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Abstract

This paper explores distributional random forests as a flexible machine learning method for analysing

income distributions. Distributional random forests avoid parametric assumptions, capture complex

interactions among covariates, and, once trained, provide full estimates of conditional income distri-

butions. From these, any type of distributional index such as measures of location, inequality and

poverty risk can be readily computed. They can also efficiently process grouped income data and be

used as inputs for distributional decomposition methods. We consider four types of applications: (i)

estimating income distributions for granular population subgroups, (ii) analysing distributional change

over time, (iii) small-area estimation of income distributions, and (iv) purging spatial income distri-

butions of differences in spatial characteristics. Our application based on the German Microcensus

provides new results on the socio-economic and spatial structure of the German income distribution.
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1. Introduction

Measuring distributions of income and wealth is a central concern of both statistics

and the social sciences. A large number of statistical techniques have been develo-

ped to estimate such distributions and to investigate their structure (e.g., Jenkins

and Van Kerm, 2009; Fortin et al., 2011; Chernozhukov et al., 2013; Cowell and Fla-

chaire, 2015; Chotikapanich et al., 2018; Molina et al., 2022). In many cases, these

techniques involve strong parametric assumptions about distributional shapes or the

structure of regression models that describe how distributions depend on covaria-

tes. A key advantage of modern machine learning methods such as random forests

(Breiman, 2001; Athey et al., 2019) is their ability to avoid such assumptions. As a

recursive partitioning algorithm, the random forest is based on sequentially splitting

the covariate space into cells of observations that are similar with respect to a tar-

get criterion, and by aggregating independent repetitions of this procedure. It has

a non-parametric structure, accomodates complex interactions and potentially non-

smooth relationships, and implicitly addresses model-selection problems. Random

forests have demonstrated remarkable success across a wide range of applications

(Biau and Scornet, 2016).

Breiman (2001)’s original random forest was designed for non-parametric mean

estimation. Subsequent extensions included survival analysis (Hothorn et al., 2004),

conditional quantile estimation (Meinshausen, 2006), and estimators defined by local

moment conditions (Athey et al., 2019). More recently, Cevid et al. (2022) and Näf et

al. (2023) proposed a highly general variant of the random forest aimed at estimating

full conditonal distributions (distributional random forest, DRF).

As pointed out by Cevid et al. (2022), building random forests for full distribu-

tions – rather than for individual target objects such as means, quantiles or other

distributional indices – has a number of advantages. These advantages are particu-

larly relevant to analyses of the income distribution. First, forest building needs to be

carried out only once to obtain estimates for arbitrarily many targets. For example,

if one is interested in distributional indices such as the median income, the at-risk-

of-poverty rate, quantile ratios, or the Gini index for small population subgroups,

one has to fit the random forest only once and then obtain estimates of these targets

from the conditional distribution. Second, since the estimates for different targets are

obtained from the same forest, they are mutually compatible. This is not necessarily

the case if a new forest is fit for each target. For example, it is well known that

conditional quantiles may cross if they are estimated separately. Similarly, fitting

separate forests may produce values of the at-risk-of-poverty rate and the Gini coef-

ficient for individual subgroups that are difficult to reconcile. Third, fitting separate

forests for different target objects requires suitable target-specific splitting criteria.

For many targets these are unknown or could be difficult to derive. By contrast,

the DRF directly uses a powerful distributional criterion for splitting, the maximum

mean discrepancy (MMD) statistic (Gretton et al., 2007).

As a statistical method, the distributional random forest follows the same esti-

mation goal as a number of other estimators of conditional distributions. These

alternatives typically have a parametric or semi-parametric structure, see, e.g.,

Donald et al. (2000), Biewen and Jenkins (2005), Rigby and Stasinopoulos (2005),
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Hothorn et al. (2013). Conditional quantile models (Koenker, 2005) and binary models

for distributional thresholds (Chernozhukov et al., 2013) can also be used to construct

conditional distribution functions, but they require fitting a large number of quantiles

or threshold models. However, in all of these models, it is not easy to accomodate

issues such as non-smooth dependencies, complex interaction effects and automa-

tic variable selection, features that are automatically handled by the random forest.

Before the development of the fully non-parametric distributional random forest, Sch-

losser et al. (2019) and Hothorn and Zeileis (2021) proposed parametric variants based

on fitting predefined distributional forms. Such specifications can be attractive if the

number of training observations is limited. By contrast, this paper uses Cevid et al.

(2022)’s non-parametric version of the distributional random forest as a fully flexi-

ble device to estimate the relationship between outcome distributions and covariates

using a large data set.

The purpose of this paper is to apply distributional random forests to several

estimation problems in the analysis of the income distribution. We consider four

applications: (i) estimating income distributions for granular population subgroups,

(ii) analysing distributional change over time, (iii) small-area estimation of income

distributions, and (iv) purging spatial income distributions of differences in spatial

characteristics. Application (i) is commonly used by governments and statistical age-

ncies to monitor the well-being of population subgroups and to inform policy measures

(e.g., poverty alleviation). Task (ii) decomposes changes in the aggregate distribution

over time by separating changes attributable to shifts in population composition from

changes due to income dynamics within population subgroups. Application (iii) is also

a common task of governments and statistical agencies aimed at constructing maps of

statistical information on quantities such as median income, at-risk-of-poverty indices

or income inequality across geographical areas with potentially sparse observations.

This question has been addressed by a large literature on small-area estimation, see

Tzavidis et al. (2018) and Molina et al. (2022) for overviews. Given the inherent

smoothing properties of random forests (Lin and Jeon, 2006), this method appears

well-suited for small-area estimation. Indeed, Krenmair and Schmid (2022) recen-

tly incorporated a random forest component into a small-area mixed effects model

for estimating area-level means. In this paper, we use the DRF to estimate area-

level distributions with the goal of constructing area-level statistical indices (means,

at-risk-of-poverty rates, inequality indices). In a final application (iv), we consider

the problem of purging spatial income distributions of differences in spatial chara-

cteristics. This isolates the ‘pure’ spatial structure of income levels and inequality,

independent of variation in age, employment, education, and other characteristics

across spatial units. To the best of our knowledge, this application is novel in the

literature

Our empirical analysis is based on the German Microcensus, an annual survey

conducted by the Federal Statistical Office of Germany (Federal Statistical Office,

2024). The Microcensus is the largest sample survey in Germany and in Europe.

Despite its large sample size and exceptional representativeness, it has rarely been

used for income distribution analysis because it reports income in grouped form.

While grouped income information necessarily limits the information content, we
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demonstrate in this paper how the distributional random forest can effectively deal

with this issue.

In addition to demonstrating the usefulness of the distributional random forest

approach for analysing the income distribution, this paper contributes a number of

substantive results on the German income distribution based on Microcensus data for

the years 2005 and 2019. Specifically, we provide new evidence on the incomes and

poverty risk of granular population subgroups and analyse distributional change over

time. We show that inequality and poverty risk increased between 2005 and 2019, but

that this was the result of changes in the composition of the population rather than

by income changes within population subgroups. Finally, we provide distributional

maps of household income and inequality for Germany at a much higher geographical

resolution than previous analyses (Immel and Peichl, 2020; Walter et al., 2022).

The remainder of this paper is structured as follows. Section 2 outlines the method

of distributional random forests due to Cevid et al. (2022) and Näf et al. (2023).

Section 3 provides basic information on the data. Sections 4 to 7 present our empirical

applications, section 8 presents simulation evidence, and section 9 concludes.

