Om, the share
of workers in group g that work in occupation o ∈ Om is

πgo|Om =
Ãgow

κgm
o∑

n∈Om Ãgnw
κgm
n

. (3)

This expression clarifies that the Fréchet scale parameters govern the cross-group pattern
of comparative advantage, while the shape parameter (κgm) becomes the within-nest
reallocation elasticity.

Define a group’s nest-specific wage index as

Φ̃gm =

( ∑
n∈Om

Ãgnw
κgm
n

)1/κgm

. (4)

Standard properties of the Fréchet imply that the resulting supply of effective labor units
to an occupation is

9Isomorphic results can be achieved using productivity draws from a nested Fréchet distribution (see
e.g., Zárate (2022)). However, our two-step framework allows the cross-nest reallocation to be more elastic
than within-nest reallocation, which is not allowed when assuming a nested Fréchet structure, but which is
sometimes required by the data (see below).
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Zgo = z̄Om ζ̃gm
Φ̃gm
wo

πgo|OmLg, (5)

where z̄Om is the average nest-specific productivity of workers sorting into nest m, and
ζ̃mg ≡ Γ(1− 1/κgm). As a result, for those workers sorting into nest m, average earnings
per worker are constant across occupations, namely

woZgo
πgo|OmLg

= z̄Om ζ̃gmΦ̃gm.

This result also clarifies that the earnings shares across occupations equal employment
shares.

In step 1, workers sort across nests based on their expected earnings in each nest:
zOm ζ̃gmΦ̃gm. This results in an analogous share expression as above:

πgOm =
Agm

(
ζ̃gmΦ̃gm

)µg
∑

m′ Agm′

(
ζ̃gm′Φ̃gm′

)µg , (6)

where πgOm is the share of workers in nest m and the shape parameter µg has become
the cross-nest reallocation elasticity. In turn, the combination of (3) and (6) implies that
the unconditional employment share in an occupation is

πgo = πgo|OmπgOm . (7)

Analogous to the within-nest wage index, it is useful to define the cross-nest wage index
as

Φg ≡

(∑
m

Agmζ̃
µg
g Φ̃

µg
gm

)1/µg

. (8)

Still following an analogous logic as in (5), a group’s total earnings is now Ig ≡
∑

owoZgo =

ζgΦgLg, with ζg ≡ Γ(1− 1/µg). Defining a group’s average income as ig ≡ Ig/Lg = ζgΦg,

we see that the wage index Φg summarizes all the endogenous variation in average in-
come across groups.

Labor Market Equilibrium The equilibrium between labor demand and labor supply
in each occupation is given by ωoβoPỸ = woZo, with Zo ≡

∑
g Zgo. But since woZgo =

πgoIg and PỸ =
∑

o

∑
g πgoIg/ωo, we can write this equilibrium as:
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ωoβo
∑
n

∑
g

πgnIg
ωn

=
∑
g

πgoIg. (9)

Counterfactuals We are interested in the counterfactual equilibrium after the occur-
rence of technology shocks, which we solve for using Jones’s exact hat algebra, where
x̂ ≡ x′/x. We will primarily focus on capital-embodied technology shocks (γ̂o), but also
allow for labor-eliminating shocks (δ̂o), or labor supply shocks ( ˆ̃Ago) – all specific to an
occupation, or nest when considering Âgm. The counterfactual labor market equilibrium
is given by

ωoβoω̂oβ̂o
∑
n

∑
g

πgnπ̂gnIg Îg
ωnω̂n

=
∑
g

πgoπ̂goIg Îg. (10)

This is a system of O equations that allow us to solve forO unknowns: the wage changes
ŵo. Setting the final good price as the numeraire, all the hat variables are then a function
of the data, the productivity shock γ̂o and the wage changes. We document the expres-
sions for all the hat variables in Appendix Section A.1. For future purposes, note that the
shift in occupation-specific labor demand is captured by ω̂oβ̂o, since the summation term
on the left hand side is a sum across all occupations.

2.2 Technical change and the wage distribution

Our focus is on the impact of capital-embodied technical change (γ̂o), which exogenously
shifts labor demand. To crystallize the impact of these shifts in labor demand on the wage
distribution, we consider a simplified setting with a single group, a single nest (G = 1),
allowing us to drop the subscript g, and a single value for the input substitution elasticity
σo = σ.

Proposition 1. Assume there is a single group and a single nest, with fixed reallocation elasticity
κ and a fixed input substitution elasticity σ. If there are only capital-embodied technology shocks
(γ̂o), then log relative wage changes satisfy

ln

(
ŵo
ŵn

)
=

(
σ − ψ

κ+ σ − 1

)
ln

(
P̂o

P̂n

)
. (11)

The short, three-step proof appears in Appendix Section A.2.10

10In their analysis of the labor market impact of immigration, Burstein et al. (2020) show that a similar
elasticity governs the relative wage responses to immigrant inflows in a locality. Their model is similar to
ours, featuring upward-sloping labor supply and a comparable final-demand structure. However, they use
immigrant and native workers as inputs in occupational production, while our model uses workers and

10



Intuition Proposition 1 follows from the counterfactual labor market equilibrium in
Equation (10). First, on the labor demand side, we obtain

ω̂oβ̂o = ŵ1−σ
o P̂ σ−ψo , (12)

which follows from combining the expressions for the labor share (1) and the expenditure
share (2), assuming δ̂o = ν̂o = 1. Second, on the labor supply side, we have π̂o = ŵκo/Î

κ.
Combining these labor demand and labor supply expressions in (10), while abstracting
from aggregate terms, delivers

ŵ1−σ−κ
o ∝ P̂ σ−ψo , (13)

which yields Equation (11) after taking logs and comparing two occupations.11

In this expression, P̂o incorporates the technology shock. This shock affects labor
demand through two mechanisms (see Equation (12)). First, higher γo lowers Po, the
overall cost of production, thereby affecting labor’s cost share—an effect governed by the
elasticity of input substitution σo. Second, lower Po affects demand for the occupation’s
output—a scale effect governed by the final demand elasticity ψ.

In combination, σ − ψ determines whether machines and labor are gross substitutes,
where the input substitution effect dominates the scale effect (σ > ψ), or gross comple-
ments (σ < ψ). Indeed, when machines and labor are gross substitutes, the dominant
input substitution effect ensures that the decline in P̂o associated with a positive produc-
tivity shock puts downward pressure on labor demand, leading to a decline in relative
wages (and vice versa in case of gross complements).

Notice that Proposition 1 implies that when the input substitution and the scale effect
exactly offset each other (i.e., when σ = ψ), there is no change in relative wages. In
this case, the term incorporating the technology shock, namely P̂ σ−ψo in Equation (12),
cancels out. Hence, there is no exogenous shock to labor demand and the labor market
remains in the initial equilibrium. The remaining common shift in real wages then arises
from the change in purchasing power.

The denominator in (11), (κ + σ − 1), regulates how strongly wages respond to de-
mand shocks, for a given degree of gross substitutability. It arises from the left hand side
of (13), which has the endogenous response in equilibrium wages. Here, a higher real-
location elasticity κ entails more elastic occupational labor supply and therefore smaller

machines.
11Why do the non-hat occupation-specific terms, namely πo and ωoβo, disappear from the Proposition

while being present in Equation (10)? This follows from the initial equilibrium (9), where with a single
group we have that πo

ωoβo
=
∑
n
πn
ωn

. This aggregate term cancels out when taking the ratio of wage changes
relative to another occupation.
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equilibrium wage changes. Finally, (σ − 1) mitigates the labor demand shock: wages
respond to this shock, leading to input substitution that partially offsets the original shift
in labor demand.

Contribution The insight in Proposition 1 lies in establishing a concise quantitative
relationship between equilibrium wages and marginal costs of production across occu-
pations, highlighting the roles of both labor supply and labor demand.12 In particular,
the proposition integrates the impact of the gross substitutability between workers and
machines, on the demand side, and of the reallocation elasticity, on the supply side, in
one expression.

The concept that wages are determined by the equilibrium between labor demand
and labor supply is at the core of labor economics. It is therefore hardly new. In the
context of capital-embodied technical change, the more specific insight that the interplay
between the input substitution elasticity and the final demand elasticity shapes wage
outcomes, dates back to at least Hicks (1932) and Robinson (1933).13 On the labor sup-
ply side then, Galle et al. (2023), among others, emphasize the quantitative role of the
reallocation elasticity in determining wage inequality. Still, the contribution of Proposi-
tion 1 lies in combining, crystallizing and quantifying these existing insights from labor
demand and labor supply.

The above reasons establish why Proposition 1 is useful. However, since it describes
a relationship between endogenous variables, namely wages and costs, it only indirectly
speaks to the impact of exogenous technology shocks. The following proposition ad-
dresses this limitation.

Proposition 2. Under the same assumptions as Proposition 1, there is a strictly decreasing rela-
tionship between occupations’ relative costs and their relative machine productivity:

P̂o

P̂n
= F

(
γ̂o
γ̂n

)
, F ′(.) < 0.

12Burstein et al. (2020) derive a related result in the context of immigration. While their framework
features native and immigrant labor as inputs, rather than machines and workers, it shares an analogous
labor supply and demand structure.

13Indeed, CJK, referring to both studies, provide the expression for the cross-price elasticity of labor
demand: how occupational labor demand responds to changes in the price of capital:

−d lnZo
d ln γo

=
κ(ψ − σ)(1− ωo)

ψ + κ+ (σ − ψ)(1− ωo)
(14)

While this expression is related, it applies to the cross-price elasticity of labor demand, and does not speak
directly about our variables of interest, namely equilibrium relative wages. Indeed, the expression for the CJK
elasticity holds locally, while Proposition 1 is a global result based on exact hat-algebra.
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Relatedly, relative equilibrium wages are decreasing in relative machine productivity when the
input substitution effect dominates the scale effect, and vice versa:

sign

(
d(ŵo/ŵn)

d(γ̂o/γ̂n)

)
= sign

(
ψ − σ

κ+ σ − 1

)
.

Hence, (ψ − σ) determines the gross complementarity of workers and machines.

The first part of Proposition 2 establishes the monotonic relationship between relative
technology shocks and relative costs–the right hand side variable in Proposition 1. The
second part then leverages this relationship to demonstrate the monotonic relationship
between relative wages and relative technology shocks.

Appendix A.3 has the proof. There, we first establish that, for a single occupation,
an increase in machine productivity (γ̂o) lowers marginal cost of production (P̂o). This
relationship is highly intuitive: since the marginal cost is a CES cost index of the cost
of machine input and the cost of labor input, the only way for marginal cost to decline
when machine productivity increases, would be when an occupation’s wage increases
substantially. Importantly though, Proposition 1 has established a monotonic relation-
ship between an occupation’s wage and its marginal cost. The proof builds on this link
to demonstrate that an occupation’s marginal cost has to fall when its machine produc-
tivity increases. Once this declining relationship is established for a single occupation, it
is straightforward to establish the relationship between the cross-occupation ratios P̂o/P̂n
and γ̂o/γ̂n, while Proposition 1 has established the relationship between relative wages
and relative costs (P̂o/P̂n).

3 Model Illustration

We now further explain and illustrate the functioning of the model using a simple base-
line case. In this scenario, we focus solely on the distribution of wage changes and
therefore consider only a single group to abstract from between-group inequality. For
simplicity, we limit the analysis to three occupations, labeled 1, 2, and 3. The first two
occupations are placed in one nest, while the third occupation is in a separate nest. The
first two occupations each have an employment and expenditure share of 10%. A capital-
embodied technology shock is applied to production in occupation 1.

Our illustrative exercise conducts comparative statics by altering one parameter value
at a time while keeping the others constant. Unless otherwise indicated, the fixed param-
eter values are ψ = 1.34, µ = 1.4, κ = 2.9, and σ = 1.95 for all occupations, which is why
the subscript on σo is dropped. For now, these values merely serve an illustrative pur-
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pose, but they are based on the calibrated values from Section 7.1.14

3.1 Role of the within- and cross-nest reallocation elasticities κ and µ

It is clear that the differences in wage changes are largest when the reallocation elastici-
ties are lowest, i.e. at their lower limit of unity. Indeed, in Figure 1, panel (a), we see that
within-nest wage change differences are largest when κ→ 1, with negative wage changes
for the directly affected occupation,15 and that cross-nest wage change differences are
largest when µ → 1 (panel b). As the within-nest reallocation elasticity grows, the rip-
ple effects on wage changes within the nest grow. Indeed, for κ → ∞, there is perfect
convergence of within-nest wage changes due to perfectly elastic reallocation within the
nest. An analogous pattern again holds across nests; conditional on κ→ ∞, there is also
perfect wage convergence across all occupations as µ→ ∞.

