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Abstract

This paper explores distributional random forests as a flexible machine learning method for analysing
income distributions. Distributional random forests avoid parametric assumptions, capture complex
interactions among covariates, and, once trained, provide full estimates of conditional income distri-
butions. From these, any type of distributional index such as measures of location, inequality and
poverty risk can be readily computed. They can also efficiently process grouped income data and be
used as inputs for distributional decomposition methods. We consider four types of applications: (i)
estimating income distributions for granular population subgroups, (ii) analysing distributional change
over time, (iii) small-area estimation of income distributions, and (iv) purging spatial income distri-
butions of differences in spatial characteristics. Our application based on the German Microcensus
provides new results on the socio-economic and spatial structure of the German income distribution.
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1. Introduction

Measuring distributions of income and wealth is a central concern of both statistics
and the social sciences. A large number of statistical techniques have been develo-
ped to estimate such distributions and to investigate their structure (e.g., Jenkins
and Van Kerm, 2009; Fortin et al., 2011; Chernozhukov et al., 2013; Cowell and Fla-
chaire, 2015; Chotikapanich et al., 2018; Molina et al., 2022). In many cases, these
techniques involve strong parametric assumptions about distributional shapes or the
structure of regression models that describe how distributions depend on covaria-
tes. A key advantage of modern machine learning methods such as random forests
(Breiman, 2001; Athey et al., 2019) is their ability to avoid such assumptions. As a
recursive partitioning algorithm, the random forest is based on sequentially splitting
the covariate space into cells of observations that are similar with respect to a tar-
get criterion, and by aggregating independent repetitions of this procedure. It has
a non-parametric structure, accomodates complex interactions and potentially non-
smooth relationships, and implicitly addresses model-selection problems. Random
forests have demonstrated remarkable success across a wide range of applications
(Biau and Scornet, 2016).

Breiman (2001)’s original random forest was designed for non-parametric mean
estimation. Subsequent extensions included survival analysis (Hothorn et al., 2004),
conditional quantile estimation (Meinshausen, 2006), and estimators defined by local
moment conditions (Athey et al., 2019). More recently, Cevid et al. (2022) and Naf et
al. (2023) proposed a highly general variant of the random forest aimed at estimating
full conditonal distributions (distributional random forest, DRF).

As pointed out by Cevid et al. (2022), building random forests for full distribu-
tions — rather than for individual target objects such as means, quantiles or other
distributional indices — has a number of advantages. These advantages are particu-
larly relevant to analyses of the income distribution. First, forest building needs to be
carried out only once to obtain estimates for arbitrarily many targets. For example,
if one is interested in distributional indices such as the median income, the at-risk-
of-poverty rate, quantile ratios, or the Gini index for small population subgroups,
one has to fit the random forest only once and then obtain estimates of these targets
from the conditional distribution. Second, since the estimates for different targets are
obtained from the same forest, they are mutually compatible. This is not necessarily
the case if a new forest is fit for each target. For example, it is well known that
conditional quantiles may cross if they are estimated separately. Similarly, fitting
separate forests may produce values of the at-risk-of-poverty rate and the Gini coef-
ficient for individual subgroups that are difficult to reconcile. Third, fitting separate
forests for different target objects requires suitable target-specific splitting criteria.
For many targets these are unknown or could be difficult to derive. By contrast,
the DRF directly uses a powerful distributional criterion for splitting, the maximum
mean discrepancy (MMD) statistic (Gretton et al., 2007).

As a statistical method, the distributional random forest follows the same esti-
mation goal as a number of other estimators of conditional distributions. These
alternatives typically have a parametric or semi-parametric structure, see, e.g.,
Donald et al. (2000), Biewen and Jenkins (2005), Rigby and Stasinopoulos (2005),
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Hothorn et al. (2013). Conditional quantile models (Koenker, 2005) and binary models
for distributional thresholds (Chernozhukov et al., 2013) can also be used to construct
conditional distribution functions, but they require fitting a large number of quantiles
or threshold models. However, in all of these models, it is not easy to accomodate
issues such as non-smooth dependencies, complex interaction effects and automa-
tic variable selection, features that are automatically handled by the random forest.
Before the development of the fully non-parametric distributional random forest, Sch-
losser et al. (2019) and Hothorn and Zeileis (2021) proposed parametric variants based
on fitting predefined distributional forms. Such specifications can be attractive if the
number of training observations is limited. By contrast, this paper uses Cevid et al.
(2022)’s non-parametric version of the distributional random forest as a fully flexi-
ble device to estimate the relationship between outcome distributions and covariates
using a large data set.

The purpose of this paper is to apply distributional random forests to several
estimation problems in the analysis of the income distribution. We consider four
applications: (i) estimating income distributions for granular population subgroups,
(ii) analysing distributional change over time, (iii) small-area estimation of income
distributions, and (iv) purging spatial income distributions of differences in spatial
characteristics. Application (i) is commonly used by governments and statistical age-
ncies to monitor the well-being of population subgroups and to inform policy measures
(e.g., poverty alleviation). Task (ii) decomposes changes in the aggregate distribution
over time by separating changes attributable to shifts in population composition from
changes due to income dynamics within population subgroups. Application (iii) is also
a common task of governments and statistical agencies aimed at constructing maps of
statistical information on quantities such as median income, at-risk-of-poverty indices
or income inequality across geographical areas with potentially sparse observations.
This question has been addressed by a large literature on small-area estimation, see
Tzavidis et al. (2018) and Molina et al. (2022) for overviews. Given the inherent
smoothing properties of random forests (Lin and Jeon, 2006), this method appears
well-suited for small-area estimation. Indeed, Krenmair and Schmid (2022) recen-
tly incorporated a random forest component into a small-area mixed effects model
for estimating area-level means. In this paper, we use the DRF to estimate area-
level distributions with the goal of constructing area-level statistical indices (means,
at-risk-of-poverty rates, inequality indices). In a final application (iv), we consider
the problem of purging spatial income distributions of differences in spatial chara-
cteristics. This isolates the ‘pure’ spatial structure of income levels and inequality,
independent of variation in age, employment, education, and other characteristics
across spatial units. To the best of our knowledge, this application is novel in the
literature

Our empirical analysis is based on the German Microcensus, an annual survey
conducted by the Federal Statistical Office of Germany (Federal Statistical Office,
2024). The Microcensus is the largest sample survey in Germany and in Europe.
Despite its large sample size and exceptional representativeness, it has rarely been
used for income distribution analysis because it reports income in grouped form.
While grouped income information necessarily limits the information content, we
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demonstrate in this paper how the distributional random forest can effectively deal
with this issue.

In addition to demonstrating the usefulness of the distributional random forest
approach for analysing the income distribution, this paper contributes a number of
substantive results on the German income distribution based on Microcensus data for
the years 2005 and 2019. Specifically, we provide new evidence on the incomes and
poverty risk of granular population subgroups and analyse distributional change over
time. We show that inequality and poverty risk increased between 2005 and 2019, but
that this was the result of changes in the composition of the population rather than
by income changes within population subgroups. Finally, we provide distributional
maps of household income and inequality for Germany at a much higher geographical
resolution than previous analyses (Immel and Peichl, 2020; Walter et al., 2022).