2. Distributional random forest

We outline the main properties of the distributional random forest (DRF) as introdu-

ced by Cevid et al. (2022) and Näf et al. (2023). Let Y = (Y1, . . . , Yd) ∈ Rd denote a

potentially multivariate outcome vector and X = (X1, . . . , Xp) ∈ Rp a vector of cova-

riates. The goal of the DRF is to estimate the conditional distribution P(Y|X = x)

based on a random sample (yi,xi), i = 1, . . . n.

The DRF produces an estimate P̂(Y|X = x) of the conditional distribution by

repeating a recursive partitioning algorithm (= tree building) k = 1, . . . , N times on

random pertubations of the data and by averaging the results (= random forest).

For each tree k, the sample is successively partitioned into groups of observations (=

leaves). The partitioning proceeds greedily by splitting a parent node P into two child

nodes CL = {Xj ≤ l} and CR = {Xj > l} based on candidate splitting variables Xj

that are chosen randomly (see below). The split is chosen to maximize the difference

between CL and CR with respect to a specified objective function.

In Breiman (2001)’s original random forest for mean outcomes, splits were perfor-

med so that (in the case of an univariate outcome), the resulting mean outcomes in

CL and CR differed as much as possible, i.e.,

max
l:CL={Xj≤l},CR={Xj>l}

nLnR

n2
P

 1

nL

∑
i∈CL

yi −
1

nR

∑
i∈CR

yi

2

, (1)

where nL, nR and nP are the number of observations in the child and parent nodes,

respectively.

In the DRF, splits are performed to maximize distributional differences between

the resulting child nodes CL and CR. Distributional differences are measured by the

Maximum Mean Discrepancy (MMD) statistic (Gretton et al., 2007). The MMD sta-

tistic builds on the theory of distribution embeddings in Reproducing Kernel Hilbert

Spaces (RKHS) (Muandet et al., 2017).
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Let (H, ⟨·, ·⟩H) denote a RKHS of real valued functions on Rd induced by a

positive-definite kernel k(·, ·) with inner product ⟨·, ·⟩H, norm ∥ · ∥H, and implicit

feature map φ : Rd →H satisfying k(y,y′) = ⟨φ(y), φ(y′)⟩H. The feature map φ(y)

can be interpreted as a (possibly infinite-dimensional) collection of aspects of y. The

term k(y,y′) is then a measure of similarity between points y and y′ in terms of all

their aspects captured by the feature map. This similarity measure is linear in the

feature space, but may be very nonlinear in the original space Rd, depending on the

richness of the feature map (‘kernel trick’).

Let P be a distribution and define

µ(P) = EY∼P [φ(Y)] (2)

as its mean embedding in the Hilbert spaceH (i.e., every distribution P is represented

as an element of H). For certain choices of the kernel (i.e., characteristic kernels),

this mapping is one-to-one, so that each distribution is uniquely represented by one

element in the RKHS. Differences between two distributions P and Q can thus be

measured by the distance function in the corresponding Hilbert space, i.e., d(P,Q) =
∥µ(P) − µ(Q)∥2H (i.e., the distance between their mean embeddings in the Hilbert

space).

The distributional random forest uses this distance measure between the distribu-

tions of outcomes in two child nodes CL and CR to find splits that make distributions

in CL and CR as different as possible. In this case, the MMD statistic is

DMMD(CL, CR) = ∥µ(PCL
)− µ(PCR

)∥2H

=

∥∥∥∥∥∥ 1

nL

∑
i∈CL

φ(yi)−
1

nR

∑
i∈CR

φ(yi)

∥∥∥∥∥∥
2

H

. (3)

Note the similarity to Breiman (2001)’s original splitting criterion (1), which results

when the feature map consists only of the value y itself (i.e., φ(y) = y). In this

case, the statistic only measures average differences in the level of y. By contrast, if

the feature map is richer, it measures average differences in all features encoded by

the feature map φ(·) (see (3)). For example, if φ(y) includes higher-order terms of

y, it will not only measure differences in means between CL and CR but in higher-

order moments. It can be shown that the implicit feature maps of characteristic

kernels is infinite-dimensional and powerful enough to detect any differences between

distributions (Gretton et al., 2007).1 The MMD statistic can be equivalently written

as

DMMD(CL, CR) =
1

n2
L

∑
i,j∈CL

k(yi,yj) +
1

n2
R

∑
i,j∈CR

k(yi,yj)

−
2

nLnR

∑
i∈CL

∑
j∈CR

k(yi,yj). (4)

1 In our empirical application, we use the Gaussian kernel as in Cevid et al. (2022).
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This formulation provides an intuitive interpretation: the statistic measures how simi-

lar – as described by the kernel – observations are within each sample, as compared

to between the two samples.

As in Breiman (2001)’s original splitting criterion (1), the distributional random

forest uses a version of DMMD that is rescaled by the factor nLnR/n2
P . In order for

the forest to be consistent for the true conditional distribution P(Y|X = x), forest

construction has to comply with a number of rules (Athey et al., 2019; Cevid et al.,

2022):

1. Honesty: Splits are determined on one half of the data, distributional predictions

are computed on the other half of the data.

2. Random-split: The probability that the split occurs along feature Xj is bounded

from below by π/p for some π > 0 (p is the number of covariates).

3. Symmetry: The tree output does not depend on the ordering of the training

samples.

4. Regularity: Each child contains at least a fraction α ≤ 0.2 of the parent node.

Trees are grown until each leaf contains between κ and 2κ− 1 observations.

5. Subsampling: Trees are grown on subsamples of size sn = nβ drawn from of

the original n sample observations, where β must lie within particular bounds

depending on p, π and α (Cevid et al., 2022).

The distributional random forest F is based onN trees T1, . . . , TN grown according

to the rules above. Define Lk(x) as the set of training data observations that end up

in the same leaf as x in tree k = 1, . . . , N . The main output of the distributional

random forest is a set of observation- and test-point-specific weights

ŵi(x) =
1

N

N∑
k=1

1(xi ∈ Lk(x))

|Lk(x)|
, (5)

measuring the frequency with which training observation i = 1, . . . , n ended up in the

same leaf as a test point with X = x. The weights quantify the importance of each

training data point (yi,xi), i = 1, . . . , n for predicting the conditional distribution of

Y at test-point X = x. Formally, the resulting estimate is given by

P̂(Y|X = x) =
n∑

i=1

ŵi(x) · δyi
, (6)

where δyi
denotes the point mass at yi. The weights (5) characterize the distribu-

tional random forest as a locally adaptive nearest-neighbour method that smooths

observations across the covariate space (Lin and Jeon, 2006).

Cevid et al. (2022) show that (6) is consistent in the sense that the estimated

conditional distribution function converges in probability to the true conditional

distribution function. This, in turn, implies that smooth functionals of the condi-

tional distribution also converge to their population counterparts. In practice, this

means that the random forest weights ŵi(x) can be used to compute any statistic of

interest I(P̂(Y|X = x)) (e.g., the mean, the Gini index, the at-risk-of-poverty rate)

based on the plug-in principle. This approach yields estimates for small subgroups
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with X = x even when these subgroups are only weakly represented – or not repre-

sented at all – in the sample, by borrowing information from training observations

with covariates that are most similar to x.

Näf et al. (2023) show that, under suitable conditions, the mean embeddings of the

distributional random forest estimators are asymptotically normal, which implies that

sufficiently smooth functionals based on the random forest weights are also asympto-

tically normal. Moreover, these sampling distributions can be practically simulated

by a bootstrap half-sampling procedure. To this end, b = 1, . . . , B half-samples Sb
are drawn from the original training observations. For each half-sample, L trees are

grown to build ‘mini forests’ Fb, b = 1, . . . , B. The weights ŵb
i (x) of these mini forests

then serve as bootstrap replications of the original weights ŵi(x) to compute boot-

strap versions of the statistics of interest. The procedure can be efficiently used to

construct the overall forest consisting of N = L ·B trees by pooling the L mini forests

to form the total forest. In our empirical analysis, we use the procedures of Cevid et

al. (2022) and Näf et al. (2023) to compute point estimates and confidence intervals

for the statistics of interest.