The Roy-Fréchet model thereby tractably spans the two extremes of perfectly immo-
bile versus perfectly mobile labor across occupations, as well as the associated impact on
the wage distribution. When labor supply becomes more elastic, the cross-occupation
differences in wage changes disappear, precisely because the ripple effects across occu-
pations are maximized. At the same time, increased discrepancies between the within
(κ) and the cross-nest (µ) reallocation elasticities sharpen the difference in which occupa-
tions are affected by the ripple effects. It is therefore critical to obtain estimates on these
two elasticities, which is our focus in the empirical section.

14Specifically, ψ = 1.34 is exactly the calibrated value, while µ = 1.4 and κ = 2.9 are the estimated values
for old workers. Finally σ = 1.95 is the mean value of the calibrated σo across occupations.

15The existing literature argues that models with factor-augmenting technological change struggle to
generate falling real wages (see e.g. Acemoglu and Restrepo (2022)). Figure 1, panel (a), provides a first
counterexample of how our model, with factor-augmenting, capital-embodied technological change, easily
generates falling real wages for the directly exposed workers.
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Figure 1: Role of the reallocation elasticities

(a) Within-nest wage convergence with κ
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(b) Cross-nest wage convergence with µ
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Notes: These figures are generated for a machine productivity shock γ̂o = 1.1 in the first occupa-
tion (solid blue line), while the other two occupations are not shocked. Occupation 2 (red dashed
line) is co-nested with 1, while occupation 3 is in the other nest (orange long-short dashed line).
In panel (a), µ = 1.4 – the default value -, while in panel (b), κ = 150, in order to focus on the
cross-nest wage change differences.

3.2 Role of input substitution elasticity (σ)

Changes in the input substitution elasticity (σ) have both standard and less standard ef-
fects on the labor market impact of technical change. First, almost by definition, input
substitution away from labor toward machines increases with σ after a positive produc-

tivity shock to machines (see Figure 2, panel a). Indeed, given that ω̂o =
(
ŵo/P̂o

)1−σ
, the

cost share of labor falls with σ when the production cost in an occupation (P̂o) declines.
Moreover, we notice that ŵo/P̂o actually falls with σ (see Appendix Figure B.1, panel a),
entailing that the endogenous wage adjustment dampens the increase in the substitution
effect.

Second, there is demand substitution toward the shocked occupation (Figure 2, panel
b), arising from the decline in the occupation’s price (Figure B.1, panel b). Interestingly,
an increase in the production-side parameter σ further strengthens this demand-side ef-
fect. Since the productivity effect is constant with σ, the output price continues to fall
due to the decline in the occupation’s wage (Figure 2, panel d), reducing the production
cost. Quantitatively, the increase in the demand substitution effect is modest, which is
due to the low elasticity of demand (ψ = 1.34). Importantly though, the increased de-
mand substitution arises from relaxing restrictive assumptions that are common in the
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automation literature.16

How does the combination of the above input substitution and demand substitution
effects shape overall changes in labor demand? The answer comes from Proposition 1,
illustrated in panel (d). When σ = ψ, the two substitution effects exactly cancel out in
their impact on relative labor demand. In that case, all occupations experience the same
real wage increase, arising from the expansion of the PPF. When σ < ψ, the shocked
occupation has an increase in relative labor demand compared to the other occupations
(panel c), and a higher relative wage (panel d). Naturally, when σ > ψ, the situation
reverses and input substitution dominates demand substitution. In the current case, we
then actually obtain negative wage changes for the directly affected occupation once σ
reaches 2.17

Ripple effects As is clear from our discussion on the role of the reallocation elasticities,
the nesting structure introduces important ripple effects of productivity shocks in one
occupation on wages in other occupations. Indeed, the wage change of the shocked
occupation “spills over” to its co-nested occupation, as is clear from panel (d), where
the wage change for the co-nested occupation lies in between the wage changes of the
shocked occupation and the other occupation.

To understand the underlying mechanisms, first focus on the case where σ < ψ and
the relative wage in this co-nested occupation is below the shocked occupation but higher
than in other occupations. Why is this? Well, when σ < ψ, the increased demand for
workers in the shocked occupation also pushes up wages in the co-nested occupation, as
workers in that latter occupation are most prone to moving to the shocked occupation
(see Appendix Figure B.1, panel c). When σ > ψ, the pattern is reversed, with a decline
in relative demand for workers in the shocked occupation, which leads to increased la-
bor supply to the co-nested occupation. As a result, the wage decline in the shocked
occupation ripples over to the co-nested occupation in terms of a reduced relative wage.

Broader GE effects For the non-shocked, non-co-nested occupation, the real wage change
increases with σ. This is due to the shocked occupation’s price falling more and more

16First, since the mechanism is driven by an increased occupation-specific wage, it does not occur in any
model with homogeneous labor (e.g. Acemoglu and Restrepo, 2018). Second, we document how the de-
mand substitution varies with σ, which is impossible to do in a model featuring only perfect substitutability
between machines and the automation-exposed labor type (e.g., Autor et al., 2003).

17Whether and for which σ the model generates negative real wage changes for a positive productivity
shock depends on how large the expenditure share is on an occupation. In the current setup, we have
low expenditure shares (=10%) for the directly affected occupation, which results in a modest aggregate
productivity increase. In contrast, when all expenditure shares are set at 1/3, we only obtain negative real
wage changes for high σ and small productivity shocks (see Appendix Figures B.3, B.4, and B.5).
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Figure 2: Role of σ

(a) The labor substitution effect
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(b) The demand effect
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(c) Labor demand change

<
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

-̂
o
$
!̂

o

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02
.̂o = 1.1 1.0 1.0

1
2
3

(d) Real wage changes
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Notes: These figures are generated for a machine productivity shock γ̂o = 1.1 in the first occupa-
tion (solid blue line), while the other two occupations are not shocked. Occupation 2 (red dashed
line) is co-nested with 1, while occupation 3 is in the other nest (orange long-short dashed line).

Panel (a) shows the change in the cost share of labor ω̂o =
(
ŵo/P̂o

)1−σ
, while panel (b) displays

the change in the expenditure share on an occupation β̂o =
(
P̂o

)1−ψ
. Next, panel (c) shows the

change in labor demand as a share of total expenditure (ω̂oβ̂o), while panel (d) depicts the real
wage changes.
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and its expenditure share increasing, which raises real wages in the other occupations.
Since real wages increase with σ, or equivalently, the final good becomes cheaper, pro-
duction substitutes away from labor in all occupations. We therefore observe a perfectly
benign decline in the labor share in the non-shocked occupations, arising from increased
real wages (see Figure 2, panel a). This effect is larger when the expenditure share on
the shocked occupation is larger (see Appendix Figure B.3). It is therefore important to
account for how technical change in one occupation may affect factor prices in other oc-
cupations when examining the root causes of declines in the labor share as in Grossman
and Oberfield (2022).

Results when σ < 1 So far, we have focused on an environment where σ > 1. How-
ever, we also perform the above comparative statics for the case with σ < 1, and obtain
analogous insights (see Appendix Figures B.6 and B.7).

3.3 Role of demand substitution elasticity (ψ)

By definition, an increased demand elasticity (ψ) leads to stronger expenditure switches
toward the good that experiences the positive productivity shock (Figure 3, panel b).
In turn, this increase in demand for output from the occupation then leads to upward
pressure on the occupation price (see Appendix Figure B.2, panel b), dampening the
increase in the expenditure share.

Since we are assuming that σ > 1, there is always a drop in the level of the labor
share, for any value of ψ (Figure 3, panel a). In addition, this supply-side substitution
effect deepens when the demand elasticity increases. Indeed, the larger is ψ, the stronger
is the demand effect (recall panel b), which puts increasingly upward pressure on the
occupation’s wage (panel d), thereby further reducing the labor share. While the decline
in the level of the labor share reflects a displacement effect from technical change, the
further decline with ψ arises from a fully benign demand-side mechanism.

Examining real wage changes in further detail (panel d), we find that for the shocked
occupation, wage changes are low, even negative, when ψ is close to unity, but become
larger and larger when ψ grows. As before, this is a reflection of the relative size of the
labor substitution effect (governed by σ) and the demand effect (governed by ψ) on net
labor demand changes (panel c). The higher ψ, the more important the demand effect
becomes relative to the substitution effect.

As was the case for σ, the wage changes from the shocked occupation continue to
ripple over to the co-nested occupation (panel d). Indeed, when ψ < σ, the relative wage
change is lower for this occupation than for the other non-shocked occupation, and this
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Figure 3: Role of ψ

(a) The labor substitution effect
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(b) The demand effect
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(c) Labor demand change
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(d) Real wage changes
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ŵ
o

0.98

0.99

1

1.01

1.02

1.03

1.04
.̂o = 1.1 1.0 1.0

1
2
3

Notes: These figures are generated for a machine productivity shock γ̂o = 1.1 in the first occupa-
tion (solid blue line), while the other two occupations are not shocked. Occupation 2 (red dashed
line) is co-nested with 1, while occupation 3 is in the other nest (orange long-short dashed line).

Panel (a) shows the change in the cost share of labor ω̂o =
(
ŵo/P̂o

)1−σ
, while panel (b) displays

the change in the expenditure share on an occupation β̂o =
(
P̂o

)1−ψ
. Next, panel (c) shows the

change in labor demand as a share of total expenditure (ω̂oβ̂o), while panel (d) depicts the real
wage changes.

turns around for ψ > σ. As a result of these relative wage changes, relative labor demand
is higher for this occupation when ψ < σ, and vice versa (panel c).

4 Taking stock and planning ahead

Before moving to the application, we take stock. This paper asks how occupation-specific
technical change affects the labor market. To answer this question, we need to under-
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stand how technical change affects the interplay of labor demand and labor supply. This
paper presents a parsimonious model that organizes this interplay around four elastici-
ties, and the resulting elasticity parameter space spans a wide range of labor market out-
comes. Indeed, the setup generalizes canonical skill-biased and polarization models, and
streamlines task-based formulations (Acemoglu and Restrepo, 2022). Propositions 1 and
2, characterize how the model’s key mechanisms determine equilibrium wage changes
and ripple effects, while the simulations illustrate how final demand, input substitution,
and reallocation interact in general equilibrium.

This class of models has been used to study computerization (BMV) or broader capital-
embodied technical change (CJK). Our version generalizes BMV on the labor-demand
side (allowing richer input substitutability as in CJK and Galle and Lorentzen (2024))
and both BMV and CJK on the labor-supply side (allowing asymmetric reallocation and
ripple effects). Next, we apply the framework to LLM adoption, mapping occupation-
level exposure into aggregate and distributional impacts across demographic groups and
quantifying effects on returns to education, gender earnings gaps, and age-earnings pro-
files. The result is a single, transparent machinery that links occupation-level AI exposure
to macro and distributional outcomes without sacrificing tractability.

5 Data

Our empirical analysis uses data from IPUMS USA, focusing on private sector employees
aged 24-60, excluding the primary sector. We define demographic groups by gender, five
education levels, three age bins, and the nine regional Census divisions, yielding 270
groups.18

Following Caunedo et al. (2023), we classify employment into nine 1-digit level oc-
cupations (see Table 1). This aggregation reduces sampling noise in group-specific em-
ployment shares, while retaining sizable heterogeneity in LLM exposure (see below). We
then partition occupations into routine and non-routine nests following Autor and Dorn
(2013), a natural nesting structure given the empirical evidence that reallocation and as-
sociated wage convergence across these nests is far from perfectly elastic.