The remainder of this paper is structured as follows. Section 2 outlines the method
of distributional random forests due to Cevid et al. (2022) and Naf et al. (2023).
Section 3 provides basic information on the data. Sections 4 to 7 present our empirical
applications, section 8 presents simulation evidence, and section 9 concludes.

2. Distributional random forest

We outline the main properties of the distributional random forest (DRF) as introdu-
ced by Cevid et al. (2022) and Naif et al. (2023). Let Y = (Y1,...,Yy) € R? denote a
potentially multivariate outcome vector and X = (X1,...,X,) € RP a vector of cova-
riates. The goal of the DRF is to estimate the conditional distribution P(Y|X = x)
based on a random sample (y;,X;),s =1,...n.

The DRF produces an estimate P(Y|X = x) of the conditional distribution by
repeating a recursive partitioning algorithm (= tree building) k = 1,..., N times on
random pertubations of the data and by averaging the results (= random forest).
For each tree k, the sample is successively partitioned into groups of observations (=
leaves). The partitioning proceeds greedily by splitting a parent node P into two child
nodes Cr = {X; <1} and Cr = {X; > I} based on candidate splitting variables X;
that are chosen randomly (see below). The split is chosen to maximize the difference
between C1, and C'r with respect to a specified objective function.

In Breiman (2001)’s original random forest for mean outcomes, splits were perfor-
med so that (in the case of an univariate outcome), the resulting mean outcomes in
Cr and Cg differed as much as possible, i.e.,

2

NLNR 1 1
max 3 — > - — > v, (1)
1:0,={X,;<1},Cr={X,;>1} n? ny &5 nr £S5,

where np,ngr and np are the number of observations in the child and parent nodes,
respectively.

In the DRF, splits are performed to maximize distributional differences between
the resulting child nodes Cr, and Cr. Distributional differences are measured by the
Maximum Mean Discrepancy (MMD) statistic (Gretton et al., 2007). The MMD sta-
tistic builds on the theory of distribution embeddings in Reproducing Kernel Hilbert
Spaces (RKHS) (Muandet et al., 2017).
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Let (H,{-,-)#) denote a RKHS of real valued functions on R? induced by a
positive-definite kernel k(-,-) with inner product (-,-)#, norm || - ||%, and implicit
feature map ¢ : R — H satisfying k(y,y’) = (¢(y), ©(y")) 2. The feature map ¢(y)
can be interpreted as a (possibly infinite-dimensional) collection of aspects of y. The
term k(y,y’) is then a measure of similarity between points y and y’ in terms of all
their aspects captured by the feature map. This similarity measure is linear in the
feature space, but may be very nonlinear in the original space R?, depending on the
richness of the feature map (‘kernel trick’).

Let P be a distribution and define

1(P) = Ev ~p [p(Y)] (2)

as its mean embedding in the Hilbert space H (i.e., every distribution P is represented
as an element of H). For certain choices of the kernel (i.e., characteristic kernels),
this mapping is one-to-one, so that each distribution is uniquely represented by one
element in the RKHS. Differences between two distributions P and Q can thus be
measured by the distance function in the corresponding Hilbert space, i.e., d(P, Q) =
l(P) — w(Q)||3, (i.e., the distance between their mean embeddings in the Hilbert
space).

The distributional random forest uses this distance measure between the distribu-
tions of outcomes in two child nodes C;, and Cg to find splits that make distributions
in C, and CRr as different as possible. In this case, the MMD statistic is

Dvmp(Cr,Cr) = [|u(Pc,) — :LL(,PCR)H?}-[
2

L > w(yi)—i S ey - (3)

n . .
i1€Cp, 1€Cpr n

Note the similarity to Breiman (2001)’s original splitting criterion (1), which results
when the feature map consists only of the value y itself (i.e., p(y) = y). In this
case, the statistic only measures average differences in the level of y. By contrast, if
the feature map is richer, it measures average differences in all features encoded by
the feature map () (see (3)). For example, if ¢(y) includes higher-order terms of
y, it will not only measure differences in means between Cr, and Cr but in higher-
order moments. It can be shown that the implicit feature maps of characteristic
kernels is infinite-dimensional and powerful enough to detect any differences between
distributions (Gretton et al., 2007).! The MMD statistic can be equivalently written
as

1 1
Dvmp (Cr, Cr) =5 > k(yi,ys) + 5 > k(yirys)
L

i,j€CT R i,jeCy
2
- DD ki) 4)
MLMR 0, jeCn

L In our empirical application, we use the Gaussian kernel as in Cevid et al. (2022).
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This formulation provides an intuitive interpretation: the statistic measures how simi-
lar — as described by the kernel — observations are within each sample, as compared
to between the two samples.

As in Breiman (2001)’s original splitting criterion (1), the distributional random
forest uses a version of Dyvp that is rescaled by the factor nLnR/n%. In order for
the forest to be consistent for the true conditional distribution P(Y|X = x), forest
construction has to comply with a number of rules (Athey et al., 2019; Cevid et al.,
2022):

1. Honesty: Splits are determined on one half of the data, distributional predictions
are computed on the other half of the data.

2. Random-split: The probability that the split occurs along feature X; is bounded
from below by 7/p for some m > 0 (p is the number of covariates).

3. Symmetry: The tree output does not depend on the ordering of the training
samples.

4.  Regularity: Each child contains at least a fraction e < 0.2 of the parent node.
Trees are grown until each leaf contains between x and 2k — 1 observations.

5. Subsampling: Trees are grown on subsamples of size s, = n? drawn from of
the original n sample observations, where § must lie within particular bounds
depending on p, 7 and « (Cevid et al., 2022).

The distributional random forest F is based on N trees 71, ..., Tn grown according
to the rules above. Define £ (x) as the set of training data observations that end up
in the same leaf as x in tree £k = 1,..., N. The main output of the distributional
random forest is a set of observation- and test-point-specific weights

N
_ L g~ 106 € L) )

measuring the frequency with which training observation ¢ = 1,...,n ended up in the
same leaf as a test point with X = x. The weights quantify the importance of each
training data point (yi,X;),? = 1,...,n for predicting the conditional distribution of
Y at test-point X = x. Formally, the resulting estimate is given by

PY[X =x) =) di(x) - by, (6)

=1

where dy, denotes the point mass at y;. The weights (5) characterize the distribu-
tional random forest as a locally adaptive nearest-neighbour method that smooths
observations across the covariate space (Lin and Jeon, 2006).

Cevid et al. (2022) show that (6) is consistent in the sense that the estimated
conditional distribution function converges in probability to the true conditional
distribution function. This, in turn, implies that smooth functionals of the condi-
tional distribution also converge to their population counterparts. In practice, this
means that the random forest weights w; (x) can be used to compute any statistic of
interest I(P(Y|X = x)) (e.g., the mean, the Gini index, the at-risk-of-poverty rate)
based on the plug-in principle. This approach yields estimates for small subgroups
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with X = x even when these subgroups are only weakly represented — or not repre-
sented at all — in the sample, by borrowing information from training observations
with covariates that are most similar to x.