The following algorithm summarizes the steps of the estimation procedure:

Algorithm 1: Pseudocode for computation of DRF point estimate and stan-

dard errors for inequality statistic I(x) = I(P̂(Y|X = x)) at test point x

procedure BuildForest(Y,X) // training data (Y,X)

for b← 1 to B do

Sb ← draw a half-sample from original sample

Fb ← DRF(Sb, L) // mini forest number b

return {F1, . . . ,FB} // mini forests

procedure ForestWeights(x) // for test point x

for b← 1 to B do

wb(x)← get weights from mini forest Fb at test point x

w(x)← 1
B

∑B
b=1 wb(x)

return w(x) // weights for overall forest at x

return w1(x), . . . , wB(x) // weights for bootstrap replications

procedure EstimatesAndStderrors(x) // for test point x

I(x)← I
(
w(x),Y,X)

)
// inequality point estimate at X = x

for b← 1 to B do

Ib(x)← I
(
wb(x),Y,X)

)
// bootstrap replications

StderrI(x) ←
√

1
B−1

∑B
b=1

(
Ib(x)− 1

B

∑B
j=1 Ij(x)

)2

return I(x) // inequality point estimate at X = x

return Stderr(I(x)) // bootstrap standard error
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3. Data

Our analysis is based on the German Microcensus for the years 2005 and 2019 (Federal

Statistical Office, 2024). The Microcensus is conducted annually and provides a 1%

random sample of the German population, including information on income and socio-

economic characteristics for all persons in the surveyed households. It is the largest

sample survey in Germany and in Europe. Data quality is high, and non-response is

low due to mandatory participation. Most parts of our analysis rely on the Scientific

Use File (SUF) of the Microcensus (Federal Statistical Office, 2024). For analyses

requiring local identifiers at the municipality level, we use a restricted version of

the Microcensus, accessible only on site at the Research Data Centers (RDC) of the

Federal Statistical Offices.

Although the Microcensus is the largest and most representative sample survey

for Germany, it has rarely been used for income distribution analysis (Boehle, 2015;

Hochgürtel, 2019; Walter et al., 2022). One reason is that income is recorded in

grouped form. In the two survey years considered here, respondents were asked to

provide information on monthly household net income in income brackets of increasing

width. The income brackets used for grouped income data are given in table 1. Note

that the top bracket is open-ended.

Table 1. Income brackets for monthly household net income (euros)

(0; 150] (150; 300] (300; 500] (500; 700] (700; 900]

(900; 1,100] (1,100; 1,300] (1,300; 1,500] (1,500; 1,700] (1,700; 2,000]

(2,000; 2,300] (2,300; 2,600] (2,600; 2,900] (2,900; 3,200] (3,200; 3,600]

(3,600; 4,000] (4,000; 4,500] (4,500; 5,000] (5,000; 5,500] (5,500; 6,000]

(6,000; 7,500] (7,500; 10,000] (10,000; 18,000] (18,000;∞)

Source: German Microcensus, 2005 and 2019.

Following standard practice, we adjust household income using the OECD equi-

valence scale. This scale assigns a weight of one to the first household member, a

weight of 0.5 to each additional member aged 15 and over, and a weight of 0.3 to

each additional member aged 14 and under. For example, if a household’s net income

falls within the interval (4,000; 4,500], the equivalised income for a household with

two adults and two children (equivalence weight = 1+0.5+0.3+0.3 = 2.1) lies in the

interval (1,905; 2,143]. As the distributional random forest can handle multivariate

outcomes, we define the lower and upper bounds of the (equivalised) income interval

as the dependent outcome, i.e., Y = (ylower, yupper).

To ensure applicability across all income groups, we impose an upper bound on

the highest income bracket, which is open-ended in the data. Following Walter et

al. (2022), we define this limit as 3 · 18, 000 = 54,000, resulting in a top interval of

(18,000; 54,000]. While Walter et al. (2022) did not provide a formal justification for

their choice, a reasonable rationale is that household incomes in the Microcensus fol-

low an approximate Pareto tail with tail parameter a = 2, implying that the midpoint

of the interval (18,000; 54,000] coincides with the expected income of this group, i.e.,
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Table 2. Covariates for the distributional random forest

2005 2019

Variable Mean Std. dev. Mean Std. dev.

# adults in hh 2.032 0.802 1.981 0.792

# adults 18-29 years 0.380 0.668 0.340 0.645

# adults 30-49 years 0.866 0.869 0.717 0.842

# adults 50-64 years 0.434 0.717 0.536 0.766

# adults 65+ years 0.351 0.668 0.386 0.698

# children in hh 0.691 1.028 0.642 0.642

# children 0-3 years 0.123 0.382 0.136 0.403

# children 4-6 years 0.304 0.651 0.403 0.637

# children 7-17 years 0.262 0.581 0.217 0.217

# adults foreign nationality 0.159 0.556 0.239 0.652

Share foreign adults > 0.5 0.090 0.286 0.134 0.341

# adults male 0.996 0.601 0.975 0.587

# adults female 1.035 0.496 1.006 0.508

0 FT1, 0 PT, 0 MPT 0.294 0.454 0.253 0.408

0 FT, 0 PT, ≥ 1 MPT 0.028 0.164 0.029 0.167

0 FT, ≥ 1 PT, ≥ 0 MPT 0.046 0.207 0.072 0.258

1 FT, 0 PT, 0 MPT 0.240 0.426 0.202 0.401

1 FT, 0 PT, ≥ 1 MPT 0.059 0.235 0.049 0.215

1 FT, ≥ 1 PT, ≥ 0 MPT 0.117 0.320 0.171 0.376

≥ 2 FT, ≥ 0 PT, ≥ 0 MPT 0.212 0.408 0.221 0.414

# registered unemployed in hh 0.153 0.426 0.059 0.280

# unemployment benefits in hh 0.136 0.404 0.106 0.528

# adults tertiary education2 0.253 0.559 0.511 0.728

# adults higher secondary 0.174 0.452 0.196 0.476

# adults vocational training 1.097 0.894 0.919 0.865

# adults low education 0.507 0.775 0.775 0.689

East Germany 0.218 0.413 0.194 0.395

Indicators for 16 federal states (details omitted)

# individuals 440,268 506,615

# households 211,833 255,164

Source: Microcensus, 2005 and 2019. 1 FT = Full-time, PT = Part-time, MPT =

Marginal part-time. 2 Highest educational qualification.

E(household income|household income > 18,000) = a/(a− 1) · 18,000 = 36,000 (Bla-

nchet and Piketty, 2022, p. 275). This approach is consistent with standard practice

for grouped data, where interval midpoints are commonly used as approximations
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to group means (see below). We find that our results are fairly robust to different

choices of the upper limit, as only a small fraction of observations fall into the top

income interval (0.21% in 2005 and 0.45% in 2019), see supplementary appendix for

more details.