Estimation Data Our estimation analysis uses the 2000 Census Sample and the 2007 3-
year American Community Survey (ACS) from IPUMS. This period is selected because
of the presence of substantial shifts in labor demand driven by exogenous trade or tech-

18The levels of attained education are: (i) lower than high school, (ii) high school, (iii) some college, (iv)
college degree, (v) post-graduate degree. The age groups are defined as follows: below 33 years, between
33 and 46 years, and above 46 years. Each age group represents approximately one-third of the sample.
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Table 1: Summary statistics on the occupations

Occupation Nest βo mean πgo SD(πgo) AIo
1 Management NR 0.30 0.23 0.13 0.39
2 Professionals NR 0.21 0.18 0.17 0.33
3 Sc. technicians NR 0.07 0.06 0.04 0.42
4 Sales R 0.11 0.11 0.04 0.30
5 Admin services R 0.08 0.10 0.08 0.54
6 Low-skill services NR 0.06 0.11 0.11 0.11
7 Mechanics and transport NR 0.13 0.15 0.19 0.06
8 Precision prod. R 0.02 0.02 0.02 0.20
9 Machine operators R 0.03 0.05 0.05 0.12

Notes: The table lists the nine occupations in our data. The third column explains the nest the
occupation belongs to, namely non-routine (NR) or routine (R). The fourth lists the expenditure
share on the occupation (βo), the fifth the average employment share (πgo), the sixth the standard
deviation across groups of the πgo, and the final column has the relative exposure to generative
artificial intelligence as measured in Eisfeldt et al. (2025).

nology shocks (Autor and Dorn, 2013; Autor, Dorn, and Hanson, 2013; Fort, Pierce, and
Schott, 2018; Acemoglu and Restrepo, 2020; Galle and Lorentzen, 2024). This focus en-
sures that labor demand shocks are the primary source of labor reallocation in this period,
which is crucial for reliably estimating the labor supply elasticities.

In the estimation, we measure Ig as the average hourly earnings in a group so that
changes in measured income reflect wage adjustments rather than shifts in hours worked
or participation.19 Employment shares (πgo|Om , πgOm) are measured as the share of work-
ers in that occupation or nest.

Simulation data For the counterfactual analysis on the impact of LLMs, we need data
on the baseline values in Equation (10): ωo, βo, πgo, and Ig. To this end, we use the 2022
5-year ACS. There we observe total labor income for each demographic group in each
occupation: Igo. An implication of the Roy-Fréchet setup is that employment shares
equal earnings shares. In the simulations, we therefore measure employment shares
as πgo = Igo/Ig, since this choice ensures that groups’ labor income and employment
shares are consistent with the income data. In turn, we measure revenue on an occu-
pation as Ro = Io/ωo. The expenditure share on that occupation is then measured as
βo = Ro/

∑
oRo. Finally, we follow BMV and CJK by setting the cost share of labor at

ωo = 0.76, based on estimates in Burstein, Cravino, and Vogel (2013). While we do not
have a precise measure of ωo, the sensitivity of our counterfactual results to values of ωo
is negligible. Since our calibration targets labor productivity changes, the inferred tech-

19The latter are not the focus of the baseline model but are captured by the extended model (Section 8).
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nology shocks automatically adjust with the value of ωo, ensuring predicted wages and
employment are virtually unchanged. Section 7.2 provides further detail.

6 Estimation of occupational labor supply

6.1 Estimation strategy

6.1.1 Estimation specification

To estimate the within- and cross-nest reallocation elasticities, we start by deriving the es-
timation specification. First, note from Equations (3), (6), (7), (8) and using that π̂go|Om =
π̂go
π̂gOm

, we obtain:20

Φ̂g = ŵoπ̂
− 1
κgm

go|Om π̂
− 1
µg

gOm
ˆ̃A

1
κgm
go Â

1
µg
gm.

Taking logs, imposing a common κgm = κ and µg = µ, and using that Φ̂g = Îg, we obtain
our primary estimation equation:

ln Îg = αo + β1 ln π̂go|Om + β2 ln π̂gOm + εgo, (15)

where αo ≡ ln ŵo and εgo ≡ ln

(
ˆ̃A

1
κgm
go Â

1
µg
gm

)
. This estimation specification links changes

in group income to changes in occupational specialization. The term ln π̂go|Om captures
within-nest decline in specialization for group g (holding wages fixed), while ln π̂gOm cap-
tures across-nest specialization declines. Intuitively, if a particular group exhibits higher
occupational expansion than the average group – still holding wages fixed, then this
group faces more negative exposure to national-level wage shifts. The group is therefore
forced to expand in occupations where it initally had low shares, lowering its occupa-
tional specialization. The coefficient estimands map directly to the reallocation elastici-
ties: β1 ≡ −1/κ and β2 ≡ −1/µ, measuring how earnings respond to changes in occupa-
tional specialization.

Specification (15) holds for all occupations within a given group. But how can all

20As intermediate step, we obtained from (3), (6), (7), and (8) that

π̂go =
ˆ̃AgoÂgmŵ

κgm
o

( ∑
n∈Om

πgn|Om

ˆ̃Agnŵ
κgm
n

) µg
κgm

−1

Φ̂
−µg
g .

Given equations (3) and (7), we can rewrite this expression as

π̂go =
ˆ̃AgoÂgmŵ

κgm
o

(
ˆ̃Agoŵ

κgm
o

π̂go
π̂gOm

) µg
κmg

−1

Φ̂
−µg
g .
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occupations in a group simultaneously experience higher percentage growth than the
average group? The explanation is that groups with above-average occupational expan-
sion experience growth primarily in occupations where they initially had fewer workers,
and declines in occupations where they initially had more workers. Indeed, a mod-
est absolute movement of workers from a larger to a smaller occupation results in a
small percentage decrease in the large occupation but a large percentage increase in the
smaller one. Hence, groups growing their smaller occupations will have higher percent-
age growth (positive or negative) in all occupations. In economic terms, these groups
expand in occupations where they have a comparative disadvantage and shrink in the
ones where they have a comparative advantage (Galle et al., 2023).

The error term εgo consists of occupation-by-group productivity shocks. To the ex-
tent that these shocks are correlated with demographic characteristics, we control for
them with demographic controls. Specifically, as controls we include fixed effects for a
group’s defining demographic characteristics: their education level, their gender, their
age bin, and their geographic region (Census division). The remaining error term in our
estimation then consists of unobservable productivity shocks.

Since the model allows for heterogeneity in the reallocation elasticities across groups,
we can estimate our specification separately for different demographic subgroups. We
will focus on age groups, as the data shows the most meaningful heterogeneity along
this dimension.

6.1.2 Shift-share instruments

The regressors in our estimation specifications positively correlate with the error term,
since groups’ occupational productivity shocks ( ˆ̃AgoÂgm) affect reallocation into that oc-
cupation (see Equations (3) and (6)). Hence, an OLS estimation of our specifications will
exhibit upward bias in the β coefficient estimates. Since the implied reallocation elastici-
ties are the negative inverse of the coefficient, OLS estimates of these implied elasticities
also have an upward bias.

We instrument specialization changes using a shift-share strategy with predetermined
group shares interacted with national occupation (or nest) reallocation shocks as shifts.
This strategy builds on our Roy-Fréchet expressions for specialization changes (Equa-
tion (18) in Appendix A.1), where the denominator of that ratio is a wage index that
summarizes earnings potential for a group. Intuitively, when national labor demand
shifts in favor of some occupations, groups that are initially more concentrated in those
occupations experience an improvement in their earnings potential and an increase in
their occupational specialization.

Concretely, to implement our IV approach, we first construct national reallocation
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shocks. Start from ro ≡ woZo/
∑

nwnZn as the national income share of an occupation,
such that r̂o is a measure of occupational expansion over the estimation window. We
analogously define nest-level national income shares rOm ≡

∑
o∈Om ro and their changes

r̂Om . Second, we interact these national shocks with predetermined group shares as fol-
lows, for each group g: Zwithin

gm ≡
∑

o πgo|Om r̂o and Zacross
g ≡

∑
m πgOm r̂Om , with em-

ployment shares measured in the base period. These objects summarize how exposed
a group is to national reallocation pressures within nests and across nests, respectively.
More specifically, in the model, specialization responses depend on the within-nest and
cross-nest wage indices Φ̃gm and Φg, which capture the “denominators” of π̂go|Om and
π̂gOm . The shift-share measures Zwithin

gm and Zacross
g are designed to approximate these

indices:21 groups with larger baseline exposure to occupations (or nests) that expand na-
tionally face stronger outside-option shifts, and therefore exhibit predictable changes in
specialization. Importantly, we confirm instrument relevance in the first-stage results in
Appendix Table C.1.

We are estimating the labor-supply elasticities, and our instrument is therefore valid
if it captures labor-demand shocks that are orthogonal to group-by-occupation supply
shocks. Since we have a limited number of occupations, we have to follow the “exoge-
nous shares” (Goldsmith-Pinkham, Sorkin, and Swift, 2020) exclusion restriction, which
requires group-by-occupation productivity shocks to be unrelated to baseline shares, af-
ter conditioning on controls:

E
[
εgo | πgo|Om , Xg

]
= 0, E[εgo | πgOm , Xg] = 0,

where Xg includes fixed effects for the demographic components that define groups (ed-
ucation, gender, age bin, and Census division).

In contrast to reduced-form work disentangling the impact of a specific shock,22 our
instruments are allowed to reflect any aggregate or occupation-level labor-demand dis-
turbance (trade, technology, product-demand shifts, etc.) as long as these shocks are
not related to group-specific labor-supply/productivity movements. Below, we further
corroborate the validity of our exclusion restriction with an analysis of pre-trends, as
suggested by Goldsmith-Pinkham et al. (2020). Since the “exogenous shares” assump-
tion ultimately boils down to a continuous difference-in-differences setup, corroborating
the parallel-trends assumption is central to our identification strategy.

21For more detail on related approximation strategies, but in settings without nests, see Galle et al. (2023)
and Galle and Lorentzen (2024).

22In those setups, it is often more advisable to focus on the “exogenous shifts” identification assumption
(Borusyak, Hull, and Jaravel, 2022), since it is common for baseline shares to correlate with multiple national-
level demand shocks.
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6.2 Estimation results

Table 2 has our main estimation results, with columns 1-3 estimating different versions of
Equation (15). All specifications include occupation fixed-effects, to absorb the change in
wages in that occupation (ln ŵo). In the first two columns, we use OLS, both without and
with controls. In both cases, the implied values for κ and µ have the expected sign, but
are very high. For instance, the lowest value we find for µ is µ = 16.6, in the specification
with controls. These high values reflect the upward bias in the OLS estimation. Indeed,
once we employ IV estimation, the estimated reallocation elasticities drop substantially
(column 3). Specifically, we estimate µ = 3.4 and κ = 5.3, with respective standard errors
of 1.13 and 3.1.23 The first stage is sufficiently strong, with a Kleibergen-Paap F-statistic
of 11.1.

Worker mobility is likely to differ across demographic groups. To shed light on
this heterogeneity, we proceed with estimating different reallocation elasticities by age
group.24 Specifically, in our empirical setup we have three different age groups (young,
middle, and old), and we estimate a separate κg and µg for each of these age groups (see
columns 4, 5, and 6 respectively).

Interestingly, both estimated reallocation elasticities decline with age, implying that
older workers are less mobile than younger ones. Specifically, we find that µg declines
from a high value of 5.4 for young workers, over 3.0 for middle aged, to the low value of
1.4 for old workers. The within-nest reallocation elasticity κg analogously declines from
4.7 for young to 2.9 for old workers, with an intermediate value of 3.6 for the middle
group. The standard errors (SEs) are most precise for old workers, especially for the
µg estimate (SE = 0.37), but also for their κg (SE = 1.4). For younger and middle-aged
workers, the SEs range from 2.0 to 3.0.

6.3 Sensitivity analysis

Pre-trends Our exclusion restriction posits that productivity shocks at the group-by-
occupation level should not be correlated with a group’s employment share. To corrobo-
rate this restriction, we analyze if there are pre-trends in group-level income, our depen-
dent variable, correlated with the instruments. Such a correlation would indicate that
the instruments are correlated with long-term trends in income, irrespective of period-

23Standard errors for κ and µ are computed using the delta method. Specifically, for i = 1, 2 respectively:
SE(f(βi)) = SE(βi)|f ′(βi)| = SE(βi)/β

2
i . The non-linear relationship between the estimated value and

the structural parameter therefore implies that the confidence intervals on βi do not simply translate to
confidence intervals for the structural parameter.