Naf et al. (2023) show that, under suitable conditions, the mean embeddings of the
distributional random forest estimators are asymptotically normal, which implies that
sufficiently smooth functionals based on the random forest weights are also asympto-
tically normal. Moreover, these sampling distributions can be practically simulated
by a bootstrap half-sampling procedure. To this end, b = 1,..., B half-samples Sp
are drawn from the original training observations. For each half-sample, L trees are
grown to build ‘mini forests’ Fp,b = 1,..., B. The weights w?(x) of these mini forests
then serve as bootstrap replications of the original weights w;(x) to compute boot-
strap versions of the statistics of interest. The procedure can be efficiently used to
construct the overall forest consisting of N = L- B trees by pooling the L mini forests
to form the total forest. In our empirical analysis, we use the procedures of Cevid et
al. (2022) and Néf et al. (2023) to compute point estimates and confidence intervals
for the statistics of interest.

The following algorithm summarizes the steps of the estimation procedure:

Algorithm 1: Pseudocode for computation of DRF point estimate and stan-
dard errors for inequality statistic I(x) = I(P(Y|X = x)) at test point x

procedure BUILDFOREST(Y,X) // training data (Y,X)

for b+ 1 to B do
L Sp < draw a half-sample from original sample

Fy < DRF(Sy, L) // mini forest number b
return {F1,...,Fp} // mini forests
procedure FORESTWEIGHTS(x) // for test point x

for b+ 1 to B do
L wp (x) < get weights from mini forest F at test point x

w(x) = 5 Xy wp(X)

return w(x) // weights for overall forest at x
return wi (x),...,wp(x) // weights for bootstrap replications
procedure ESTIMATESANDSTDERRORS(X) // for test point x
I(x) + I(w(x),Y,X)) // inequality point estimate at X =x
for b+ 1 to B do
L Iy (x) + I(ws (x),Y, X)) // bootstrap replications
2
Stderry(xy < \/ﬁ Zle (Ib(x) - é Zle Ij(x)>
return I(x) // inequality point estimate at X =x
return Stderr(/(x)) // bootstrap standard error
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3. Data

Our analysis is based on the German Microcensus for the years 2005 and 2019 (Federal
Statistical Office, 2024). The Microcensus is conducted annually and provides a 1%
random sample of the German population, including information on income and socio-
economic characteristics for all persons in the surveyed households. It is the largest
sample survey in Germany and in Europe. Data quality is high, and non-response is
low due to mandatory participation. Most parts of our analysis rely on the Scientific
Use File (SUF) of the Microcensus (Federal Statistical Office, 2024). For analyses
requiring local identifiers at the municipality level, we use a restricted version of
the Microcensus, accessible only on site at the Research Data Centers (RDC) of the
Federal Statistical Offices.

Although the Microcensus is the largest and most representative sample survey
for Germany, it has rarely been used for income distribution analysis (Boehle, 2015;
Hochgiirtel, 2019; Walter et al., 2022). One reason is that income is recorded in
grouped form. In the two survey years considered here, respondents were asked to
provide information on monthly household net income in income brackets of increasing
width. The income brackets used for grouped income data are given in table 1. Note
that the top bracket is open-ended.

Table 1. Income brackets for monthly household net income (euros)

(0; 150] (150; 300] (300; 500] (500; 700] (700; 900]

(900; 1,100] (1,100; 1,300 (1,300;1,500]  (1,500;1,700]  (1,700;2,000]

(2,000 2,300 (2,300 2,600] (2,600;2,900]  (2,900;3,200]  (3,200; 3,600]

(3,600; 4,000] (4,000 4,500] (4,500;5,000]  (5,000;5,500]  (5,500;6,000]
] ]

(6,000;7,500]  (7,500;10,000]  (10,000; 18,000 (18,000; 00)

Source: German Microcensus, 2005 and 2019.

Following standard practice, we adjust household income using the OECD equi-
valence scale. This scale assigns a weight of one to the first household member, a
weight of 0.5 to each additional member aged 15 and over, and a weight of 0.3 to
each additional member aged 14 and under. For example, if a household’s net income
falls within the interval (4,000;4,500], the equivalised income for a household with
two adults and two children (equivalence weight = 14+0.54+0.34+0.3 = 2.1) lies in the
interval (1,905;2,143]. As the distributional random forest can handle multivariate
outcomes, we define the lower and upper bounds of the (equivalised) income interval
as the dependent outcome, i.e., Y = (Y1ower, Yupper)-

To ensure applicability across all income groups, we impose an upper bound on
the highest income bracket, which is open-ended in the data. Following Walter et
al. (2022), we define this limit as 3 - 18,000 = 54,000, resulting in a top interval of
(18,0005 54,000]. While Walter et al. (2022) did not provide a formal justification for
their choice, a reasonable rationale is that household incomes in the Microcensus fol-
low an approximate Pareto tail with tail parameter a = 2, implying that the midpoint
of the interval (18,000; 54,000] coincides with the expected income of this group, i.e.,
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Table 2. Covariates for the distributional random forest

2005 2019

Variable Mean Std. dev. Mean Std. dev.
# adults in hh 2.032 0.802 1.981 0.792
# adults 18-29 years 0.380 0.668 0.340 0.645
# adults 30-49 years 0.866 0.869 0.717 0.842
# adults 50-64 years 0.434 0.717 0.536 0.766
# adults 65+ years 0.351 0.668 0.386 0.698
# children in hh 0.691 1.028 0.642 0.642
# children 0-3 years 0.123 0.382 0.136 0.403
# children 4-6 years 0.304 0.651 0.403 0.637
## children 7-17 years 0.262 0.581 0.217 0.217
# adults foreign nationality 0.159 0.556 0.239 0.652
Share foreign adults > 0.5 0.090 0.286 0.134 0.341
# adults male 0.996 0.601 0.975 0.587
# adults female 1.035 0.496 1.006 0.508
0 FT!, 0 PT, 0 MPT 0.294 0.454 0.253 0.408
0FT,0PT, >1MPT 0.028 0.164 0.029 0.167
0FT,>1PT, >0 MPT 0.046 0.207 0.072 0.258
1FT,0PT, 0 MPT 0.240 0.426 0.202 0.401
1FT,0PT, >1MPT 0.059 0.235 0.049 0.215
1FT, >1PT, >0MPT 0.117 0.320 0.171 0.376
>2FT,>0PT, >0MPT 0.212 0.408 0.221 0.414
# registered unemployed in hh 0.153 0.426 0.059 0.280
# unemployment benefits in hh 0.136 0.404 0.106 0.528
# adults tertiary education? 0.253 0.559 0.511 0.728
# adults higher secondary 0.174 0.452 0.196 0.476
# adults vocational training 1.097 0.894 0.919 0.865
# adults low education 0.507 0.775 0.775 0.689
East Germany 0.218 0.413 0.194 0.395
Indicators for 16 federal states (details omitted)

# individuals 440,268 506,615

# households 211,833 255,164

Source: Microcensus, 2005 and 2019. ! FT = Full-time, PT = Part-time, MPT =

Marginal part-time. 2 Highest educational qualification.

E(household income|household income > 18,000) = a/(a — 1) - 18,000 = 36,000 (Bla-
nchet and Piketty, 2022, p. 275). This approach is consistent with standard practice

for grouped data, where interval midpoints are commonly used as approximations
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to group means (see below). We find that our results are fairly robust to different
choices of the upper limit, as only a small fraction of observations fall into the top
income interval (0.21% in 2005 and 0.45% in 2019), see supplementary appendix for
more details.