The equivalisation procedure leads to overlapping income intervals across obse-

rvations, which does not pose a problem for the distributional random forest. To

construct a proper distribution function F e(y | x) for equivalised income y conditio-

nal on characteristics X = x, we aggregate probability mass over the upper bounds of

the income intervals, following standard practice in grouped-data analysis (an income

bracket contributes fully to the probability mass only once its upper interval bound is

reached). Concretely, we compute the share of observations with equivalised income

less than or equal to A1, less than or equal to A2, and so on, where A1, A2, . . .

denote the ordered distinct upper interval limits observed in the data. This yields the

conditional cumulative distribution function of equivalised income and makes full use

of the information contained in the grouped income variable.

We use the resulting income groups (A0;A1], (A1;A2], . . . , (AJ−1;AJ ] and their

implied frequencies fj to compute statistics of interest (quantiles, means, and Gini

coefficients) using the grouped-data formulas developed by Tille and Langel (2012).

These formulas rely on linear interpolation within intervals for quantiles and the CDF,

while the Gini formula is based on a quadratic interpolation of the Lorenz curve with

an additional correction term for within-interval inequality. Let lj = Aj − Aj−1

and cj = (Aj + Aj−1)/2 denote interval widths and midpoints, respectively. The

grouped-data formulas for the mean, CDF, quantiles, and the Gini coefficient are

given as follows (we omit conditioning on X = x):

x =
J∑

j=1

fjcj (7)

F e(y) =
∑

k<j(y)

fk + fj(y)

y −Aj(y)−1

lj(y)

, j(y) : Aj−1 ≤ y < Aj (8)

Q(p) = Aj(p)−1 + lj(p)
p− F e(Aj(p)−1)

fj(p)
, j(p) : F e(Aj−1) ≤ p < F e(Aj) (9)

G2 =
1

2x

J∑
j=1

J∑
k=1

fjfk |cj − ck|+
J∑

j=1

f2
j

6
lj (10)

Our simulation exercise below suggests that interval censoring has only a minor influ-

ence on the values of these statistics in our application (relative to the uncensored

case), because the number of intervals is relatively large.

We account for the Microcensus sampling (= grossing-up) weights when compu-

ting and aggregating distributions from the fitted random forest. Specifically, we

incorporate these weights in the computation of fj for results conditional on X = x,

and we use them whenever we aggregate such results across x, for example as in (11)

below. By contrast, it is currently not possible to fully incorporate sampling weights

into the training of the random forest. We do not expect this limitation to materially

affect our estimates, because the variation in Microcensus weights is limited. As a
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sensitivity check, we re-estimated selected specifications using a reweighted sample

constructed from the original sampling weights. This led to results that were very

close to those from the original sample, see supplementary appendix for more details.

4. Estimating income distributions for granular population
subgroups

Our first goal is to estimate distributions of equivalised net income for narrowly

defined population subgroups. This is an important task for monitoring the well-being

of specific groups, especially those at risk of poverty or social exclusion. To define these

subgroups, we leverage the rich set of socio-economic characteristics at the individual

and household level provided by the Microcensus. Since equivalised income is based

on the assumption of income pooling within households, all covariates are constructed

at the household level (for the equivalised income of a given individual, it matters

which household she lives in). A summary of the covariates X used in our analysis is

shown in table 2.

Table 3. Tuning parameters of the distributional random forest

Tuning parameter Range Description

mtry 2, 3, 8, 12, 15, 20, 30 # variables tried at each split

min.node.size 2, 5, 10, 15, 20, 25 Target minimal leaf size

sample.fraction 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1 Subsampling fraction

alpha 0, 0.01, 0.05, 0.1, 0.25 Maximum imbalance of split (=α)

imbalance.penalty 0, 0.05, 0.1 Penalty for split imbalance

Note: See Cevid et al. (2022) for details.

Our first step is to fit and tune the distributional random forest. Cevid et al. (2022)

do not discuss tuning of the distributional random forest. To arrive at a practically

feasible procedure, we proceed as follows. We use a training sample (40% of the

original 2019 sample) and a test sample (30% of the original 2019 sample). The steps

are as follows:

1. Random parameter selection: We randomly varied the tuning parameters within

the ranges given in Table 3, generating 300 parameter combinations.

2. Training: For each parameter combination, we fitted the distributional random

forest in the training sample and computed conditional cdf’s F e(y|x) for all

observations in the test sample.

3. Testing: We then computed the model-implied aggregate distribution of equiva-

lised income,

F e(y) =

∫
x

F e(y|x) dFX(x) (11)

on the test sample and compared it with the observed empirical distribution

F emp(y) of equivalised incomes in the test sample.
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Fig. 1: Tuning of the distributional random forest

Note: The figure shows the distribution of goodness-of-fit indicators across 300 spe-

cification variants for tuning parameters evaluated on a test sample (lower values

indicate better fit).

4. Evaluation: We assessed goodness-of-fit using several statistical distance measures

between F e(y) and F emp(y), including Anderson-Darling, Cramer–von Mises,

Kolmogorov-Smirnov, and Chi-square statistics.
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The results of this exercise are shown in figure 1. By minimizing the discrepancy

statistics between the predicted and observed income distributions within reasonable

parameter ranges, we chose the final tuning parameters as mtry=12, min.node.size=5,

sample.fraction=0.1, alpha=0.05, imbalance.penalty=0.1. We found that our random

forest results typically did not vary much across different specifications of tuning

parameters, which is reflected in the small differences in goodness-of-fit between alter-

native choices (figure 1). Using these tuning parameters, we fitted our final random

forest on the full sample based on L · B = 250 · 50 = 12,500 trees. Our final model

produced an aggregate income distribution function that was practically indistingui-

shable from the empirical distribution in the test set. This was generally true even

for suboptimal tuning parameters.

Table 4 defines ten examples of narrowly defined population subgroups for which

we estimate equivalised net income distributions using DRFs for 2005 and 2019. These

subgroups consist of individuals in households with specific socio-economic characte-

ristics, as summarized in table 2. In most cases, the number of observations in a

given subgroup would be much too low to estimate meaningful income statistics dire-

ctly. Like in regression analysis, the random forest estimates group-specific outcomes

by leveraging observations with similar characteristics (i.e., observations from other

regions and households that are similar in terms of age, education and employment

behaviours of their members).

Figure 2 presents the results for different subgroups. For illustration, the graphs

include a GB2 density fit. This is done solely for visualization purposes to highlight

distributional shapes. The generalized beta distribution of the second kind (GB2) has

been shown to provide a good fit to aggregate income distributions (Chotikapanich

et al., 2018), but it fits less well for some of our subgroup-specific distributions. For

each subgroup, we compute key statistics such as mean equivalised income, the at-

risk-of-poverty rate, and the Gini coefficient using the grouped-data formulas in Tille

and Langel (2012).2

The results shown in figure 2 exhibit highly plausible patterns. There is overall

income growth from 2005 to 2019, but gains in mean income are heterogeneous. They

range from 21.2% for individuals from the five-person family in BW to 38.3% for

individuals in the single-mother household with two children, as defined in table 4.

As expected, the at-risk-of-poverty rate varies considerably across household types,

from zero percent in double-income-no-kids households to around 90% in the single

unemployed household. The characteristics of the latter were intentionally chosen to

be unfavorable in order to illustrate an extreme case. Finally, there are large differe-

nces in within-group inequality across subgroups as measured by the Gini coefficient.

Some groups are extremely homogeneous (individuals in single unemployed househ-

olds with a Gini coefficient of around 0.14), while others are highly heterogenous even

within the narrow type definitions considered here (individuals in the double-income-

no-kids household with a Gini of around 0.28).We also observe a general trend of

2 Following standard practice in European countries, the at-risk-of-poverty rate is defined

as the proportion of the population with equivalised income below 60% of the population
median income.
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decreasing within-group inequality for most types between 2005 and 2019 (an exce-

ption are elderly widows). In summary, once fitted, the distributional random forest

enables policymakers and statistical agencies to flexibly monitor multiple aspects of

economic welfare for finely defined population subgroups.