24We also looked into heterogeneity by gender or education level, but that analysis was largely uninfor-
mative due to weak first stages or large standard errors of the second stage coefficients.
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Table 2: Age-specific reallocation elasticities. (Dep. var.: ln Îg)

(1) (2) (3) (4) (5) (6)
All (OLS) All (OLS) All Young Middle Old

ln π̂gOm -0.015 -0.060∗∗∗ -0.29∗∗∗ -0.19∗∗ -0.33 -0.72∗∗∗

(0.025) (0.011) (0.098) (0.074) (0.22) (0.18)

ln π̂go|Om -0.019∗∗ -0.0046 -0.19∗ -0.21∗ -0.28 -0.34∗∗

(0.0080) (0.0036) (0.11) (0.11) (0.23) (0.16)

Implied µ 66.3 16.6 3.40 5.38 3.02 1.40
(109.9) (3.06) (1.13) (2.13) (1.99) (0.36)

Implied κ 53.6 216.6 5.27 4.74 3.55 2.90
(23.0) (170.8) (3.10) (2.56) (2.96) (1.34)

KP F-stat 11.1 5.80 2.22 8.59
Controls No Yes Yes Yes Yes Yes
Occupation FE Yes Yes Yes Yes Yes Yes
Observations 2430 2430 2430 810 810 810

Notes: The table estimates equation (15), namely ln Îg = αo + β1 ln π̂go|Om
+ β2 ln π̂gOm

+ εgo,
where ln Îg is the log change in average hourly wage in a group, and αo is an occupation fixed-
effect. Specifications 1 and 2 are estimated with OLS, and the others with IV, with instruments∑
o πgo|Om

r̂o and
∑
m πgOm

r̂Om
. Specifications 4-6 restrict the sample to young, middle-aged, and

old workers respectively. All specifications except the first control for gender FE, education level
FE, and Census division FE. Specifications 2 and 3 also control for age-bin FE. Standard errors
are clustered at the level of the demographic group, defined by gender, education level, age bin,
and Census division. Significance levels based on p-values: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.
Standard errors for µ and κ based on the delta method: SE(f(βi)) = SE(βi)|f ′(βi)| = SE(βi)/β

2
i .

specific shocks to labor demand (see also Goldsmith-Pinkham et al., 2020). We conduct
the pre-trend analysis for the period 1990-2000, using the 5% Census samples in IPUMS
for those years.

For both instruments, their positive relationship with changes in hourly income dis-
appears during the pre-period, corroborating their validity. For the cross-nest instru-
ment (

∑
m πgOmr̂Om), we actually estimate, if anything, a negative coefficient in the pre-

period (p = 0.1; see Appendix Table C.2, column 2). For the within-nest instrument
(
∑

o πgo|Omr̂o), we first control for nest-level expansion in the dependent variable, based
on our model’s insights from specification (15). After this adjustment, the correlation
between the instrument and the outcome is again positive and highly significant in the
main period, but close to zero and insignificant in the pre-period (columns 3-4). For
completeness, we also provide results using the unadjusted outcome variable; however,

26



these are less informative in the context of our model (columns 5-6).

Strength of the first stage The first stages for the estimations by age group lack some
power, as the F-statistics are below 10. In part, this is because we need to employ two
instruments that are correlated. We address the strength of the first stage by also esti-
mating an “inverted” specification, now with ln π̂gOm as dependent variable and ln Îg as
regressor (see Appendix Table C.3, columns 4-6). Given that we employ an exactly iden-
tified IV regression, this inverted specification yields identical estimates of the structural
elasticities. Importantly though, two of the three F-statistics in the inverted estimation
of the age-specific reallocation elasticities are now above 15, mitigating concerns about
potential weak-instrument bias.

Weighted estimation In our baseline estimation, all nine occupations receive an equal
weight. However, some of these occupations are substantially larger than others in terms
of employment shares. For instance, precision production workers make up only 3.4%
of employment, while mechanics make up 19%. We therefore also estimate the reallo-
cation elasticities with these national employment shares as weights, and obtain quite
similar estimates (see Appendix Table C.4). Indeed, we continue to find that the realloca-
tion elasticities steadily decline with age. In the IV specifications, all point estimates are
slightly but not significantly lower than in the baseline. If anything, this implies stronger
distributional effects of labor demand shocks.25

7 Baseline quantification

In this section, we shed light on the quantitative impact of generative AI on the labor
market. To this end, we first parametrize our model and calibrate the AI shock. Ap-
pendix Table D.1 provides an overview of the inputs in our counterfactual analysis.

7.1 Parametrization

Using our above estimates for age-specific reallocation elasticities (Table 2, columns 4-6),
we set µg to 5.4 for young workers, 3 for middle-aged workers, and 1.4 for old workers.
For κg, the values are 4.8, 3.6, and 2.9, respectively. In turn, our value for the demand
elasticity, ψ = 1.34, is based on the estimate by CJK, and is further supported by BMV’s

25Unfortunately, the first-stage F-statistics are all below 10 in this weighted estimation. We therefore
again also report the results from the “inverted” estimation, with identical elasticity estimates in the IV,
where at least the F-stat for old workers is 22 (see Table C.5).
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similar finding of ψ = 1.78. Appendix Table D.1 provides an overview of our calibrated
parameters.

7.1.1 Calibration of σo

To our knowledge, no direct estimates of the occupation-specific elasticity of substitu-
tion between human labor and large language models (LLMs) currently exist. This is
not surprising given the very recent rise of these LLMs. We therefore discipline σo in-
directly, based on two inputs: (i) a conservative range of plausible elasticities [σ, σ], (ii)
a measure of LLMs’ complementarity with human labor (Co), based on highly detailed
task-level evidence from one major LLM provider: Anthropic (Handa et al., 2025). These
two objects allow us to calibrate σo as follows:

σo = σ + (σ − σ)
1− Co

2
. (16)

This expression yields higher values of σo for occupations with high relative substi-
tutability (low Co) and vice versa. We now explain how we discipline the choice of σ
and σ, and how we calculate Co.

We set the range of plausible elasticities to [σ = 0.9, σ = 3]. This choice is, first,
guided by historical evidence from earlier waves of technical change,26 which places
occupation-specific equipment–labor elasticities in a disciplined but wide range of [0.65-
3.27].27 The range’s upper end is informed by ICT estimates (Eden and Gaggl, 2018), of
which LLMs are an, albeit recent, subcomponent. In contrast, the very low estimate of
0.65 comes from broader capital-embodied technical change (Caunedo et al., 2023) that
is less directly comparable to LLMs, providing a first motivation of our slightly higher
lower bound of σ = 0.9.

The range [σ = 0.9, σ = 3] is further supported by early reduced-form evidence on
the labor-market effects of LLMs when interpreted through our model. The key object
governing whether an AI-driven productivity shock raises or lowers occupation-level la-

26For a external calibration also focusing on occupation-specific input substitution elasticities, see Bárány
and Siegel (2021).

27Focusing first on ICT-type capital, Eden and Gaggl (2018)’s implied elasticity of substitution between
ICT capital and routine labor rises from about 2.14 to 3.27 over their sample period, while the corresponding
elasticity between ICT and non-routine labor is more modest, around 1.43. Second, estimates for a par-
ticularly “automation-like” equipment category—industrial robots—also point to substantial heterogene-
ity: Adachi (2025) estimates occupation-group-specific elasticities between robots and labor ranging from
roughly 1.01 in abstract-intensive occupations up to 2.71 for production occupations. Finally, Caunedo
et al. (2023) provide direct occupation-level estimates of the elasticity of substitution between capital and
labor, ranging from 0.65 for technicians up to 2.18 for administrative services, with other occupations lying
in between. Taken together, these findings support allowing σo to vary from values modestly below one
(complementarity) to values around three (strong substitutability).
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bor demand is gross substitutability, (σo−ψ). With our calibrated final-demand elasticity
ψ = 1.34, reduced-form evidence on whether exposed occupations contract or expand is
informative about the sign and plausible magnitude of σo − ψ.

Two empirical regularities stand out. First, labor demand declines are most clearly
detectable in settings and occupations where LLMs appear more substitutive: payroll
data, evidence from job postings, and online freelancing markets all show contraction
concentrated in automation-heavy segments (Hui, Reshef, and Zhou, 2024; Brynjolfsson
et al., 2025; Chen, Srinivasan, and Zakerinia, 2025; Demirci, Hannane, and Zhu, 2025;
Liu, Wang, and Yu, 2025; Teutloff, Einsiedler, Kässi, Braesemann, Mishkin, and del Rio-
Chanona, 2025).28 This evidence motivates a high-substitutability tail with σo > ψ in
automation-heavy occupations; setting σ = 3 (the midpoint of the upper-tail estimates in
Eden and Gaggl (2018) and Adachi (2025)) captures this strongly contractionary region
while remaining within the historical upper range.

Second, for more augmentation-oriented occupations, positive employment responses,
when present, tend to be muted rather than strongly expansionary (Brynjolfsson et al.,
2025).29 These muted positive effects motivate σ = 0.9: it permits modest gross comple-
mentarity for the most augmentation-heavy occupations, while remaining close to near-
unit lower-tail estimates reported for ICT- and robot-related margins (Eden and Gaggl,
2018; Adachi, 2025).

Because the labor-market effects of LLMs are highly heterogeneous and closely linked
to whether LLM use is primarily automative or augmentative, we use this distinction to
locate each occupation’s σo in [σ, σ] . Following Brynjolfsson et al. (2025), we measure au-
tomation versus augmentation use based on the Anthropic Economic Index (Handa et al.,
2025), which classifies millions of Claude interactions into automative and augmentative
behaviors at the task level. Aggregating these task-level interactions to occupation-level
shares allows us to construct an occupation-level complementarity index (Co ∈ [−1, 1]):

28Using U.S. payroll records, Brynjolfsson et al. (2025) document sizeable relative employment declines
for early-career workers in AI-exposed occupations and show that these declines are concentrated where AI
use is more “automative” than “augmentative.” Studies using job postings as a proxy for labor demand find
that vacancies fall more in occupations with higher AI-substitution vulnerability after ChatGPT’s release
(Liu et al., 2025), with related evidence of larger posting declines in highly automation-prone jobs (Chen
et al., 2025). Consistent with fast adjustment in spot markets, online freelancing studies find post-ChatGPT
declines in jobs and earnings in exposed categories (Hui et al., 2024), and large posting/demand reductions
in automation-prone clusters or substitutable-skill postings (Demirci et al., 2025; Teutloff et al., 2025).

29Brynjolfsson et al. (2025) emphasize that employment gains are muted in applications where AI aug-
ments rather than automates. Some vacancy-based studies report relatively stronger posting growth for
augmentation-prone or human–AI-collaboration roles (Chen et al., 2025), and online-market “winners” ev-
idence suggests demand growth is concentrated in complementary (rather than substitutable) skill clusters
(Teutloff et al., 2025). Giving more weight to the Brynjolfsson et al. (2025) on US payroll data, we view the
evidence as supporting limited complementarity for the most augmentation-prone occupations, but not the
strong expansion that would be implied by pushing σ toward the lowest historical estimates from broadly
defined capital-embodied technical change.
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more positive values of Co indicate greater complementarity, while more negative val-
ues indicate greater substitutability.30 This way, we have all elements to calibrate σo as
described in Equation (16), while ensuring that the model’s predictions will stay faithful
to lessons from early reduced-form evidence.

7.2 Calibration of the shock

We calibrate occupation-level machine-productivity shocks in three steps. First, we use
the experimental evidence in Dell’Acqua, McFowland, Mollick, Lifshitz-Assaf, Kellogg,
Rajendran, Krayer, Candelon, and Lakhani (2023) as an anchor for the productivity gain
from access to GPT-4. Second, we scale this anchor across occupations using the exposure
measure in Eisfeldt et al. (2025), which quantifies the share of tasks within each occupa-
tion that can be performed using LLMs such as ChatGPT. Third, we choose the vector of
γ̂o so that, occupation by occupation, the model matches the resulting labor-productivity
targets.

In step 1, Dell’Acqua et al. (2023) study strategy consultants at Boston Consulting
Group and exploit randomized access to GPT-4. They find that access to GPT-4 increased
task-completion speed by 25.1%. This estimate is conservative as a measure of labor-
productivity gains, since Dell’Acqua et al. (2023) also document improvements in output
quality.31

30The Handa et al. (2025) data are publicly available at https://huggingface.co/datasets/Anthropic/
EconomicIndex, and contain task-level information that is aggregated from four million Claude conversa-
tions. Handa et al. (2025) matched each conversation to a unique O*NET task. They also classified each
conversation as automative or augmentative. Automative behaviors are directives (completely delegating the
task to AI) or feedback loops (AI completes the task, guided by user feedback). Augmentative behaviors
consist of task iteration (collaborating with the LLM to refine processes), learning (asking the LLM to ex-
plain), and validation (asking the LLM to check one’s work). For each task t, the data contain pt, the share
of all Claude conversations involving t (where

∑
t pt = 1). Importantly, we also observe at and gt, the share

of conversations within task t that are automative or augmentative, respectively (where at + gt = 1).
We link tasks t to nine occupations o in two steps. First, as in Handa et al. (2025), we merge tasks to the

Standard Occupational Classification (SOC) system, using O*NET’s Task Statements mapping. Second, we
map SOC codes to nine occupation codes, in the same way as Caunedo et al. (2023).