The equivalisation procedure leads to overlapping income intervals across obse-
rvations, which does not pose a problem for the distributional random forest. To
construct a proper distribution function F¢(y | x) for equivalised income y conditio-
nal on characteristics X = x, we aggregate probability mass over the upper bounds of
the income intervals, following standard practice in grouped-data analysis (an income
bracket contributes fully to the probability mass only once its upper interval bound is
reached). Concretely, we compute the share of observations with equivalised income
less than or equal to Ai, less than or equal to Az, and so on, where Ai, Az, ...
denote the ordered distinct upper interval limits observed in the data. This yields the
conditional cumulative distribution function of equivalised income and makes full use
of the information contained in the grouped income variable.

We use the resulting income groups (Ao; A1], (A1; A2],...,(As_1;As] and their
implied frequencies f; to compute statistics of interest (quantlles, means, and Gini
coefficients) using the grouped-data formulas developed by Tille and Langel (2012).
These formulas rely on linear interpolation within intervals for quantiles and the CDF,
while the Gini formula is based on a quadratic interpolation of the Lorenz curve with
an additional correction term for within-interval inequality. Let I; = A; — A;_1
and ¢; = (Aj; + A;j—-1)/2 denote interval widths and midpoints, respectively. The
grouped-data formulas for the mean, CDF, quantiles, and the Gini coefficient are
given as follows (we omit conditioning on X = x):

J
T = ijc_j (7)
j=1

A
Fe(y) = Z fk+fg(y)+@) J(y) s Aj—1 Sy < Aj (8)
k<j(y) J(y)
p—F(Ajp)-1)

Q) = Ajpy-1 + i s J(p) s FO(Aj—1) Sp < F°(4;)  (9)

Fi
2

J J
f%ZZ fk|c]—ck|+2 L (10)

Our simulation exercise below suggests that interval censoring has only a minor influ-
ence on the values of these statistics in our application (relative to the uncensored
case), because the number of intervals is relatively large.

We account for the Microcensus sampling (= grossing-up) weights when compu-
ting and aggregating distributions from the fitted random forest. Specifically, we
incorporate these weights in the computation of f; for results conditional on X = x,
and we use them whenever we aggregate such results across x, for example as in (11)
below. By contrast, it is currently not possible to fully incorporate sampling weights
into the training of the random forest. We do not expect this limitation to materially
affect our estimates, because the variation in Microcensus weights is limited. As a
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sensitivity check, we re-estimated selected specifications using a reweighted sample
constructed from the original sampling weights. This led to results that were very
close to those from the original sample, see supplementary appendix for more details.

4. Estimating income distributions for granular population
subgroups

Our first goal is to estimate distributions of equivalised net income for narrowly
defined population subgroups. This is an important task for monitoring the well-being
of specific groups, especially those at risk of poverty or social exclusion. To define these
subgroups, we leverage the rich set of socio-economic characteristics at the individual
and household level provided by the Microcensus. Since equivalised income is based
on the assumption of income pooling within households, all covariates are constructed
at the household level (for the equivalised income of a given individual, it matters
which household she lives in). A summary of the covariates X used in our analysis is
shown in table 2.

Table 3. Tuning parameters of the distributional random forest

Tuning parameter Range Description

mtry 2, 3,8, 12, 15, 20, 30 7 variables tried at each split
min.node.size 2, 5, 10, 15, 20, 25 Target minimal leaf size
sample.fraction 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1 Subsampling fraction

alpha 0, 0.01, 0.05, 0.1, 0.25 Maximum imbalance of split (=a)
imbalance.penalty 0, 0.05, 0.1 Penalty for split imbalance

Note: See Cevid et al. (2022) for details.

Our first step is to fit and tune the distributional random forest. Cevid et al. (2022)
do not discuss tuning of the distributional random forest. To arrive at a practically
feasible procedure, we proceed as follows. We use a training sample (40% of the
original 2019 sample) and a test sample (30% of the original 2019 sample). The steps
are as follows:

1. Random parameter selection: We randomly varied the tuning parameters within
the ranges given in Table 3, generating 300 parameter combinations.

2.  Training: For each parameter combination, we fitted the distributional random
forest in the training sample and computed conditional cdf’s F¢(y|x) for all
observations in the test sample.

3. Testing: We then computed the model-implied aggregate distribution of equiva-

lised income,
Fe(y) = / Fe (ylx) dFx (x) (11)

on the test sample and compared it with the observed empirical distribution
FemP(y) of equivalised incomes in the test sample.



12 Biewen, Glaisner and Zeller

Fig. 1: Tuning of the distributional random forest
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Note: The figure shows the distribution of goodness-of-fit indicators across 300 spe-
cification variants for tuning parameters evaluated on a test sample (lower values
indicate better fit).

4.  Fvaluation: We assessed goodness-of-fit using several statistical distance measures
between F¢(y) and F°™P(y), including Anderson-Darling, Cramer—von Mises,
Kolmogorov-Smirnov, and Chi-square statistics.
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The results of this exercise are shown in figure 1. By minimizing the discrepancy
statistics between the predicted and observed income distributions within reasonable
parameter ranges, we chose the final tuning parameters as mtry=12, min.node.size=5,
sample.fraction=0.1, alpha=0.05, imbalance.penalty=0.1. We found that our random
forest results typically did not vary much across different specifications of tuning
parameters, which is reflected in the small differences in goodness-of-fit between alter-
native choices (figure 1). Using these tuning parameters, we fitted our final random
forest on the full sample based on L - B = 250 - 50 = 12,500 trees. Our final model
produced an aggregate income distribution function that was practically indistingui-
shable from the empirical distribution in the test set. This was generally true even
for suboptimal tuning parameters.

Table 4 defines ten examples of narrowly defined population subgroups for which
we estimate equivalised net income distributions using DRF's for 2005 and 2019. These
subgroups consist of individuals in households with specific socio-economic characte-
ristics, as summarized in table 2. In most cases, the number of observations in a
given subgroup would be much too low to estimate meaningful income statistics dire-
ctly. Like in regression analysis, the random forest estimates group-specific outcomes
by leveraging observations with similar characteristics (i.e., observations from other
regions and households that are similar in terms of age, education and employment
behaviours of their members).

Figure 2 presents the results for different subgroups. For illustration, the graphs
include a GB2 density fit. This is done solely for visualization purposes to highlight
distributional shapes. The generalized beta distribution of the second kind (GB2) has
been shown to provide a good fit to aggregate income distributions (Chotikapanich
et al., 2018), but it fits less well for some of our subgroup-specific distributions. For
each subgroup, we compute key statistics such as mean equivalised income, the at-
risk-of-poverty rate, and the Gini coefficient using the grouped-data formulas in Tille
and Langel (2012).2

The results shown in figure 2 exhibit highly plausible patterns. There is overall
income growth from 2005 to 2019, but gains in mean income are heterogeneous. They
range from 21.2% for individuals from the five-person family in BW to 38.3% for
individuals in the single-mother household with two children, as defined in table 4.
As expected, the at-risk-of-poverty rate varies considerably across household types,
from zero percent in double-income-no-kids households to around 90% in the single
unemployed household. The characteristics of the latter were intentionally chosen to
be unfavorable in order to illustrate an extreme case. Finally, there are large differe-
nces in within-group inequality across subgroups as measured by the Gini coefficient.
Some groups are extremely homogeneous (individuals in single unemployed househ-
olds with a Gini coefficient of around 0.14), while others are highly heterogenous even
within the narrow type definitions considered here (individuals in the double-income-
no-kids household with a Gini of around 0.28).We also observe a general trend of

2 Following standard practice in European countries, the at-risk-of-poverty rate is defined
as the proportion of the population with equivalised income below 60% of the population
median income.