Fig. 2: Distribution of equivalised net incomes in narrow population subgroups

Source: Microcensus 2005 and 2019. Own computations.

Notes: See table 4 for the definition of types. Blue = 2005, red = 2019. POV = At-

risk-of poverty rate (share of incomes below 60 % of population median). The figures

include a GB2 density fit for illustration. Bootstrap standard errors in parentheses

(B = 50 mini forests).
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5. Analysis of distributional change over time

The distributional random forest captures information on income distributions for

finely defined population subgroups. It can therefore be used to decompose changes

in the aggregate distribution into compositional and structural components (Fortin

et al., 2011). To this end, consider the counterfactual distribution

F c
⟨19,05⟩(y) =

∫
x

F e
2019(y|x) dFX,2005(x), (12)

which is the distribution of equivalised incomes that would have prevailed in 2019, if

the distribution of household characteristics Fx(x) remained as in 2005. This gives

rise to the decomposition

F⟨19,19⟩(y)− F⟨05,05⟩(y) = F⟨19,19⟩(y)− F c
⟨19,05⟩(y)︸ ︷︷ ︸

composition effect

+F c
⟨19,05⟩(y)− F⟨05,05⟩(y)︸ ︷︷ ︸

structural effect

,

(13)

i.e., changes in the distribution of equivalised incomes between 2005 and 2019 are

decomposed into effects attributable to changes in population composition FX, and

by changes in income structures F e(y|x) as captured by the distributional random

forest.

Fig. 3: Aggregate decomposition, 2005-2019

Source: Microcensus 2005 and 2019. Cumulative distribution functions.

Results for this decomposition are presented in table 5 and figure 3. Between 2005

and 2019, we observe overall income growth, but also an increase in inequality and

poverty risk: mean equivalised income increased from 1,556 to 2,298 euros, the median

rose from 1,307 to 1,928, while the Gini coefficient increased from 0.304 to 0.321 and

the at-risk-of-poverty rate rose from 0.136 to 0.171. Inequality increased primarily in

the lower half of the distribution: the P90/P10-ratio rose from 3.384 to 3.616, but this

was entirely driven by an increase of the P50/P10-ratio from 1.845 to 1.955, while

the P90/P50-ratio only changed very little from 1.833 to 1.876.

The counterfactual results in the middle column of table 5 suggest that holding

the population composition fixed at its 2005 level while updating income structures



Distributional random forests 17

Table 5. Decomposition of distributional change, 2005-2019

2005 Counterfactual1 2019

Mean 1,555.731 2,022.35 2,298.12

(3.81) (3.91) (4.54)

Gini 0.304 0.297 0.321

(0.001) (0.001) (0.001)

P10 708.07 915.97 1,000

(2.61) (8.76) (0.01)

P50 1,306.66 1,731.65 1928.11

(11.21) (0.07) (0.43)

P90 2,396.40 3,034.72 3,616.20

(0.33) (15.70) (3.50)

P90/P10 3.384 3.313 3.616

(0.012) (0.038) (0.004)

P90/P50 1.833 1.753 1.876

(0.015) (0.009) (0.002)

P50/P10 1.845 1.891 1.955

(0.015) (0.009) (0.002)

At-risk-of-poverty rate 0.136 0.140 0.171

(0.001) (0.001) (0.001)

Source: Microcensus 2005 and 2019. Bootstrap standard errors in parentheses.

Differences between 2005 and 2019 are statistically significant at 1% level.

1Population composition from 2005, income structure from 2019.

to their 2019 levels accounts for most of the observed income growth between 2005

and 2019. However, this shift has little impact on inequality and poverty levels.

Indeed, when only income structures F e(y|x) are updated (while keeping composition

constant), inequality as measured by the Gini coefficient and the P90/P10 ratio even

slightly declines (from 0.304 to 0.297, and from 3.384 to 3.313, rows 2 and 6 of table

5). Updating income structures alone also leads to small increases in the at-risk-of-

poverty rate and the P50/P10 ratio (from 0.136 to 0.140, and from 1.845 to 1.890,

respectively), and to slight inequality reductions in the upper half of the distribution,

as indicated by the counterfactual fall of the P90/P50-ratio from 1.833 to 1.753 – but

these effects are modest.

In contrast, updating the population composition to its 2019 level implies large

increases in inequality and poverty risk (middle vs. last column of table 5). These com-

positional shifts largely account for the observed increase in inequality and poverty

between 2005 and 2019, suggesting that the rise in inequality over this period can be

fully explained by compositional changes in the population.

How did the composition of the population change between 2005 and 2019? Table

2 summarizes these shifts. We observe population ageing, an increasing share of hou-

seholds with foreign nationals, greater heterogeneity in employment outcomes, and

growing polarization in educational qualifications. Together, these changes increased
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population heterogeneity, which in turn amplified income inequality. In some cases,

the observed shifts also increased the proportion of low-income households, thereby

raising the aggregate at-risk-of-poverty rate.

Figure 3 provides a graphical summary of the decomposition. Updating income

structures shifts the distribution markedly upward, with little apparent change in

inequality. Updating population composition in addition yields only modest further

income growth but stretches the distribution to the right, consistent with higher

inequality.

6. Small-area estimation of income distributions

In this section, we leverage the smoothing properties of the distributional random

forest to estimate local income distributions. To this end, we use detailed geographical

identifiers from the Microcensus down to the municipality level, along with additional

municipality-level predictors (INKAR, 2024) that are commonly used in small-area

estimation (Fabrizi et al., 2020; Gardini et al., 2022; Molina et al., 2022; De Nicolo

et al., 2024). Germany has approximately 10,000 municipalities, including around

2,000 towns and cities and roughly 8,000 smaller administrative entities that combine

multiple geographical units.3

To estimate local distributions of equivalised net income, we fit a distributional

random forest using both the latitude and longitude of geographical units as well as

area-specific predictors m. In particular, we estimate

F e(y|(latitude, longitude),m), (14)

where (latitude, longitude) refer to the center of a geographical unit. The vector m

collects the following area-specific information obtained from INKAR (2024):

Population size

Unemployment rate

Tax revenue per inhabitant

Population share of age group 0-18

Population share of age group 18-30

Population share of age group 30-65

Population share of age group 65 years or over

Population density (= population/area)

Our approach combines smoothing across area-specific predictors m (as in clas-

sical small-area estimation) with direct smoothing across geographical space, which

is absent from most small-area methods.4 The random forest is a natural tool to

smooth over both area-specific predictors and geographical locations as it is based

3 Due to stricter data protection rules, geographical identifiers for Bavaria are available
only at the county level, the next administrative tier above municipalities. We therefore use
county-level data for Bavaria while retaining municipality-level data for all other regions.
4 An exception is Sugasawa et al. (2020), who smooth local income distributions using

a latent spatial correlation structure but do not incorporate additional area-specific
predictors.
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Fig. 4: Distributional indices and their change between 2005 and 2019

(a) Mean income

(b) Gini coefficient

(c) At-risk-of-poverty rate

Source: Microcensus 2005 and 2019. Computations are based on estimated distri-

butions of equivalised net incomes at the municipality level (county level for

Bavaria).

on grouping observations that are ‘similar’ both in terms of the area-specific pre-

dictors and geographical location. We obtain estimates of local income distributions
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F e(y|(latitude, longitude),m) for spatial unit [(latitude, longitude),m] from which we

compute location and inequality measures as in the previous sections.