Letting To be the set of tasks mapped to occupation o, we define usage weights within occupation o as
wot = pt/

∑
τ∈To

pτ , so that
∑
t∈To

wot = 1. We then aggregate automation and augmentation shares to
the occupation level: Ao =

∑
t∈To

wot at, Go =
∑
t∈To

wot gt. This allows us to define a preliminary
complementarity index C̃o ≡ (Go − Ao)/(Go + Ao), which lies in [−1, 1] and increases with the relative
importance of augmentative (compared to automative) LLM use in occupation o. Since our calibration
focuses on relative differences in complementarity across occupations, any affine transformation of C̃o is
innocuous: it can be absorbed by a corresponding renormalization of the [σ, σ] range. We therefore employ
a centered, unit-free version Co obtained by subtracting the cross-occupation mean of C̃o and dividing its
cross-occupation range, so that Co = 0 corresponds to the average occupation and the extremes correspond
to the most augmentation- and automation-heavy occupations in the data.

31Noy and Zhang (2023) obtain similar results in a randomized writing task for college-educated pro-
fessionals: exposure to ChatGPT reduced time to completion by 40% and increased output quality by 18%.
Their task is narrower (writing only), whereas Dell’Acqua et al. (2023) study a broader set of tasks relevant
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In step 2, we extrapolate the benchmark gain to all occupations using the occupa-
tional exposure measure in Eisfeldt et al. (2025). They measure exposure at the 5-digit
SOC level as the share of tasks in an occupation that can be performed using LLMs such
as ChatGPT.32 As a validation of these exposure measures, Eisfeldt et al. (2025) show
that, in the two weeks after ChatGPT’s release, firms with more exposed occupational
compositions earned 44 basis points higher daily stock returns than less exposed firms.

Using “management analysts” from Dell’Acqua et al. (2023) as the benchmark occu-
pation, we compute for each 5-digit occupation its “AI exposure” relative to management
analysts. We then aggregate these relative exposure measures to our nine 1-digit occupa-
tion categories using employment-share weights. The final column of Table 1 reports the
resulting exposure measures: cognitively oriented occupations (e.g., administrative ser-
vices or scientific technicians) are the most exposed, while occupations with high manual
content (e.g., mechanics and transportation or low-skill services) are the least exposed.

Our calibration target for each of the nine occupations is the benchmark productiv-
ity gain from Dell’Acqua et al. (2023) (25.1%) multiplied by the occupation’s relative
exposure measure. We then calibrate γ̂o so that the model matches these implied labor-
productivity increases.33 The calibrated shocks are strongly aligned with exposure: they
have a correlation of almost 94% with an occupation’s AI exposure (Appendix Figure
D.1).

Finally, as noted in Section 5, our counterfactual results are essentially insensitive to
ωo, for which we lack direct data. Because the calibration fixes labor-productivity targets,
the implied technology shocks adjust to alternative ωo values, leaving predicted wages
and employment effectively unchanged.34

7.3 Results

We present results in two layers. First, we report occupation-level wage and employ-
ment responses to the calibrated AI shocks. Second, we aggregate these responses to

for an occupation’s output.
32For each occupation, Eisfeldt et al. (2025) score tasks by whether ChatGPT can achieve a 50% reduction

in completion time, either with or without additional tools built for ChatGPT. The exposure measure is the
share of tasks meeting this criterion, with tasks requiring additional tools entering the numerator at 50%
weight. This strategy closely follows Eloundou et al. (2024). In a recent contribution, Smeets, Tian, and
Traiberman (2025) follow a related calibration strategy to ours.

33In the model, changes in labor productivity are L̂Po = R̂o

P̂ oẐo
. Noting that ωoRo = woZo and that

ω̂o =
(
ŵo

P̂o

)1−σ
, it follows that L̂Po = ω̂o

σ
1−σ .

34To corroborate this, we ran the counterfactuals for both the baseline model and the extension in Section
8 under two values of ωo (0.24 and 0.76). In the baseline model, results are exactly identical. In the extended
model, results are nearly identical: the correlation is nearly perfect and the maximum difference in predicted
wage changes is 0.000005.
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distributional outcomes across demographic groups, emphasizing returns to education,
gender earnings gaps, and age-earnings profiles. Throughout, we highlight the role of
reallocation and ripple effects: wage incidence is shaped not only by direct exposure, but
also by equilibrium spillovers from reallocation across occupations.

Figure 4: Labor market impact of the rise of generative AI
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(b) Employment share changes
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Notes: The figure displays the impact of increases in LLM productivity at the occupation level, for the shock
as calibrated in Section 7.2. Panel (a) shows percentage increases in real wages for each occupation, while
panel (b) displays percentage changes in employment shares by occupation.

Our calibration of the productivity shocks implies that eight out of nine occupations
experience a productivity increase (Appendix Figure D.1, panel a). In turn, this leads to
a substantial increase in aggregate productivity, driving up real wages in all occupations
(see Figure 4, panel a). Still, differential labor displacement leads to unequal real wage
changes. Scientific technicians and administrative services experience the lowest wage
growth, since these two occupations have the highest exposure to LLMs (Figure D.1,
panel c). Even though scientific technicians’ exposure is lower, they still experience lower
wage growth than administrative services due to their larger input substitution elasticity
(σo = 2.51 for the technicians vs. σo = 2.1 for administrative services).

Within each nest, the manual-labor intensive occupations experience higher wage
growth, because they have the lowest exposure to advances in LLMs. In contrast, the
more cognitively oriented occupations experience lower wage growth. For instance, in
the routine nest, machine operators, performing manual work, experience the highest
wage growth (4.6%) while wages in administrative services grow by around 3.6%. Analo-
gously, in the non-routine nest, wages for “mechanics and transportation workers” grow
by 4.8%, while wages for scientific technicians grow by 3.5%.

Accounting for labor reallocation and associated ripple effects is a strength of our
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general-equilibrium framework, and these reallocation effects are sizable. For instance,
the employment share of scientific technicians falls by 2.5%, while the mechanics and
transportation occupation grows by almost 1.5% (Figure 4, panel b). These sizable reallo-
cation effects explain why the inequality in AI’s wage impact is muted. Since we found
reallocation across occupations to be fairly elastic, employment is a stronger margin of
adjustment than wages.

Capturing these reallocation effects through the model also complements reduced-
form approaches that measure the impact of a new technology on the labor market
through exposure measures. Our setup corroborates these exposure-measure approaches,
since we obtain a negative correlation between AI exposure and the wage changes of
84% (see Appendix Figure D.1, panel c), which simultaneously implies that (1− 0.842) =

29.4% of the wage variation remains unaccounted for by these exposure measures. More-
over, a general-equilibrium model is necessary to determine the level of the wage gains,
and, while doing so, account for the spillover effects of a shock in one occupation on
wages in the other occupations through (potentially substantial) sectoral reallocation
(Beaudry et al., 2012; Galle and Lorentzen, 2024; Lorentzen, 2024).

8 Extended model with intensive and extensive margin

Occupational labor-demand shocks may also affect the unemployment rate and hours
worked per worker. To capture these additional adjustment margins, we extend the
baseline model by adding a parsimonious search-and-matching block and an intensive-
margin hours decision. To preserve tractability in this richer environment, we adopt a
nested-Fréchet formulation for productivity draws, which implies within-nest realloca-
tion elasticities exceed the cross-nest elasticity. The demand side remains identical to the
baseline model.

8.1 Theory

This section adds an intensive and an extensive margin to the labor supply side. The
resulting extended model nests our baseline model, except for one, more minor, assump-
tion. Specifically, we drop the two-step productivity draws for nests and occupations,
and instead simply assume nested-Fréchet productivity draws. With the nested Fréchet,
we preserve tractability throughout, but it comes with the restriction that the within-nest
reallocation elasticities are higher than the cross-nest one.35

35Using the nested Fréchet, this model setup remains tractable – building on the results in Kim and Vogel
(2021). If we instead were to assume the two-step productivity draws, the uncertainty about occupational
productivities in step 2 would limit the tractability on the combination of the sorting pattern and the inten-

33



The other new aspects of the model are pure extensions. First, we add frictional
unemployment by introducing a bare-bones search-and-matching framework, as well
as, second, an intensive margin decision arising from a standard trade-off between con-
sumption and disutility from working. Both extensions are modeled as in the highly
tractable Kim and Vogel (2021) framework. Specifically, workers apply to the occupation
that maximizes their expected utility, knowing their productivity in each occupation.
Vacancies in each occupation are posted by employers at a cost cg expressed in terms
of the final good – our numeraire. Matching between vacancies and applicants is gov-
erned by a Cobb-Douglas matching function, with a matching elasticity χg. After being
hired, workers make a decision on how many hours to work, trading off leisure versus
consumption. Once these hours worked have been supplied and output is realized, em-
ployers and employees engage in Nash bargaining over the match surplus. This results
in a share θg of the surplus going to the hired employee. At the same time, unmatched
and therefore unemployed workers receive a real income of zero. Finally, employers
post vacancies as long as the expected net benefit is weakly positive, which results in a
zero-profit condition for the equilibrium vacancy posting.

We derive the model in detail in Appendix Section A.4, and summarize it here. Em-
ployment shares in the formal occupations are just as before, as are the within-nest and
cross-nest wage indices (Φ̃mg and Φg respectively). Given the cross-nest wage index, we
show that, given workers’ decisions on the intensive margin, average hours per worker
in group g are

hg = η̃g (δgθg)
1
ξg Φ

1
ξg
g ,

where 1/ξg is the intensive margin elasticity, δg is the demand shifter for consumption,
and η̃g ≡ Γ (1− 1/(ξgµg)). Intuitively, as the wage index Φg increases, average hours per
worker (hg) also increase.

In this tractable setup, the employment rate (eg) also becomes a function of the cross-
nest wage index:

eg ∝ Φ

χg(1+ξg)

(1−χg)ξg
g ,

recalling that χg is the matching or employment elasticity. Total income generated by a
group is therefore also a function of the wage index, amplified by the employment and
intensive-margin elasticity:

Ig ∝ Φg
1+ξg

(1−χg)ξg Lg. (17)

sive margin decision.
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Equilibrium Compared to the baseline model, we have updated the labor supply side,
but total payments to labor in an occupation are still measured by

∑
g Igo =

∑
g πgoIg. At

the same time, the labor demand side has remained identical. Hence, the expression for
the equilibrium system of equations remains as before:

ωoβo
∑
n

∑
g

πgnIg
ωn

=
∑
g

πgoIg.

We present the associated system of hat equations for the counterfactual equilibrium in
Appendix A.4.

8.2 Counterfactual analysis

Parametrization The parametrization and calibration of the model remain as in the
baseline model, except we set µg = 4.739 for young workers, instead of µg = 5.38, such
that all µg < κg.36 In addition, we set the value of the two new parameters, the employ-
ment elasticity and the intensive margin elasticity, based on the estimates in Galle and
Lorentzen (2024), which are in turn closely in line with standard values in the literature.
Specifically, the employment elasticity is set to χ = 0.3, which is very close to the esti-
mates in Shimer (2005) and Barnichon and Figura (2015), and we set the intensive margin
elasticity to ξ = 2.5, which is in line with the estimates in Chetty (2012).

Counterfactual results The forces leading to labor market clearing in the extended
model are closely aligned with the mechanisms in the baseline model. The main change
is that certain groups’ impact on labor supply is amplified compared to others, due to a
relative increase in their employment rate and average hours worked. While this leads
to more dispersion in the groups’ real income effects, it has a minimal impact on the cal-
ibrated shocks and the equilibrium wages. Indeed, we find that both have a correlation
of 99.9% with their counterpart in the baseline model (see e.g. Appendix Figures D.2 and
D.3).