Distributional random forests

15

decreasing within-group inequality for most types between 2005 and 2019 (an exce-

ption are elderly widows). In summary, once fitted, the distributional random forest

enables policymakers and statistical agencies to flexibly monitor multiple aspects of

economic welfare for finely defined population subgroups.

Fig. 2: Distribution of equivalised net incomes in narrow population subgroups
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5. Analysis of distributional change over time

The distributional random forest captures information on income distributions for
finely defined population subgroups. It can therefore be used to decompose changes
in the aggregate distribution into compositional and structural components (Fortin
et al., 2011). To this end, consider the counterfactual distribution

Fiio.00) () = | Foro(ulx) dFx,2005(x), (12)
X

which is the distribution of equivalised incomes that would have prevailed in 2019, if
the distribution of household characteristics Fix(x) remained as in 2005. This gives
rise to the decomposition

Fi19,10) (¥) — F(0s,05) (¥) = F(19,10) (Y) — F{19 05y (¥) + F{19 05 (¥) — F(05,05) (¥);

composition effect structural effect
(13)
i.e., changes in the distribution of equivalised incomes between 2005 and 2019 are
decomposed into effects attributable to changes in population composition Fx, and
by changes in income structures F¢(y|x) as captured by the distributional random
forest.

Fig. 3: Aggregate decomposition, 2005-2019
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Source: Microcensus 2005 and 2019. Cumulative distribution functions.

Results for this decomposition are presented in table 5 and figure 3. Between 2005
and 2019, we observe overall income growth, but also an increase in inequality and
poverty risk: mean equivalised income increased from 1,556 to 2,298 euros, the median
rose from 1,307 to 1,928, while the Gini coefficient increased from 0.304 to 0.321 and
the at-risk-of-poverty rate rose from 0.136 to 0.171. Inequality increased primarily in
the lower half of the distribution: the P90/P10-ratio rose from 3.384 to 3.616, but this
was entirely driven by an increase of the P50/P10-ratio from 1.845 to 1.955, while
the P90/P50-ratio only changed very little from 1.833 to 1.876.

The counterfactual results in the middle column of table 5 suggest that holding
the population composition fixed at its 2005 level while updating income structures
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Table 5. Decomposition of distributional change, 2005-2019

2005 Counterfactual® 2019
Mean 1,555.731 2,022.35 2,298.12
(3.81) (3.91) (4.54)
Gini 0.304 0.297 0.321
(0.001) (0.001) (0.001)
P10 708.07 915.97 1,000
(2.61) (8.76) (0.01)
P50 1,306.66 1,731.65 1928.11
(11.21) (0.07) (0.43)
P90 2,396.40 3,034.72 3,616.20
(0.33) (15.70) (3.50)
P90/P10 3.384 3.313 3.616
(0.012) (0.038) (0.004)
P90/P50 1.833 1.753 1.876
(0.015) (0.009) (0.002)
P50/P10 1.845 1.891 1.955
(0.015) (0.009) (0.002)
At-risk-of-poverty rate 0.136 0.140 0.171
(0.001) (0.001) (0.001)

Source: Microcensus 2005 and 2019. Bootstrap standard errors in parentheses.
Differences between 2005 and 2019 are statistically significant at 1% level.

1Population composition from 2005, income structure from 2019.

to their 2019 levels accounts for most of the observed income growth between 2005
and 2019. However, this shift has little impact on inequality and poverty levels.
Indeed, when only income structures F'¢(y|x) are updated (while keeping composition
constant), inequality as measured by the Gini coefficient and the P90/P10 ratio even
slightly declines (from 0.304 to 0.297, and from 3.384 to 3.313, rows 2 and 6 of table
5). Updating income structures alone also leads to small increases in the at-risk-of-
poverty rate and the P50/P10 ratio (from 0.136 to 0.140, and from 1.845 to 1.890,
respectively), and to slight inequality reductions in the upper half of the distribution,
as indicated by the counterfactual fall of the P90/P50-ratio from 1.833 to 1.753 — but
these effects are modest.

In contrast, updating the population composition to its 2019 level implies large
increases in inequality and poverty risk (middle vs. last column of table 5). These com-
positional shifts largely account for the observed increase in inequality and poverty
between 2005 and 2019, suggesting that the rise in inequality over this period can be
fully explained by compositional changes in the population.

How did the composition of the population change between 2005 and 20197 Table
2 summarizes these shifts. We observe population ageing, an increasing share of hou-
seholds with foreign nationals, greater heterogeneity in employment outcomes, and
growing polarization in educational qualifications. Together, these changes increased
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population heterogeneity, which in turn amplified income inequality. In some cases,
the observed shifts also increased the proportion of low-income households, thereby
raising the aggregate at-risk-of-poverty rate.

Figure 3 provides a graphical summary of the decomposition. Updating income
structures shifts the distribution markedly upward, with little apparent change in
inequality. Updating population composition in addition yields only modest further
income growth but stretches the distribution to the right, consistent with higher

inequality.

6. Small-area estimation of income distributions

In this section, we leverage the smoothing properties of the distributional random
forest to estimate local income distributions. To this end, we use detailed geographical
identifiers from the Microcensus down to the municipality level, along with additional
municipality-level predictors (INKAR, 2024) that are commonly used in small-area
estimation (Fabrizi et al., 2020; Gardini et al., 2022; Molina et al., 2022; De Nicolo
et al., 2024). Germany has approximately 10,000 municipalities, including around
2,000 towns and cities and roughly 8,000 smaller administrative entities that combine
multiple geographical units.3

To estimate local distributions of equivalised net income, we fit a distributional
random forest using both the latitude and longitude of geographical units as well as
area-specific predictors m. In particular, we estimate

F¢(y|(latitude, longitude), m), (14)

where (latitude, longitude) refer to the center of a geographical unit. The vector m
collects the following area-specific information obtained from INKAR (2024):

Population size

Unemployment rate

Tax revenue per inhabitant

Population share of age group 0-18
Population share of age group 18-30
Population share of age group 30-65
Population share of age group 65 years or over
Population density (= population/area)

Our approach combines smoothing across area-specific predictors m (as in clas-
sical small-area estimation) with direct smoothing across geographical space, which
is absent from most small-area methods.* The random forest is a natural tool to
smooth over both area-specific predictors and geographical locations as it is based

3 Due to stricter data protection rules, geographical identifiers for Bavaria are available
only at the county level, the next administrative tier above municipalities. We therefore use
county-level data for Bavaria while retaining municipality-level data for all other regions.
4 An exception is Sugasawa et al. (2020), who smooth local income distributions using
a latent spatial correlation structure but do not incorporate additional area-specific
predictors.
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Fig. 4: Distributional indices and their change between 2005 and 2019
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Source: Microcensus 2005 and 2019. Computations are based on estimated distri-
butions of equivalised net incomes at the municipality level (county level for

Bavaria).

on grouping observations that are ‘similar’ both in terms of the area-specific pre-
dictors and geographical location. We obtain estimates of local income distributions
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F¢(y|(latitude, longitude), m) for spatial unit [(latitude, longitude), m] from which we
compute location and inequality measures as in the previous sections.