Figure 4 presents maps of distributional indices for Germany. To the best of our

knowledge, these are the first municipality-level maps for Germany reporting distri-

butional indices for household net incomes. Net incomes are widely regarded as the

most informative indicators for personal financial well-being as they represent net

disposable incomes after government transfers, taxes and social security deductions.

Frieden et al. (2023) and Garbasevschi et al. (2023) provide municipality-level maps

for pre-tax incomes, while Immel and Peichl (2020) and Walter et al. (2022) analyse

regional differences in household net incomes at a more aggregated spatial level than

municipalities. Schluter and Trede (2024) present a spatial analysis of wage inco-

mes across regional labour markets, which are also defined at a higher level than

municipalities.

Fig. 5: Associations between distributional aspects across geographical units

Source: Microcensus 2005 and 2019. The left panel plots the Gini coefficient and

the at-risk-of-poverty rate against mean equivalised income for 2019. The right panel

plots the growth rate of mean income from 2005 to 2019 against the percentile rank

of mean income in the 2005 distribution across geographical units.

The local distributional indices presented in the maps have several important appli-

cations. First, they allow statistical agencies and policymakers to monitor local levels

of well-being and to identify areas with high or low income and inequality. Second,

the high degree of spatial heterogeneity is interesting in its own right, providing use-

ful variation for studying relationships between different aspects of the distribution.

For example, the left-hand graph in figure 5 plots the Gini coefficient and the at-

risk-of-poverty rate against the mean income of geographical units. Mean income and

inequality as measured by the Gini coefficient are positively related, i.e., geographical

units with high mean equivalised incomes also tend to exhibit higher income inequ-

ality. In contrast, there is a weakly negative relationship between mean income and

the at-risk-of-poverty rate, which likely reflect that the poverty threshold is defined

at the national level (60 % of national median income). The right-hand graph of

figure 5 relates the growth rate of mean income in a geographical unit to the original

relative position of the unit in the base year 2005. The results indicate that units
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with relatively low mean income in 2005 experienced higher relative income growth

than those with a higher initial income level, suggesting convergence of mean incomes

across regions. However, growth rates exhibit considerable variation, indicating that

this relationship is only approximate.

An important additional application of the data in figure 4 is its potential as

explanatory variables in microeconomic or spatial analyses. Local measures of income,

inequality, or poverty can serve as covariates in studies of individual behaviour (e.g.,

the effect of local inequality on individual consumption behaviour), or local outcomes

(e.g., the impact of local poverty rates on local election outcomes). In order to support

such applications, we make our estimates of distributional indices for the roughly

9,000 geographical units considered in this paper available on request.

Fig. 6: Standard errors for distributional indices

(a) Mean income (b) Gini coefficient

(c) At-risk-of-poverty rate

Source: Microcensus 2019. Bootstrap standard errors (B = 50 mini forests).

As described in section 2, the distributional random forest includes a bootstrap

procedure that allows one to compute standard errors for the spatial estimates shown

in figure 4. We report these estimates in figure 6. The estimates for the standard

errors are based on B = 50 mini forests with L = 200 trees each, leading to N =

B ·L = 50× 200 = 10,000 trees for the overall forest. The magnitude of the standard
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errors indicates reasonable estimation precision compared to the typical magnitude

of the different statistics.5

To put our results into context, we compare them to estimates from a standard

Fay-Herriot (FH) small-area model (Fay and Herriot, 1979). The FH model is based

on regressing the direct inequality estimate Îd for spatial unit d computed from the

raw data on the unit’s characteristics md (see above), i.e.

Îd = m′
dβ + ud + ed (15)

where ud with σ2
u = var(ud) is the error variance of the regression model, and ed

with σ2
ed

= var(ed) = var(Îd) denotes the sampling error of the raw estimate Îd.

The Fay-Herriot predictions for spatial unit d result as a weighted average of the raw

estimate and the regression prediction, i.e.

ÎFH
d = γ̂dÎd + (1− γ̂d)m

′
dβ̂ with γ̂d = σ̂2

u/(σ̂
2
u + σ̂2

ed
) (16)

using estimated σ̂2
u and σ̂2

ed
. We compute the unit-specific Îd on the raw data using

the grouped-data formulas (7) to (10) and compute their sampling variances v̂ar(ed)

by bootstrapping. Our Fay-Herriot predictions are based on the implementation of

Halbmeier et al. (2019) for the Gini coefficient and the at-risk-of-poverty rate, using

the arcsine transformation (because both statistics take values in the unit interval).6

Fig. 7: Box plots of the coefficients of variation

(a) Gini (b) At-risk-of-poverty rate

Source: Microcensus 2019. FH = Fay-Herriot, DRF = Distributional Random Forest.

Only spatial units with at least three Microcensus observations included.

To gauge differences in precision across different methods, figure 7 presents the

box plots for the coefficient of variation for the direct (raw) estimates (based on

the grouped-data formulas and their bootstrap standard errors), the FH and the

DRF estimates. The coefficient of variation for spatial unit d is defined as CVd =

5 We acknowledge that using a higher number of mini forests would be advantageous for
the bootstrap, but substantial computational constraints at the research data centers where

the restricted Microcensus data must be processed prevent us from increasing B while still
maintaining a sufficiently large number of trees per mini forest.
6 The results do not differ much when we do not use the arcsine transformation.
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Stderr(Îd)/Îd and summarizes its relative precision. The comparison only refers to in-

sample-units, i.e. municipalities that are represented in the Microcensus.7 The results

suggest that both the FH and the DRF model improve upon the direct estimates, and

that the DRF estimates compare favourably to the FH ones in terms of precision.

Fig. 8: Ratio of model estimates to direct estimates

(a) Gini (FH) (b) Gini (DRF)

(c) At-risk-of-poverty (FH) (d) At-risk-of-poverty (DRF)

Source: Microcensus 2019. FH = Fay-Herriot, DRF = Distributional Random Forest.

Only spatial units with at least three Microcensus observations are included.

To gain more insights, figure 8 presents the ratio of FH/DRF model estimates to

the direct (raw) sample estimates plotted against the sample size of the underlying

spatial units. For both FH and DRF estimates, this ratio clusters more tightly around

one for larger underlying sample sizes. Note that, for the FH model, this is mechani-

cally true by construction, see equation (16). For the DRF, this is not mechanically

true and thus serves as a plausibility check. It is well-known that Gini estimates from

small samples tend to be downward biased (De Nicolo et al., 2024). This is also true

of the at-risk-of-poverty rate as the extreme left tail of the distribution is typically

7 In addition, we are not allowed to report information on raw estimates for municipalities

with fewer than three observations in the Microcensus due to data protection rules. From

the 8,857 German municipalities considered by us (counties for Bavaria), 5,086 are repre-
sented by at least three observations in the Microcensus and are thus reported in figures 7

and 8. A further 125 are represented by only 1 or 2 observations, while 3,646 municipalities
have no observations in the Microcensus at all. The municipalities not covered (or covered

by only 1 or 2 observations) are very small in size (median population = 510) and together

account for only 3.2 percent of the German population, see supplementary appendix for
more information.
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underrepresented in small samples. The DRF appears to correct part of this small-

sample downward bias (ratios above one at low sample sizes), whereas the FH model

does not. More generally, note that a ratio of one is not necessarily the appropriate

benchmark as both the FH and the DRF model exploit additional information (FH:

m, DRF: (latitude, longitude),m)) for their local predictions that is not contained in

the random sample for given spatial unit. FH and DRF estimates may thus be much

closer to the ground truth (= true population values) than sample observations.