For the US in the aggregate, real income increases by 8.8% due to the rise of genera-
tive AI (see Table 3). These aggregate gains are unequally distributed, with a maximum
group-level gain of 9.5% and a minimum gain of 8.1%. Given our parametrization, the
change in hourly income accounts for close to 50% of the aggregate gains, the changes in

36Even though µg > κg is not consistent with this extended version of the model, the simulated model
still converges. When we instead set µg = 5.38 for young workers, as in the baseline framework, there are
only very minor differences with the results presented in this section. This is driven by (i) the economic
difference between the two µg values being minor, (ii) cross-nest reallocation of young workers alone not
being critical for the general equilibrium results.
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Table 3: Labor’s adjustment margins after the rise of generative AI

Aggregate Mean SD Min. Max.
Îg 8.75 8.79 0.31 8.13 9.48
îg 4.26 4.30 0.15 3.99 4.63
ĥg 1.70 1.70 0.06 1.58 1.83
êg 2.56 2.56 0.09 2.37 2.76

Notes: The table shows summary statistics, in percentage terms, for groups’ income changes (Îg), and how
they are broken down across hourly income changes îg , hours worked (ĥg), and the employment rate (êg).

the employment rate and hours worked for respectively 30% and 20%.
Previous episodes of technical change typically positively affected the returns to edu-

cation – commonly categorized as skill-biased technical change (Acemoglu, 1998; Krusell
et al., 2000; Hémous and Olsen, 2022). For generative AI, this pattern is reversed. Indeed,
one of the subgroups gaining the most are high-school drop-outs, who gain 9.3% in the
aggregate.37 This is driven by their disproportionately high employment share of over
55% in the two occupations with the highest wage gains (low-skill services and mechan-
ics & transport), compared to 26% for the overall population. In contrast, workers with
the highest level of education gain 0.73 percentage points less in the aggregate.

Table 4: Income changes due to generative AI across demographic groups

Aggregate Mean SD Min. Max.
All groups 8.75 8.79 0.31 8.13 9.48
Young 8.71 8.77 0.32 8.13 9.48
Middle aged 8.74 8.80 0.31 8.38 9.46
Old 8.77 8.80 0.31 8.37 9.44
Male 8.85 8.95 0.33 8.13 9.48
Female 8.56 8.63 0.18 8.35 9.07
Less than high school 9.28 9.16 0.22 8.84 9.48
High school 9.02 8.91 0.31 8.49 9.26
Some college 8.77 8.71 0.27 8.37 9.08
College 8.62 8.61 0.08 8.38 8.76
Post-graduate degree 8.55 8.54 0.08 8.13 8.64

Notes: The table presents the distribution of income changes (Îg), split by demographic group, for the model
with frictional unemployment and an intensive-margin adjustment.

Again in contrast to previous episodes of technical change, which have been pro-
rich, we find that on average, initially poorer groups gain more from generative AI than

37These findings echo the earlier insightful analysis of Bloom, Prettner, Saadaoui, and Veruete (2024),
with our theoretical setup being more general.
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initially richer groups. Given that advances in AI tend to benefit workers in manual-
labor intensive occupations most, this may not be surprising. Specifically, we obtain a
negative correlation of 27% between groups’ log income and their income changes (see
Figure 5). Particularly at the bottom of the income distribution, most groups experi-
ence above-median income changes. Finally, note that with a correlation of -27%, 93%
of the variation in income changes remains unexplained by initial income, indicating the
importance of incorporating a detailed analysis of occupation-specific technical change
across demographic groups, going beyond simply low- versus high-educated workers.

Figure 5: Income changes due to AI along the income distribution

18 19 20 21 22 23 24
1.08

1.085

1.09

1.095

Data points
Linear fit

Notes: The figure shows how the distribution of income changes (Îg), on the vertical axis, are related to the
distribution of initial income (ln Ig), on the horizontal axis. The solid line represents the linear fit between
the two variables.
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9 Conclusion

We have written down a model of the impact of technical change that crystallizes the
impact of three elasticities on the wage distribution: the input substitution elasticity, the
demand substitution elasticity, and the labor supply (reallocation) elasticities. We lever-
age our model to examine the general-equilibrium impact of LLMs on labor market out-
comes. While the most exposed occupations, such as administrative services, gain less
than manual-labor intensive occupations, we find that ripple effects on wages, primar-
ily arising from within-nest reallocation, dampens inequality in wage changes. Lower
educated workers experience higher wage growth than higher educated workers.

Declaration of generative AI and AI-assisted technologies in the manuscript prepara-
tion process

During the preparation of this work, but after the derivation and illustration of the core
model components and after the estimation of the reallocation elasticities, the authors
used ChatGPT 5.1 and 5.2 for editing and polishing. After using this tool, the authors
reviewed and edited the content as needed and take full responsibility for the content of
the published article.
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Appendix A Theory

A.1 System of hat equations

The full system of hat equations is a system of O equations that allows us to solve for O
unknowns: the wage changes ŵo. Setting the final good price as the numeraire, all the
hat variables are a function of the data, the productivity shock γ̂o and the wage changes:

ωoβoω̂oβ̂o
∑
n

∑
g

πgnπ̂gnIg Îg
ωnω̂n

=
∑
g

πgoπ̂goIg Îg

P̂o =

[
(1− ωo)δ̂oγ̂

σ−1
o + ωo

(1− δ̂oδo)

(1− δo)
ŵ1−σ
o

] 1
1−σ

,

β̂o = ν̂oP̂
1−ψ
o ,

ω̂o =
(1− δ̂oδo)

(1− δo)

(
ŵo

P̂o

)1−σ
,

π̂go = π̂go|Om π̂gOm

π̂go|Om =
ˆ̃Agoŵ

κgm
o

ˆ̃Φ
κgm
mg

; π̂gOm =
Âmg

ˆ̃Φ
µg
mg

Φ̂
µg
g

, (18)

ˆ̃Φmg =

( ∑
n∈Om

πgn|Om
ˆ̃Agoŵ

κgm
n

) 1
κgm

Îg = Φ̂g =

(∑
m

πgOm

(
Âmg

∑
o∈Om

ˆ̃Φmg

)µg)1/µg

.

A.2 Proof of Proposition 1

When we have a single group, the counterfactual labor market equilibrium (10) can be
written as:

ŵ1−σ
o P̂ σ−ψo =

πoπ̂o

ωoβo
∑

n
πnπ̂n
ωnω̂n

,

From the initial equilibrium (9), with a single group we have that πo
ωoβo

=
∑

n
πn
ωn
, which

we can substitute into the above, and rearrange:

ŵ1−σ
o P̂ σ−ψo

π̂o
=

∑
n
πn
ωn∑

n
πnπ̂n
ωnω̂n

.
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Since we have one nest (with reallocation elasticity κ), we can write this as

ŵ1−σ−κ
o = P̂ψ−σo

Îκ
∑

n
πn
ωn∑

n
πnπ̂n
ωnω̂n

.

The second term on the right-hand side is constant across all occupations, implying that
all relative differences in wage changes are perfectly correlated with changes in occu-
pational prices. Specifically, the log difference between the wage changes in any two
occupations o and n becomes :

ln

(
ŵo
ŵn

)
=

(
σ − ψ

κ+ σ − 1

)
ln

(
P̂o

P̂n

)
. (19)

A.3 Proof of the Relative-Price Comparative Static

This proof will demonstrate that for any two occupations o, n, the ratio of their marginal
costs (P̂o/P̂n) is strictly decreasing in their relative machine productivity (γ̂o/γ̂n). To
show this, we first establish that P̂o is decreasing in γ̂o. Here, it is intuitive that an in-
crease in machine productivity lowers marginal cost. Indeed, since this marginal cost
is a CES cost index of the cost of machine inputs and the cost of labor input, the only
way for marginal cost to decline when machine productivity increases, would be when
an occupation’s wage increases substantially. Importantly then, Proposition 1 has es-
tablished a direct relationship between an occupation’s wage and its marginal cost. The
proof exploits this link to demonstrate that an occupation’s marginal cost has to fall when
its machine productivity increases. Once this declining relationship is established for a
single occupation, it is straightforward to establish the relationship between the cross-
occupation ratios P̂o/P̂n and γ̂o/γ̂n.

1. Single-occupation expression

Recall that for each occupation j ∈ {o, n}

P̂ 1−σ
j = (1− ωj)γ̂

σ−1
j + ωjŵ

1−σ
j ,

while from the proof of Proposition 1, we know that

ŵj = cP̂
(σ−ψ)
σ+κ−1

j ,
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where c ≡ Îκ
∑

n
πnπ̂n
ωnω̂n

. Substituting the latter relationship into the former, we obtain

P̂ 1−σ
j = (1− ωj) γ̂

σ−1
j + ωj c

1−σ P̂
(σ−ψ)(1−σ)
σ+κ−1

j . (1)

2. Own-productivity effect

Totally differentiating Equation (1) with respect to γ̂j gives

(1− σ)P̂−σ
j dP̂j = (1− ωj)(σ − 1)γ̂ σ−2

j dγ̂j

+ ωj c
1−σ (σ − ψ)(1− σ)

σ + κ− 1
P̂

(σ−ψ)(1−σ)
σ+κ−1

−1

j dP̂j .

Collecting the dP̂j terms and dividing yields,

dP̂j
dγ̂j

= −
(1− ωj) γ̂

σ−2
j

P̂−σ
j − ωj c

1−σ σ − ψ

σ + κ− 1
P̂

(σ−ψ)(1−σ)
σ+κ−1

−1

j

. (2)

We now sign this derivative.

• Sign of the numerator: (1 − ωj) > 0 and γ̂ σ−2
j > 0. Hence, the leading minus sign

implies the numerator is negative.

• Sign of the denominator: Factor (1/P̂j) from the denominator of Equation (2) and
use the single-occupation expression (1) to substitute P̂ 1−σ

j . Then the denominator
becomes:

1

P̂j

[
(1− ωj)γ̂

σ−1
j + ωj c

1−σ
(
1− σ − ψ

σ + κ− 1

)
P̂

(σ−ψ)(1−σ)
σ+κ−1

j

]
.

Because κ > 1 and ψ > 0,
(
1− σ − ψ

σ + κ− 1

)
=

(
ψ + κ− 1

σ + κ− 1

)
> 0. The denominator

therefore only consists of positive terms, and is thereby positive as a whole.

We established that in Equation (2), the numerator is negative while the denominator
is positive. Therefore,

dP̂j
dγ̂j

< 0 for j = o, n.

Intuition: an increase in an occupation’s machine productivity monotonically lowers
the marginal cost of production in that occupation.
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3. Relative-price effect

Define these ratios:

RP ≡ P̂o

P̂n
, Rγ ≡ γ̂o

γ̂n
.

In the previous section, we established that P̂j = f(γ̂j) with f ′(·) < 0. We rewrite and
define

RP =
f(γ̂o)

f(γ̂n)
=
f(γ̂nRγ)

f(γ̂n)
=: g(Rγ).

Differentiate w.r.t. Rγ :
dg(Rγ)

dRγ
=
γ̂n f

′(γ̂nRγ)

f(γ̂n)
< 0,

since f ′(·) < 0 and f(γ̂n) > 0.

4. Relation between relative prices and relative productivity shocks

Because dg(Rγ)
dRγ

= d(P̂o/P̂n)
d(γ̂o/γ̂n)

< 0,

RP =
P̂o

P̂n
is strictly decreasing in Rγ =

γ̂o
γ̂n
.

Thus an increase in occupation o’s machine productivity relative to n’s (Rγ ↑) lowers its
relative price index (RP ↓), and vice-versa.

5. Relation between relative wages and relative productivity shocks

From Proposition 1, we know that

ŵo
ŵn

=

(
P̂o

P̂n

) σ−ψ
σ+κ−1

.

Therefore,

d(ŵo/ŵn)

d(γ̂o/γ̂n)
=

(
σ − ψ

σ + κ− 1

)(
P̂o

P̂n

) σ−ψ
σ+κ−1

−1
d(P̂o/P̂n)

d(γ̂o/γ̂n)

Determining the sign of this derivative. We know that:

•
(
P̂o
P̂n

) σ−ψ
σ+κ−1

−1
> 0

• d(P̂o/P̂n)
d(γ̂o/γ̂n)

< 0 (from step 4)
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Since one of these two terms is negative while the other is positive, we conclude that:

sgn

(
d(ŵo/ŵn)

d(γ̂o/γ̂n)

)
= sgn

(
ψ − σ

κ+ σ − 1

)
.