Figure 4 presents maps of distributional indices for Germany. To the best of our
knowledge, these are the first municipality-level maps for Germany reporting distri-
butional indices for household net incomes. Net incomes are widely regarded as the
most informative indicators for personal financial well-being as they represent net
disposable incomes after government transfers, taxes and social security deductions.
Frieden et al. (2023) and Garbasevschi et al. (2023) provide municipality-level maps
for pre-tax incomes, while Immel and Peichl (2020) and Walter et al. (2022) analyse
regional differences in household net incomes at a more aggregated spatial level than
municipalities. Schluter and Trede (2024) present a spatial analysis of wage inco-
mes across regional labour markets, which are also defined at a higher level than
municipalities.

Fig. 5: Associations between distributional aspects across geographical units
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Source: Microcensus 2005 and 2019. The left panel plots the Gini coefficient and
the at-risk-of-poverty rate against mean equivalised income for 2019. The right panel
plots the growth rate of mean income from 2005 to 2019 against the percentile rank
of mean income in the 2005 distribution across geographical units.

The local distributional indices presented in the maps have several important appli-
cations. First, they allow statistical agencies and policymakers to monitor local levels
of well-being and to identify areas with high or low income and inequality. Second,
the high degree of spatial heterogeneity is interesting in its own right, providing use-
ful variation for studying relationships between different aspects of the distribution.
For example, the left-hand graph in figure 5 plots the Gini coefficient and the at-
risk-of-poverty rate against the mean income of geographical units. Mean income and
inequality as measured by the Gini coefficient are positively related, i.e., geographical
units with high mean equivalised incomes also tend to exhibit higher income inequ-
ality. In contrast, there is a weakly negative relationship between mean income and
the at-risk-of-poverty rate, which likely reflect that the poverty threshold is defined
at the national level (60 % of national median income). The right-hand graph of
figure 5 relates the growth rate of mean income in a geographical unit to the original
relative position of the unit in the base year 2005. The results indicate that units
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with relatively low mean income in 2005 experienced higher relative income growth
than those with a higher initial income level, suggesting convergence of mean incomes
across regions. However, growth rates exhibit considerable variation, indicating that
this relationship is only approximate.

An important additional application of the data in figure 4 is its potential as
explanatory variables in microeconomic or spatial analyses. Local measures of income,
inequality, or poverty can serve as covariates in studies of individual behaviour (e.g.,
the effect of local inequality on individual consumption behaviour), or local outcomes
(e.g., the impact of local poverty rates on local election outcomes). In order to support
such applications, we make our estimates of distributional indices for the roughly
9,000 geographical units considered in this paper available on request.

Fig. 6: Standard errors for distributional indices
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Source: Microcensus 2019. Bootstrap standard errors (B = 50 mini forests).

As described in section 2, the distributional random forest includes a bootstrap
procedure that allows one to compute standard errors for the spatial estimates shown
in figure 4. We report these estimates in figure 6. The estimates for the standard
errors are based on B = 50 mini forests with L = 200 trees each, leading to N =
B - L =50 x 200 = 10,000 trees for the overall forest. The magnitude of the standard
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errors indicates reasonable estimation precision compared to the typical magnitude
of the different statistics.®

To put our results into context, we compare them to estimates from a standard
Fay-Herriot (FH) small-area model (Fay and Herriot, 1979). The FH model is based
on regressing the direct inequality estimate I, for spatial unit d computed from the
raw data on the unit’s characteristics my (see above), i.e.

Iy =m}B +ug +eq (15)

where ug with 03 = var(ugq) is the error variance of the regression model, and eq4
with azd = var(eq) = var(fd) denotes the sampling error of the raw estimate I .
The Fay-Herriot predictions for spatial unit d result as a weighted average of the raw
estimate and the regression prediction, i.e.

I =Fals+ (1 -Fa)myB with 54=52/(2 +352, (16)

using estimated 52 and agd. We compute the unit-specific I, on the raw data using
the grouped-data formulas (7) to (10) and compute their sampling variances var(eq)
by bootstrapping. Our Fay-Herriot predictions are based on the implementation of
Halbmeier et al. (2019) for the Gini coefficient and the at-risk-of-poverty rate, using
the arcsine transformation (because both statistics take values in the unit interval).6

Fig. 7: Box plots of the coefficients of variation
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Source: Microcensus 2019. FH = Fay-Herriot, DRF = Distributional Random Forest.
Only spatial units with at least three Microcensus observations included.

To gauge differences in precision across different methods, figure 7 presents the
box plots for the coefficient of variation for the direct (raw) estimates (based on
the grouped-data formulas and their bootstrap standard errors), the FH and the
DRF estimates. The coefficient of variation for spatial unit d is defined as CVy4 =

5 We acknowledge that using a higher number of mini forests would be advantageous for
the bootstrap, but substantial computational constraints at the research data centers where
the restricted Microcensus data must be processed prevent us from increasing B while still
maintaining a sufficiently large number of trees per mini forest.

6 The results do not differ much when we do not use the arcsine transformation.



Distributional random forests 23

Stderr(fd)/fd and summarizes its relative precision. The comparison only refers to in-
sample-units, i.e. municipalities that are represented in the Microcensus.” The results
suggest that both the FH and the DRF model improve upon the direct estimates, and
that the DRF estimates compare favourably to the FH ones in terms of precision.

Fig. 8: Ratio of model estimates to direct estimates
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Source: Microcensus 2019. FH = Fay-Herriot, DRF = Distributional Random Forest.

Only spatial units with at least three Microcensus observations are included.

To gain more insights, figure 8 presents the ratio of FH/DRF model estimates to
the direct (raw) sample estimates plotted against the sample size of the underlying
spatial units. For both FH and DRF estimates, this ratio clusters more tightly around
one for larger underlying sample sizes. Note that, for the FH model, this is mechani-
cally true by construction, see equation (16). For the DRF, this is not mechanically
true and thus serves as a plausibility check. It is well-known that Gini estimates from
small samples tend to be downward biased (De Nicolo et al., 2024). This is also true
of the at-risk-of-poverty rate as the extreme left tail of the distribution is typically

7 In addition, we are not allowed to report information on raw estimates for municipalities
with fewer than three observations in the Microcensus due to data protection rules. From
the 8,857 German municipalities considered by us (counties for Bavaria), 5,086 are repre-
sented by at least three observations in the Microcensus and are thus reported in figures 7
and 8. A further 125 are represented by only 1 or 2 observations, while 3,646 municipalities
have no observations in the Microcensus at all. The municipalities not covered (or covered
by only 1 or 2 observations) are very small in size (median population = 510) and together
account for only 3.2 percent of the German population, see supplementary appendix for
more information.
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underrepresented in small samples. The DRF appears to correct part of this small-
sample downward bias (ratios above one at low sample sizes), whereas the FH model
does not. More generally, note that a ratio of one is not necessarily the appropriate
benchmark as both the FH and the DRF model exploit additional information (FH:
m, DRF: (latitude, longitude), m)) for their local predictions that is not contained in
the random sample for given spatial unit. FH and DRF estimates may thus be much
closer to the ground truth (= true population values) than sample observations.