As a further validation check, we aggregated our municipality-level estimates of

mean income and the at-risk-of-poverty rate to the county level and compared them

with the corresponding direct estimates at that level. The latter are more preci-

sely estimated because county-level sample sizes are sufficiently large. Note that

the Gini coefficient cannot be aggregated from municipalities to counties because

it is not decomposable into within-municipality and between-municipality compo-

nents. The results presented in the supplementary appendix show that both the FH-

and the DRF-estimates aggregate up similarly well to the empirical county values.

Again, perfect agreement with the county-level direct estimates is not necessarily a

reasonable target, because both FH and DRF incorporate external information not

contained in the county-level samples (in particular, information from municipalities

with similar characteristics; DRF additionally exploits spatial proximity via latitude

and longitude).

7. Purging spatial income distributions of differences in spatial
characteristics

As our final application, we address the problem of purging spatial income distributi-

ons of differences in observed characteristics in order to recover a pure spatial income

structure—one that is independent of the fact that individuals and municipalities in

different regions tend to differ in socio-economic composition. To achieve this, we fit

a distributional random forest conditional on both location (latitude, longitude) and

municipality/household characteristics (m,x), i.e.,

F e(y|(latitude, longitude),m,x). (17)

Here, (latitude, longitude) represent the coordinates of a geographical unit as before.

The vector m contains the municipality variables described above, while x includes

all household characteristics listed in table 2 (excluding regional indicators, whose

information is now captured by latitude and longitude).

To construct local income distributions that do not depend on local composition

in municipality and household characteristics, we consider

F c(y|(latitude,longitude)) (18)

=

∫
m,x

F e(y|(latitude, longitude),m,x)) dFm,x,Germany(m,x)),

i.e., the local income distribution that would prevail in region (latitude, longitude)

if municipality and household characteristics were distributed as in Germany as a

whole.
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Fig. 9: Purged spatial income distributions

(a) Mean income

(b) Gini coefficient

(c) At-risk-of-poverty rate

Source: Microcensus 2005 and 2019. The maps on the right show differences between

counterfactual and factual maps.

This results in informative maps, shown in figure 9. The results reveal a divide

in mean income, inequality and poverty risk between East and West Germany, as

well as between North and South. Under equalized composition across regions, mean
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income and inequality are lower in the East than in the West, while poverty risk is

higher in the East. However, these regional differences are substantially smaller than

in the factual maps where regional characteristics are allowed to differ (Figure 4). This

suggests that variations in characteristics (m,x) across regions explain disparities in

income, inequality, and poverty risk to a very large extent.

8. Simulation evidence

In this section, we provide basic Monte Carlo evidence on the performance of the

distributional random forest for estimating inequality and poverty indices for popu-

lation subgroups. For our simulation, we use the following data generating process

(DGP):

X = (X1, . . . , X5) ∼ Unif([0, 1])5, G1 = 1(0.00 ≤ X1 < 0.02)

G2 = 1(0.02 ≤ X1 < 0.37), G3 = 1(0.37 ≤ X1 < 0.47)

G4 = 1(0.47 ≤ X1 < 0.52), G5 = 1(0.52 ≤ X1 ≤ 1.00)

Y | Gj = 1 ∼ Γ(kj , θj), j = 1, . . . , 5,

where Γ(k, θ) denotes the Gamma distribution with shape parameter k and scale

parameter θ. An advantage of using the Gamma distribution for subgroups is that

means, Ginis and other statistics can be easily computed using closed-form expres-

sions. For example, if Y ∼ Γ(k, θ), then mean(Y ) = kθ, skewness(Y ) = 2√
k

and

Gini(Y ) = Γ(2k + 1)/(22k Γ(k + 1)2) (McDonald and Jensen, 1979). The DGP is

chosen such that the resulting unconditional mixture distribution resembled the

Microcensus sample income distribution (in fact, its cdf lies between the 2005 and

2019 distributions shown in figure 3).

In order to assess the ability of the DRF to cope with interval-censored data, we

carried out three different variants of simulations:

• Variant 1: The simulated outcome variable is artificially interval-censored using

the income brackets in table 1, and the statistics of interest are estimated using

grouped-data formulas. The corresponding ‘true’ values are also computed using

the grouped-data formulas (7) to (10). Specifically, we use the true subgroup and

unconditional CDFs to compute group masses fj , which – together with interval

widths and midpoints – enter the grouped formulas (7) to (10).

• Variant 2: The simulated outcome variable is artificially interval-censored using

the income brackets in table 1, and the statistics of interest are estimated

using grouped-data formulas. However, the ‘true’ values are computed from the

continuous (un-grouped) DGP described above.

• Variant 3: The simulated outcome variable is continuous (i.e., not interval-

censored). The statistics of interest are estimated using standard non-parametric

formulas for the mean, the Gini coefficient, and the at-risk-of-poverty rate. The

‘true’ values are computed from the continuous (un-grouped) DGP described

above.
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Variant 1 is the most relevant, since the DRF can only target the true grouped

values if it uses grouped-data formulas for estimation. However, using grouped versus

un-grouped formulas turns out to make only small differences, both for the estimated

statistics and for the corresponding ‘true’ values. This is already apparent in table 6

which reports both true values computed from grouped-data formulas (upper panel)

and from un-grouped formulas (lower panel). We therefore report only Variant 1 in

the main text. The supplementary appendix further shows that grouped-data for-

mulas also target the un-grouped true values well (Variant 2). Observing continuous

(i.e., not interval-censored) incomes would yield additional improvements (Variant 3).

This, however, is only a theoretical benchmark as long as the survey questionnaire

elicits income in interval-censored form. Interval censoring imposes an information

limit that cannot be overcome by statistical methods.

Table 6. True values for the data generating process

Group Fraction DGP (Y | Gj) Mean Median Gini POV

Based on Tille-Langel grouped-data formulas applied to DGP

G1 0.02 Γ(2.5, 480) 1202.1561 1046.7456 0.341974 0.436578

G2 0.35 Γ(3.0, 500) 1502.5936 1338.7015 0.314629 0.290125

G3 0.10 Γ(6.0, 250) 1502.4939 1419.6643 0.228572 0.179762

G4 0.05 Γ(5.0, 440) 2204.1486 2057.8114 0.247994 0.066840

G5 0.48 Γ(4.0, 475) 1903.4204 1746.8084 0.275370 0.139679

TOTAL 1.00
∑5

j=1 πj Γ(kj , θj) 1724.0495 1564.0870 0.293123 0.198639

Based on continuous distributions of DGP

G1 0.02 Γ(2.5, 480) 1200.0 1044.3504 0.339531 0.436869

G2 0.35 Γ(3.0, 500) 1500.0 1337.0302 0.312500 0.289411

G3 0.10 Γ(6.0, 250) 1500.0 1417.5403 0.225586 0.176983

G4 0.05 Γ(5.0, 440) 2200.0 2055.1999 0.246094 0.065160

G5 0.48 Γ(4.0, 475) 1900.0 1744.2289 0.273438 0.138073

TOTAL 1.00
∑5

j=1 πj Γ(kj , θj) 1721.0 1562.1164 0.291132 0.197263

Notes: TOTAL = Unconditional mixture distribution. POV = At-risk-of-poverty rate,

defined as the share below 0.6 times the unconditional median. Entries in the upper

panel are computed using the Tille-Langel grouped-data formulas (7) to (10) from bin

probabilities fj implied by the (true) subgroup and mixture CDFs over the prescribed

brackets, together with class midpoints and widths. For the last class, probabilities

use (18,000,∞), while midpoints and widths use (18,000, 36,000).