Hence, relative wages are increasing in relative machine productivity when the scale
effect, regulated by ψ dominates the input substitution effect, governed by σ. In this
case, workers and machines are gross complements. Conversely, workers and machines
are gross substitutes when σ > ψ since relative wages decline when relative machine
productivity increases.

A.4 Extension with intensive and extensive labor-supply margins

Here, we explain how to extend the baseline model by adding an intensive and an ex-
tensive margin to the labor supply side, while the labor demand side stays identical its
baseline setup. The main paper has the non-technical overview of this model extension.

Intensive margin In their intensive margin decision, workers optimize their expected
utility which, conditional on working in occupation o, is given by

U(C,H; g) = δgC − H1+ξg

1 + ξg
,

where consumption C of the final good is funded by a worker’s earnings, H are the
number of hours they decide to work, and we restrict ξg > 0. Conditional on being hired
in occupation o,a worker has real earnings wozo per hour worked. (Note that wo are
now real instead of nominal wages, since the final good price P is the numeraire.) From
maximizing utility, we can then find that the optimal number of hours worked by this
worker is:

H = (δgθgwozo)
1/ξg .

This choice on hours results in a real income of

δ
1
ξg
g (θgwozo)

1+ξg
ξg . (20)

Recall that unemployed workers have zero income. We then guess and verify below
that the employment probability is constant across sectors: ego = eg. Expected utility in
occupation o is then

ξg
1 + ξg

eg (δgθgwozo)
1+ξg
ξg . (21)
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Sorting across occupations The nested-Fréchet distribution from which workers draw
their productivities is given by the following cumulative distribution of z ≡ {z1, ..., zO, zHP }:

Fg (z) = exp

−
∑
m

( ∑
o∈Om

Agoz
−κgm
o

)µg/κgm ,

with the restrictive assumption that κgm > µg. We assume that the home production
occupation is in its own, separate nest. Workers sort into occupations knowing their
productivity in each occupation, anticipating their intensive margin decision, and the
probability of unemployment in each sector. Given that their utility in an occupation is
monotonically increasing in wozo, we can formalize the sorting pattern across occupa-
tions as follows. Let w ≡ {w1, ..., wO, wHP } and define

Ωo(w) ≡ {z s.t. wozo ≥ wkzk for all k } ,

which implies that a worker with productivity vector z will work in occupation o iff
z ∈ Ωo(w). We assume that wHP is exogenous, since income from home production is
not determined by the market. Standard properties of the Fréchet then imply that the
within-nest (πgo|Om) and cross-nest (πgOm) employment shares for market occupations
are as in the baseline:

πgo|Om =
Agow

κgm
o

Φ̃
κgm
mg

, (22)

πgOm =

(∑
n∈Om Anw

κgm
n

)µg/κgm
Φ
µg
g

, (23)

with the within-nest wage index Φ̃mg defined as in Equation (4). The cross-nest wage
index now takes the form:

Φg ≡

A1/κHPg
gHP w

µg
HP +

∑
m ̸=HP

Φ̃
µg
mg

1/µg

. (24)

Income and welfare From Equation 13 in Kim and Vogel (2021), we know that

E[zbo|o] = Γ

(
1− b

µg

)(
Φg
wo

)b
.

Given the sorting pattern into sectors and given Equation (20), average real income for
workers that applied to a sector is therefore
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θgwoZgo
πgoLg

= ηgegδ
1
ξg
g (θgΦg)

1+ξg
ξg ,

which is constant across occupations (a special implication of the Frechet). Here, ηg ≡
Γ
(
1− 1+ξg

ξgµg

)
. Total income generated by a group therefore becomes

Ig ≡
∑
o

woZgo = ηgeg (δgθg)
1
ξg Φg

1+ξg
ξg Lg. (25)

Given workers’ decision on the intensive margin, and given the implied value forE[z
1/ξg
s |o],

average hours per worker in group g is

hg = η̃g (δgθg)
1
ξg Φ

1
ξg
g .

Matching To model frictional unemployment, we also follow the parsimonious search-
and-matching framework from Kim and Vogel (2021). Employers post vacancies to hire
workers and a Cobb-Douglas hiring function matches vacancies to applicants. In equi-
librium, the cost of posting a vacancy equals its expected benefit (zero-profit condition).
Once a worker is hired, the employer and the employee bargain over the surplus of the
vacancy, and a share θg of the match surplus ends up going to the worker. At the time of
hiring, the vacancy cost is sunk, so the expected surplus is equal to the average revenue
realized by an applicant Igo ≡ woZgo.

Therefore, in group g and occupation o, the expected match surplus per worker that
an employer receives is (1 − θg)Igo. The cost of posting a vacancy is assumed to be cg.
Hence, the zero-profit condition (ZPC) for firms entails

cgVgo = (1− θg)Igo.

The Cobb-Douglas hiring function that matches occupation-specific applicants (πgoLg)
and vacancies (Vgo) is given by

Hgo = AMg V
χg
go (πgoLg)

1−χg .

Market tightness is the ratio of vacancies over applicants: ψogs ≡ Vogs/(πogsLog). This is a
useful definition since the employment rate (ego ≡ Hgo/πgoLg) is then a function of labor
market tightness and the employment elasticity χg:

ego = AMg ψ
χg
go .
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Starting from the ZPC, and substituting in the expressions for Igo and ego, we obtain that

cgVgo = (1− θg)A
M
g ψ

χg
go ηg (δgθg)

1
ξg Φ

1+ξg
ξg

g πgoLg.

Solving for labor market tightness:

ψ
1−χg
go = AMg

(1− θg)

cg
ηg (δgθg)

1
ξg Φ

1+ξg
ξg

g .

Importantly, the left-hand side is identical for all occupations o, which implies that labor
market tightness and the associated employment rate is indeed constant across o : ego =
eg, verifying our earlier conjecture. This employment rate is then equal to:

eg =
(
AMg

) 1
1−χg

(
(1− θg)ηg

cg

) χg
1−χg

(δgθg)
ξg

ξg(1−χg) Φ

χg(1+ξg)

(1−χg)ξg
g . (26)

Intuitively, a shock that increases Φg, increases the return to posting a vacancy in a group
and thereby pushes the employment rate up.

Equilibrium Compared to the baseline model, we have updated the labor supply side.
However, total payments to labor in an occupation are still measured by

∑
g Igo =

∑
g πgoIg.

At the same time, the labor demand side has remained identical. Hence, the expression
for the equilibrium in all market occupations, so excluding home production where the
wage is exogenous, remains as before:

ωoβo
∑
n

∑
g

πgnIg
ωn

=
∑
g

πgoIg,

and likewise for the counterfactual equilibrium:

ELDo = ωoβoω̂oβ̂o
∑
n

∑
g

πgnπ̂gnIg Îg
ωnω̂n

−
∑
g

πgoπ̂goIg Îg. (27)

Importantly though, we will need to take into account the intensive and extensive margin
in solving for Îg. First note from Equation (26) that

êg = Φ̂

χg(1+ξg)

(1−χg)ξg
g ,

while from (25) the expression for real income changes is updated to

Îg = êgΦ̂

1+ξg
ξg

g = Φ̂

1+ξg
(1−χg)ξg
g .
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The other hat equations remain similar to before, but now setting the final good price as
the numeraire.

Φ̂g =

πgHP +
∑

m̸=HP

πgOm

( ∑
o∈Om

πgo|OmÂgoŵ
κgm
o

) µg
κgm

1/µg

,

π̂go = π̂go|Om π̂gOm

π̂go|Om =
Âgoŵ

κgm
o∑

n∈Om πgn|OmÂgnŵ
κgm
n

,

π̂gOm =

(∑
o∈Om πgo|OmÂgoŵ

κgm
o

) µg
κgm

Φ̂
µg
g

,

ω̂o =
ŵ1−σ
o

(1− ωo)γ̂o + ωoŵ
1−σ
o

, (28)

β̂o = ν̂oP̂
1−ψ
o ,

P̂o =

[
(1− ωo)δ̂oγ̂

σ−1
o + ωo

(1− δ̂oδo)

(1− δo)
ŵ1−σ
o

] 1
1−σ

.

Finally, P̂ does not need to be solved for anymore, as it is the numeraire.

Appendix B Supplementary model illustration
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Figure B.1: Role of σ

(a) Wage vs. occupation price change

<
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

ŵ
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(b) Relative occupation price change
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(c) Employment share changes
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Notes: These figures are generated for a machine productivity shock γ̂o = 1.1 in the first occupa-
tion, while the other two occupations are not shocked. Panel (a) shows ŵo/P̂o, which determines

the change in the cost share of labor ω̂o =
(
ŵo/P̂o

)1−σ
(Figure 2, panel a). Next, panel (b) shows

the change in the real price of an occupation’s output (P̂o), which drives the change in the ex-

penditure share on an occupation β̂o =
(
P̂o

)1−ψ
(Figure 2, panel b). Finally, panel (c) shows the

change in employment shares for the occupations.
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Figure B.2: Role of ψ

(a) Wage vs. occupation price change
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(b) Relative occupation price change
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(c) Employment share changes
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Notes: These figures are generated for one γ̂o = 1.1 in the first occupation, while the other occu-
pations are not shocked. Panel (a) shows ŵo/P̂o, which determines the change in the cost share of

labor ω̂o =
(
ŵo/P̂o

)1−σ
(Figure 3, panel a). Next, panel (b) shows the change in the real price of

an occupation’s output (P̂o), which drives the change in the expenditure share on an occupation

β̂o =
(
P̂o

)1−ψ
(Figure 3, panel b). Finally, panel (c) shows the change in employment shares for

the occupations.
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Figure B.3: Role of σ with equal expenditure shares (βo = 1/3)

(a) The labor substitution effect
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(b) The demand effect
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(c) Labor demand change
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(d) Real wage changes
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Notes: In contrast to their counterpart in the main text, the model for these figures has equal
expenditure shares across occupations (βo = 1/3). These figures are generated for a machine
productivity shock γ̂o = 1.1 in the first occupation, while the other two occupations are not

shocked. Panel (a) shows the change in the cost share of labor ω̂o =
(
ŵo

P̂o

)1−σ
, while panel (b)

displays the change in the expenditure share on an occupation β̂o =
(
P̂o

)1−ψ
. Next, panel (c)

shows the change in labor demand as a share of total expenditure (ω̂oβ̂o), while panel (d) depicts
the real wage changes.
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Figure B.4: Role of σ with equal expenditure shares (βo = 1/3)

(a) Wage vs. occupation price change
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(b) Relative occupation price change

1 1.5 2 2.5
0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1
2
3

(c) Relative occupation price change
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Notes: In contrast to their counterpart in the main text, the model for these figures has equal ex-
penditure shares across occupations (βo = 1/3). The figures are generated for a machine produc-
tivity shock γ̂o = 1.1 in the first occupation, while the other occupations are not shocked. Panel

(a) ) shows ŵo/P̂o, which determines the change in the cost share of labor ω̂o =
(
ŵo/P̂o

)1−σ
(Fig-

ure B.3, panel a). Next, panel (b) shows the change in the real price of an occupation’s output

(P̂o), which drives the change in the expenditure share on an occupation β̂o =
(
P̂o

)1−ψ
(Figure

B.3, panel b). Finally, panel (c) shows the change in employment shares for the occupations.
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Figure B.5: Negative wage changes for large σ with equal expenditure shares (βo = 1/3)
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The figure shows wage changes for a larger range on σ and for a smaller productivity shock (γ̂o = 1.01),
but with equal expenditure shares (βo = 1/3) across occupations. For the productivity shock of γ̂o = 1.1,
the wage changes are always positive when all βo = 1/3, whereas here they are negative for large σ. As
documented in Figure 2, note that for γ̂o = 1.1, the wage changes also become negative for large σ when the
expenditure share on the shocked occupation is lower.
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Figure B.6: Role of σ when σ < 1

(a) The labor substitution effect
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(b) The demand effect
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(c) Labor demand change
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(d) Real wage changes
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Notes: These figures are generated for a machine productivity shock γ̂o = 1.1 in the first occu-
pation, while the other two occupations are not shocked. Panel (a) shows the change in the cost

share of labor ω̂o =
(
ŵo

P̂o

)1−σ
, while panel (b) displays the change in the expenditure share on an

occupation β̂o =
(
P̂o

)1−ψ
. Next, panel (c) shows the change in labor demand as a share of total

expenditure (ω̂oβ̂o), while panel (d) depicts the real wage changes.
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Figure B.7: Role of σ when σ < 1