As a further validation check, we aggregated our municipality-level estimates of
mean income and the at-risk-of-poverty rate to the county level and compared them
with the corresponding direct estimates at that level. The latter are more preci-
sely estimated because county-level sample sizes are sufficiently large. Note that
the Gini coefficient cannot be aggregated from municipalities to counties because
it is not decomposable into within-municipality and between-municipality compo-
nents. The results presented in the supplementary appendix show that both the FH-
and the DRF-estimates aggregate up similarly well to the empirical county values.
Again, perfect agreement with the county-level direct estimates is not necessarily a
reasonable target, because both FH and DRF incorporate external information not
contained in the county-level samples (in particular, information from municipalities
with similar characteristics; DRF additionally exploits spatial proximity via latitude
and longitude).

7. Purging spatial income distributions of differences in spatial
characteristics

As our final application, we address the problem of purging spatial income distributi-
ons of differences in observed characteristics in order to recover a pure spatial income
structure—one that is independent of the fact that individuals and municipalities in
different regions tend to differ in socio-economic composition. To achieve this, we fit
a distributional random forest conditional on both location (latitude, longitude) and
municipality /household characteristics (m, x), i.e.,

F¢(y|(latitude, longitude), m, x). (17)

Here, (latitude, longitude) represent the coordinates of a geographical unit as before.
The vector m contains the municipality variables described above, while x includes
all household characteristics listed in table 2 (excluding regional indicators, whose
information is now captured by latitude and longitude).

To construct local income distributions that do not depend on local composition
in municipality and household characteristics, we consider

F¢(y|(latitude,longitude)) (18)

= / F¢(y|(latitude, longitude), m, X)) dFm,x,Germany (M, X)),
m,x

i.e., the local income distribution that would prevail in region (latitude,longitude)
if municipality and household characteristics were distributed as in Germany as a
whole.
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Fig. 9: Purged spatial income distributions
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Source: Microcensus 2005 and 2019. The maps on the right show differences between

counterfactual and factual maps.

This results in informative maps, shown in figure 9. The results reveal a divide
in mean income, inequality and poverty risk between East and West Germany, as
well as between North and South. Under equalized composition across regions, mean
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income and inequality are lower in the East than in the West, while poverty risk is
higher in the East. However, these regional differences are substantially smaller than
in the factual maps where regional characteristics are allowed to differ (Figure 4). This
suggests that variations in characteristics (m, x) across regions explain disparities in
income, inequality, and poverty risk to a very large extent.

8. Simulation evidence

In this section, we provide basic Monte Carlo evidence on the performance of the
distributional random forest for estimating inequality and poverty indices for popu-
lation subgroups. For our simulation, we use the following data generating process
(DGP):

X = (X1,...,X5) ~ Unif([0,1])®, G1=1(0.00 < X; < 0.02)
G2 =1(0.02 < X7 <0.37), G35 =1(0.37 < X1 < 0.47)

G4 =1(047 < X; < 0.52), G5 =1(0.52 < X; < 1.00)
Y|Gj=1 ~ T(kj,0;), j=1,...,5,

where I'(k,0) denotes the Gamma distribution with shape parameter k and scale
parameter 6. An advantage of using the Gamma distribution for subgroups is that
means, Ginis and other statistics can be easily computed using closed-form expres-
sions. For example, if Y ~ I'(k,8), then mean(Y) = k6, skewness(Y) = % and
Gini(Y) = T'(2k +1)/(22¢T'(k + 1)2) (McDonald and Jensen, 1979). The DGP is
chosen such that the resulting unconditional mixture distribution resembled the
Microcensus sample income distribution (in fact, its cdf lies between the 2005 and
2019 distributions shown in figure 3).

In order to assess the ability of the DRF to cope with interval-censored data, we
carried out three different variants of simulations:

e Variant 1: The simulated outcome variable is artificially interval-censored using
the income brackets in table 1, and the statistics of interest are estimated using
grouped-data formulas. The corresponding ‘true’ values are also computed using
the grouped-data formulas (7) to (10). Specifically, we use the true subgroup and
unconditional CDFs to compute group masses f;, which — together with interval
widths and midpoints — enter the grouped formulas (7) to (10).

o Variant 2: The simulated outcome variable is artificially interval-censored using
the income brackets in table 1, and the statistics of interest are estimated
using grouped-data formulas. However, the ‘true’ values are computed from the
continuous (un-grouped) DGP described above.

e Variant 3: The simulated outcome variable is continuous (i.e., not interval-
censored). The statistics of interest are estimated using standard non-parametric
formulas for the mean, the Gini coefficient, and the at-risk-of-poverty rate. The
‘true’ values are computed from the continuous (un-grouped) DGP described
above.
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Variant 1 is the most relevant, since the DRF can only target the true grouped
values if it uses grouped-data formulas for estimation. However, using grouped versus
un-grouped formulas turns out to make only small differences, both for the estimated
statistics and for the corresponding ‘true’ values. This is already apparent in table 6
which reports both true values computed from grouped-data formulas (upper panel)
and from un-grouped formulas (lower panel). We therefore report only Variant I in
the main text. The supplementary appendix further shows that grouped-data for-
mulas also target the un-grouped true values well (Variant 2). Observing continuous
(i.e., not interval-censored) incomes would yield additional improvements (Variant 3).
This, however, is only a theoretical benchmark as long as the survey questionnaire
elicits income in interval-censored form. Interval censoring imposes an information
limit that cannot be overcome by statistical methods.

Table 6. True values for the data generating process

Group  Fraction DGP (Y | Gj) Mean Median Gini POV
Based on Tille-Langel grouped-data formulas applied to DGP

G1 0.02 (2.5, 480) 1202.1561 1046.7456 0.341974 0.436578
Ga 0.35 I'(3.0, 500) 1502.5936 1338.7015 0.314629 0.290125
Gs 0.10 I'(6.0, 250) 1502.4939 1419.6643 0.228572 0.179762
[en 0.05 I'(5.0, 440) 2204.1486 2057.8114 0.247994 0.066840
Gs 0.48 I'(4.0, 475) 1903.4204 1746.8084 0.275370 0.139679

TOTAL 100  >5_ m;j(k;,0;) 1724.0495 1564.0870 0.293123 0.198639

Based on continuous distributions of DGP

G1 0.02 (2.5, 480) 1200.0 1044.3504 0.339531 0.436869
G2 0.35 I'(3.0, 500) 1500.0 1337.0302 0.312500 0.289411
G3 0.10 I'(6.0, 250) 1500.0 1417.5403 0.225586 0.176983
Gy 0.05 I'(5.0, 440) 2200.0 2055.1999 0.246094 0.065160
Gs 0.48 I'(4.0, 475) 1900.0 1744.2289 0.273438 0.138073

TOTAL  1.00 3%  m;I(k;,0;) 1721.0  1562.1164 0.291132 0.197263

Notes: TOTAL = Unconditional mixture distribution. POV = At-risk-of-poverty rate,
defined as the share below 0.6 times the unconditional median. Entries in the upper
panel are computed using the Tille-Langel grouped-data formulas (7) to (10) from bin
probabilities f; implied by the (true) subgroup and mixture CDF's over the prescribed
brackets, together with class midpoints and widths. For the last class, probabilities
use (18,000, c0), while midpoints and widths use (18,000, 36,000).

We use R = 1,000 simulation runs for sample sizes n € {10,000;20,000;50,000}.8
For each simulation run, we fit a distributional random forest to estimate
F(Y|X,G1,G2,G3,G4,Gs5) and compute predictions at test points representing
typical observations from group Gi to Gs: TP; = (X1;,0.2,0.4,0.6,0.8,1(G1 =

8 The DRF is computationally intensive, so larger sample sizes were infeasible. Simulations
for n = 50,000 observations already took several weeks to run on current server CPUs
despite ten-fold parallelization.
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Table 7. Monte Carlo summaries: grouped-data/estimation + grouped true values

MAD

Number of observations n = 10,000

Group Bias Variance Coverage Coverage_db

Estimand: Gini

G1 -0.012912238 0.000163251 0.015292994 0.874 0.979
Ga -0.001670334 9.48388e-05 0.007877185 0.980 0.982
G3 0.012352705 0.000106787 0.013443234 0.863 0.973
Gy 0.013837017  9.38539e-05 0.014489594 0.835 0.984
Gs -0.000597319  6.74549e-05 0.006596148 0.984 0.985
Estimand: POV
G1 -0.079102975 0.000977658 0.079263222 0.413 0.971
Ga 0.000479923 0.000401681 0.016021839 0.989 0.988
Gs 0.007038427 0.000465803 0.017684365 0.966 0.966
Gy 0.033065227 0.000204331 0.033099450 0.576 0.986
Gs -0.001090276 0.000222033 0.011900292 0.985 0.987
Number of observations n = 20,000
Estimand: Gini
G1 -0.008586657 0.000148229 0.012229024 0.926 0.980
Ga -0.000533487 7.62437e-05 0.006942900 0.989 0.989
Gs 0.002284648  6.98827e-05 0.006818871 0.982 0.983
Gy 0.008717290 8.15121e-05 0.010319721 0.950 0.983
Gs -0.000631842 5.83551e-05 0.006110186 0.989 0.989
Estimand: POV
G1 -0.058262690 0.001013685 0.059366700 0.628 0.979
Go 0.001276598 0.000335516 0.014691413 0.990 0.989
Gs 0.002316055 0.000342308 0.014977382 0.975 0.973
[en 0.020483056  0.000173558 0.021040500 0.882 0.974
Gs -0.000739240 0.000183427 0.010836350 0.985 0.986
Number of observations n = 50,000
Estimand: Gini
G1 -0.005939976 0.000113526 0.009954624 0.954 0.988
G2 3.39493e-05  6.62390e-05 0.006453961 0.992 0.991
Gs 0.001389395 5.05173e-05 0.005801351 0.985 0.982
Gy 0.006883450 6.16488e-05 0.008547985 0.972 0.991
Gs -0.000450358 4.21232e-05 0.005259946 0.999 0.999
Estimand: POV
G1 -0.044854370 0.000703256 0.046296276 0.713 0.974
(&> 0.001542728 0.000294849 0.013912465 0.996 0.994
G3 0.001568460 0.000271013 0.012985097 0.984 0.983
Gy 0.015712105 0.000121902 0.016287574 0.933 0.988
Gs -0.000514975 0.000137749 0.009450191 0.995 0.995

POV = At-risk-of-poverty rate, MAD = Mean Absolute Deviation, Coverage = fra-

ction of cases in which 95% confidence

coverage when bias is subtracted from confidence limits. R = 1,000 simulation runs.

interval covers true value, Coverage.db =
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1),1(G2 = 1),1(Gs = 1),1(G4 = 1),1(Gs = 1)), where X1; is the mid-point
of the Xj-interval defining G; = 1 in the DGP. For example, the test point for
a group G1 = 1 observation is TP; = (0.01,0.2,0.4,0.6,0.8,1,0,0,0,0). For each
simulation run, we fit a distributional random forest with the following paramaters:
N = B-L =50-200 = 10,000 trees, mtry=10, min.node.size = 5, sample.fraction
= 0.5, alpha = 0.05, imbalance.penalty = 0.1. From the fitted DRF, we compute
the mean, the Gini, and the at-risk-of-poverty rate using either the grouped-data
formulas (Variants 1 and 2) or the usual non-parametric formulas (Variant 3).

The results for bias, variance, mean absolute deviation in table 7 show clear impro-
vements as the sample size increases. The remaining biases for 50,000 observations are
non-zero but appear small relative to the true values reported in table 6. The cove-
rage check for the 95 % confidence intervals indicate undercoverage for smaller sample
sizes in individual cases, part of which is attributable to remaining biases (column
1 of table 7). This is illustrated by the improved coverage of bias-corrected confi-
dence intervals (i.e., confidence intervals centered at the debiased point estimates).
The performance of these biased-corrected intervals suggests that uncertainty esti-
mation remains approximately intact, despite remaining estimation biases (leading
to unfavourable coverage if the confidence intervals are centered around the biased
estimates). As the sample size increases, the confidence intervals tend to overcover,
which is not a serious concern in practice, as it leads to conservative inference. As
always, it remains unclear to what extent Monte Carlo results are generalizable so
that more research would be useful.

9. Conclusion

Our analysis demonstrates that distributional random forests are a powerful and
versatile tool for analysing income distributions with minimal parametric assumpti-
ons. Once trained, they allow the analyst to estimate a wide range of distributional
indices — quantiles, means, Gini coefficients, poverty rates, etc. — without requiring
separate model specifications. They also easily handle grouped income information
as present in our application. Using German Microcensus data, we illustrated four
applications that are relevant for both researchers and policymakers: (i) estimating
income distributions for granular population subgroups, (ii) analysing changes in ine-
quality and poverty over time, (iii) small-area estimation of income distributions, and
(iv) purging spatial income distributions of differences in household and municipality
characteristics.

From these analyses, we obtain several insights into the German income distri-
bution. First, the shape and location of income distributions vary markedly across
granular population subgroups, and income growth is highly heterogeneous. Second,
while average incomes increased between 2005 and 2019, income inequality and the
at-risk-of-poverty rate also rose. However, these increases were driven almost entirely
by compositional shifts—population ageing, changes in educational attainment, and
a rising share of immigrants—rather than by diverging income trajectories within
fixed population subgroups.

Our geographical analysis provides new insights into the spatial structure of the
German income distribution. We characterize regions with high or low income and
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inequality and show that geographical units with higher mean incomes also tend to
exhibit higher inequality. We also document that income growth was uneven across
regions: poorer areas experienced faster relative growth than wealthier ones, sug-
gesting partial convergence in mean incomes across space. Finally, we find that a
large share of the observed regional variation in income and inequality is attributable
to differences in municipal and household characteristics. After accounting for these
compositional differences, systematic ‘pure’ spatial disparities remain, but they are
substantially less pronounced.

We acknowledge that our analysis is ambitious and, to some extent, exploratory.
It aims to extract fine-grained information from a large dataset while imposing lit-
tle structure. The distributional random forest method is non-parametric in nature,
computationally intensive, and data-hungry. Our results are highly plausible and
likely exploit the available information to an extent not achieved in previous research.
Nevertheless, more evidence on the method’s finite-sample properties is needed. While
our simulation results are encouraging, future research should scrutinize potential bia-
ses more closely and evaluate performance across alternative datasets, varying levels
of observation, and outcome measures. Developing debiased variants and improved
inference procedures is a promising direction for future work.
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