(a) Wage vs. occupation price change
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(b) Relative occupation price change
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(c) Relative occupation price change

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.995

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1
2
3

Notes: The figures are generated for a machine productivity shock γ̂o = 1.1 in the first occupa-
tion, while the other occupations are not shocked. Panel (a) ) shows ŵo/P̂o, which determines the

change in the cost share of labor ω̂o =
(
ŵo/P̂o

)1−σ
(Figure B.6, panel a). Next, panel (b) shows

the change in the real price of an occupation’s output (P̂o), which drives the change in the expen-

diture share on an occupation β̂o =
(
P̂o

)1−ψ
(Figure B.6, panel b). Finally, panel (c) shows the

change in employment shares for the occupations.
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Appendix C Supplementary estimation results

Table C.1: First-stage results

(1) (2) (3) (4)
ln π̂go|Om ln π̂go|Om ln π̂gOm ln π̂gOm∑

o∈Om πgo|Om ∗ r̂o -0.75∗∗∗ -0.99∗∗∗

(0.080) (0.12)∑
Om

πgOm ∗ r̂Om -0.40∗∗∗ -1.70∗∗∗

(0.14) (0.32)
T-statistic 9.46 8.02 2.76 5.34
Occupation FE Yes Yes n/a n/a
Nest FE n/a n/a Yes Yes
Controls No Yes No Yes
Estimation 2430 2430 540 540

Notes: The table documents the relevance of the instruments, on the right-hand side in the es-
timation, for changes in the endogenous regressors in estimation equation (15). The controls
include gender FE, education level FE, age-bin FE and Census division FE. Standard errors are
clustered at the level of the demographic group, defined by gender, education level, age bin, and
Census division. P-values: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Table C.2: Reduced forms for actual and pre- period

ln Îg ln Îg +
1
µ̂ ln π̂gOm ln Îg

(1) (2) (3) (4) (5) (6)∑
Om

πgOm ∗ r̂Om 0.95∗∗ -1.11∗

(0.43) (0.67)∑
o∈Om πgo|Om ∗ r̂o 0.19∗∗∗ 0.048 -0.20∗∗∗ 0.080

(0.042) (0.061) (0.032) (0.055)
Time Period 2000-07 1990-2000 2000-07 1990-2000 2000-07 1990-2000
T-statistic 2.22 1.66 4.46 0.78 6.26 1.46
Nest FE n/a n/a Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes
Observations 270 270 540 540 540 540

Notes: Specification 1,2,5,6 regress changes in group-level hourly income (ln Îg) on the instru-
ments used in the IV estimation. Since

∑
o∈Om

πgo|Om
∗ r̂o is a nest-level instrument, we adjust

the dependent variable in specifications 3-4, based on the relation in our estimation equation (15).
In columns 5-6, we also report the unadjusted income variable, though this variable is less rele-
vant from the perspective of the model. All specifications control for gender FE, education level
FE, Census division FE and age-bin FE. In specifications 3-6, standard errors are clustered at the
demographic group level. P-values: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.
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Table C.3: Inverted estimation of reallocation elasticities (Dep. var.: ln π̂gOm)

(1) (2) (3) (4) (5) (6)
All (OLS) All (OLS) All Young Middle Old

ln Îg -0.018 -0.22∗∗∗ -3.40∗∗∗ -5.38∗∗ -3.02 -1.40∗∗∗

(0.029) (0.040) (1.13) (2.13) (1.99) (0.36)

ln π̂go|Om -0.052∗∗∗ -0.054∗∗∗ -0.64∗∗∗ -1.14∗∗∗ -0.85∗∗∗ -0.48∗∗∗

(0.011) (0.011) (0.19) (0.30) (0.22) (0.15)

Implied µ 0.018 0.22 3.40 5.38 3.02 1.40
(0.029) (0.040) (1.13) (2.13) (1.99) (0.36)

Implied κ 0.34 4.10 5.27 4.74 3.55 2.90
(0.58) (0.98) (3.10) (2.56) (2.96) (1.34)

KP F-stat 4.54 15.5 1.76 31.9
Controls No Yes Yes Yes Yes Yes
Occupation FE Yes Yes Yes Yes Yes Yes
Observations 2430 2430 2430 810 810 810

Notes: The table estimates the following equation ln π̂gOm
= αo+β1 ln Îg+β2 ln π̂go|Om

+εgo. Spec-
ifications 1 and 2 are estimated with OLS and the others with IV, with instruments

∑
o πgo|Om

r̂o
and

∑
m πgOm

r̂Om
. Specifications 4-6 restrict the sample to young, middle-aged, and old workers

respectively. All specifications except the first control for gender FE, education level FE, and Cen-
sus division FE. Specifications 2 and 3 also control for age-bin FE. Standard errors are clustered
at the level of the demographic group, defined by gender, education level, age bin, and Census
division. Significance levels based on p-values: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. Standard
errors for κ based on the delta method: SE(f(β2)) = SE(β2)|f ′(β2)| = SE(β2)/β

2
2 .
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Table C.4: Weighted estimation of age-specific reallocation elasticities. (Dep. var.: ln Îg)

(1) (2) (3) (4) (5) (6)
All (OLS) All (OLS) All Young Middle Old

ln π̂gOm -0.046∗ -0.052∗∗∗ -0.34∗∗∗ -0.26∗∗ -0.38 -0.75∗∗∗

(0.024) (0.010) (0.13) (0.12) (0.29) (0.21)

ln π̂go|Om -0.022∗∗ -0.00058 -0.21 -0.25∗ -0.32 -0.44∗∗

(0.0095) (0.0043) (0.14) (0.14) (0.30) (0.21)

Implied µ 21.8 19.1 2.98 3.80 2.64 1.33
(11.6) (3.77) (1.13) (1.72) (1.99) (0.37)

Implied κ 45.6 1735.3 4.71 4.07 3.13 2.29
(19.8) (13048.2) (3.01) (2.27) (2.95) (1.11)

KP F-stat 7.93 3.62 1.48 6.33
Controls No Yes Yes Yes Yes Yes
Occupation FE Yes Yes Yes Yes Yes Yes
Observations 2430 2430 2430 810 810 810

Notes: The table estimates equation (15), namely ln Îg = αo+β1 ln π̂go|Om
+β2 ln π̂gOm +εgo, with

national employment shares of the occupations as estimation weights. ln Îg is the log change in
average hourly wage in a group, and αo is an occupation fixed-effect. Specifications 1 and 2 are
estimated with OLS, and the others with IV, with instruments

∑
o πgo|Om

r̂o and
∑
m πgOm r̂Om .

Specifications 4-6 restrict the sample to young, middle-aged, and old workers respectively. All
specifications except the first control for gender FE, education level FE, and Census division FE.
Specifications 2 and 3 also control for age-bin FE. Standard errors are clustered at the level of the
demographic group, defined by gender, education level, age bin, and Census division. Signifi-
cance levels based on p-values: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. Standard errors for µ and κ
based on the delta method: SE(f(βi)) = SE(βi)|f ′(βi)| = SE(βi)/β

2
i .
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Table C.5: Weighted, inverted estimation of reallocation elasticities (Dep. var.: ln π̂gOm)

(1) (2) (3) (4) (5) (6)
All (OLS) All (OLS) All Young Middle Old

ln Îg -0.051∗∗ -0.18∗∗∗ -2.98∗∗∗ -3.80∗∗ -2.64 -1.33∗∗∗

(0.026) (0.037) (1.13) (1.72) (1.99) (0.37)

ln π̂go|Om -0.064∗∗∗ -0.062∗∗∗ -0.63∗∗∗ -0.93∗∗∗ -0.84∗∗∗ -0.58∗∗∗

(0.012) (0.012) (0.19) (0.20) (0.22) (0.19)

Implied µ 0.051 0.18 2.98 3.80 2.64 1.33
(0.026) (0.037) (1.13) (1.72) (1.99) (0.37)

Implied κ 0.80 2.95 4.71 4.07 3.13 2.29
(0.46) (0.73) (3.01) (2.27) (2.95) (1.11)

KP F-stat 3.82 3.86 1.67 22.7
Controls No Yes Yes Yes Yes Yes
Occupation FE Yes Yes Yes Yes Yes Yes
Observations 2430 2430 2430 810 810 810

Notes: The table estimates the following equation: ln π̂gOm
= αo + β1 ln Îg + β2 ln π̂go|Om

+ εgo,
with national employment shares of the occupations as estimation weights. Specifications 1 and 2
are estimated with OLS and the others with IV, with instruments

∑
o πgo|Om

r̂o and
∑
m πgOm

r̂Om
.

Specifications 4-6 restrict the sample to young, middle-aged, and old workers respectively. All
specifications except the first control for gender FE, education level FE, and Census division FE.
Specifications 2 and 3 also control for age-bin FE. Standard errors are clustered at the level of the
demographic group, defined by gender, education level, age bin, and Census division. Signifi-
cance levels based on p-values: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. Standard errors for κ based on
the delta method: SE(f(β2)) = SE(β2)|f ′(β2)| = SE(β2)/β

2
2 .
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Appendix D Appendix for the counterfactuals

Figure D.1: AI exposure, calibrated shocks, and wage changes for baseline model

(a) AI exposure and calibrated shocks
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(b) Calibrated shocks and wage changes
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(c) AI exposure and wage changes
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Notes: the Figure shows the relationships between an occupation’s relative exposure to AI (AIo),
measured as in Eisfeldt et al. (2025), the calibrated machine-productivity shocks for an occupation
(γ̂o) and the resulting counterfactual wage changes (ŵo) for the baseline quantification.
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Table D.1: Parametrization, data inputs, and shock calibration for the counterfactuals

Panel A. Elasticities

Value Description Measurement Notes

κg Young: 4.8
Middle: 3.6
Old: 2.9

Within-nest labor re-
allocation elasticity by
age group g

Own estimation See Table 2, cols. 4–6

µg Young: 5.4
Middle: 3.0
Old: 1.4

Across-nest labor re-
allocation elasticity by
age group g

Own estimation See Table 2, cols. 4–6

ψ 1.34 Demand substitution
across occupations’
output

Estimate by Caunedo
et al. (2023).

BMV find similar
value of ψ = 1.78.

σo ∈ [1.65, 2.66] Input substitution be-
tween machines and
labor

σo = σ+ (σ− σ) 1−Co

2 ,
with σ = 0.9, σ = 3

Co index corroborated
by Brynjolfsson et al.
(2025).

Panel B. Variables

Value Description Measurement Notes

Ig — Income for demo-
graphic group g

Total labor income Source: 2022 5-year
ACS in IPUMS

πgo see Table 1 Employment share of
group g in occupation
o

Model implies:
πgo = Igo/Ig , with
Igo a group’s earnings
in o

Source: 2022 5-year
ACS in IPUMS

βo see Table 1 Baseline expenditure
share on good o

Measured as
Ro/

∑
oRo, where

Ro = Io/ωo

ωo 0.76 Baseline cost share of
labor in occupation o

Estimate by Burstein
et al. (2013)

Results are fully insen-
sitive to instead set-
ting ωo = 0.24: a con-
sequence of our cali-
bration strategy

Panel C. Shock calibration

Value Description Target Notes

γ̂ See Figure D.1 Machine-augmenting
productivity shock

Extrapolated labor-
productivity (LP)
increases

Observed LP increase
from Dell’Acqua et al.
(2023)

Notes: Section 7.1.1 describes our parametrization (Panel A) in further detail. Section 5 presents the data
sources for the variables (Panel B), and Section 7.2 describes the calibration of the AI shock (Panel C).

65



Figure D.2: AI exposure, calibrated shocks, and wage changes for extended model

(a) AI exposure and calibrated shocks
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(b) Calibrated shocks and wage changes

0.95 1 1.05 1.1 1.15 1.2 1.25
1.034

1.036

1.038

1.04

1.042

1.044

1.046

1.048

Non-routine
Routine

(c) AI exposure and wage changes
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Notes: the Figure shows the relationships between an occupation’s relative exposure to AI (AIo),
measured as in Eisfeldt et al. (2025), the calibrated machine-productivity shocks for an occupation
(γ̂o) and the resulting counterfactual wage changes (ŵo) for the extended model with unemploy-
ment and an intensive margin.
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Figure D.3: Real wage changes in the extended model
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Notes: the figure presents changes in real wages for the model with involuntary unemployment and an
intensive margin adjustment.
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