We use R = 1,000 simulation runs for sample sizes n ∈ {10,000;20,000;50,000}.8

For each simulation run, we fit a distributional random forest to estimate

F (Y |X, G1, G2, G3, G4, G5) and compute predictions at test points representing

typical observations from group G1 to G5: TPj = (X1j , 0.2, 0.4, 0.6, 0.8, 1(G1 =

8 The DRF is computationally intensive, so larger sample sizes were infeasible. Simulations

for n = 50,000 observations already took several weeks to run on current server CPUs
despite ten-fold parallelization.
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Table 7. Monte Carlo summaries: grouped-data/estimation + grouped true values

Group Bias Variance MAD Coverage Coverage db

Number of observations n = 10,000

Estimand: Gini

G1 -0.012912238 0.000163251 0.015292994 0.874 0.979

G2 -0.001670334 9.48388e-05 0.007877185 0.980 0.982

G3 0.012352705 0.000106787 0.013443234 0.863 0.973

G4 0.013837017 9.38539e-05 0.014489594 0.835 0.984

G5 -0.000597319 6.74549e-05 0.006596148 0.984 0.985

Estimand: POV

G1 -0.079102975 0.000977658 0.079263222 0.413 0.971

G2 0.000479923 0.000401681 0.016021839 0.989 0.988

G3 0.007038427 0.000465803 0.017684365 0.966 0.966

G4 0.033065227 0.000204331 0.033099450 0.576 0.986

G5 -0.001090276 0.000222033 0.011900292 0.985 0.987

Number of observations n = 20,000

Estimand: Gini

G1 -0.008586657 0.000148229 0.012229024 0.926 0.980

G2 -0.000533487 7.62437e-05 0.006942900 0.989 0.989

G3 0.002284648 6.98827e-05 0.006818871 0.982 0.983

G4 0.008717290 8.15121e-05 0.010319721 0.950 0.983

G5 -0.000631842 5.83551e-05 0.006110186 0.989 0.989

Estimand: POV

G1 -0.058262690 0.001013685 0.059366700 0.628 0.979

G2 0.001276598 0.000335516 0.014691413 0.990 0.989

G3 0.002316055 0.000342308 0.014977382 0.975 0.973

G4 0.020483056 0.000173558 0.021040500 0.882 0.974

G5 -0.000739240 0.000183427 0.010836350 0.985 0.986

Number of observations n = 50,000

Estimand: Gini

G1 -0.005939976 0.000113526 0.009954624 0.954 0.988

G2 3.39493e-05 6.62390e-05 0.006453961 0.992 0.991

G3 0.001389395 5.05173e-05 0.005801351 0.985 0.982

G4 0.006883450 6.16488e-05 0.008547985 0.972 0.991

G5 -0.000450358 4.21232e-05 0.005259946 0.999 0.999

Estimand: POV

G1 -0.044854370 0.000703256 0.046296276 0.713 0.974

G2 0.001542728 0.000294849 0.013912465 0.996 0.994

G3 0.001568460 0.000271013 0.012985097 0.984 0.983

G4 0.015712105 0.000121902 0.016287574 0.933 0.988

G5 -0.000514975 0.000137749 0.009450191 0.995 0.995

POV = At-risk-of-poverty rate, MAD = Mean Absolute Deviation, Coverage = fra-

ction of cases in which 95% confidence interval covers true value, Coverage db =

coverage when bias is subtracted from confidence limits. R = 1,000 simulation runs.
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1), 1(G2 = 1), 1(G3 = 1), 1(G4 = 1), 1(G5 = 1)), where X1j is the mid-point

of the X1-interval defining Gj = 1 in the DGP. For example, the test point for

a group G1 = 1 observation is TP1 = (0.01, 0.2, 0.4, 0.6, 0.8, 1, 0, 0, 0, 0). For each

simulation run, we fit a distributional random forest with the following paramaters:

N = B · L = 50 · 200 = 10, 000 trees, mtry=10, min.node.size = 5, sample.fraction

= 0.5, alpha = 0.05, imbalance.penalty = 0.1. From the fitted DRF, we compute

the mean, the Gini, and the at-risk-of-poverty rate using either the grouped-data

formulas (Variants 1 and 2) or the usual non-parametric formulas (Variant 3).

The results for bias, variance, mean absolute deviation in table 7 show clear impro-

vements as the sample size increases. The remaining biases for 50,000 observations are

non-zero but appear small relative to the true values reported in table 6. The cove-

rage check for the 95 % confidence intervals indicate undercoverage for smaller sample

sizes in individual cases, part of which is attributable to remaining biases (column

1 of table 7). This is illustrated by the improved coverage of bias-corrected confi-

dence intervals (i.e., confidence intervals centered at the debiased point estimates).

The performance of these biased-corrected intervals suggests that uncertainty esti-

mation remains approximately intact, despite remaining estimation biases (leading

to unfavourable coverage if the confidence intervals are centered around the biased

estimates). As the sample size increases, the confidence intervals tend to overcover,

which is not a serious concern in practice, as it leads to conservative inference. As

always, it remains unclear to what extent Monte Carlo results are generalizable so

that more research would be useful.

9. Conclusion

Our analysis demonstrates that distributional random forests are a powerful and

versatile tool for analysing income distributions with minimal parametric assumpti-

ons. Once trained, they allow the analyst to estimate a wide range of distributional

indices – quantiles, means, Gini coefficients, poverty rates, etc. – without requiring

separate model specifications. They also easily handle grouped income information

as present in our application. Using German Microcensus data, we illustrated four

applications that are relevant for both researchers and policymakers: (i) estimating

income distributions for granular population subgroups, (ii) analysing changes in ine-

quality and poverty over time, (iii) small-area estimation of income distributions, and

(iv) purging spatial income distributions of differences in household and municipality

characteristics.

From these analyses, we obtain several insights into the German income distri-

bution. First, the shape and location of income distributions vary markedly across

granular population subgroups, and income growth is highly heterogeneous. Second,

while average incomes increased between 2005 and 2019, income inequality and the

at-risk-of-poverty rate also rose. However, these increases were driven almost entirely

by compositional shifts—population ageing, changes in educational attainment, and

a rising share of immigrants—rather than by diverging income trajectories within

fixed population subgroups.

Our geographical analysis provides new insights into the spatial structure of the

German income distribution. We characterize regions with high or low income and
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inequality and show that geographical units with higher mean incomes also tend to

exhibit higher inequality. We also document that income growth was uneven across

regions: poorer areas experienced faster relative growth than wealthier ones, sug-

gesting partial convergence in mean incomes across space. Finally, we find that a

large share of the observed regional variation in income and inequality is attributable

to differences in municipal and household characteristics. After accounting for these

compositional differences, systematic ‘pure’ spatial disparities remain, but they are

substantially less pronounced.

We acknowledge that our analysis is ambitious and, to some extent, exploratory.

It aims to extract fine-grained information from a large dataset while imposing lit-

tle structure. The distributional random forest method is non-parametric in nature,

computationally intensive, and data-hungry. Our results are highly plausible and

likely exploit the available information to an extent not achieved in previous research.

Nevertheless, more evidence on the method’s finite-sample properties is needed. While

our simulation results are encouraging, future research should scrutinize potential bia-

ses more closely and evaluate performance across alternative datasets, varying levels

of observation, and outcome measures. Developing debiased variants and improved

inference procedures is a promising direction for future work.
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Garbasevschi, A., H. Tabenböck, P. Schüle, J. Baarck, P. Hufe, M. Wurm, A. Peichl

(2023). Learning Income Levels and Inequality from Spatial and Sociodemographic

Data in Germany. Applied Geography, 159, 103058.

Gardini, A., E. Fabrizi, C. Trivisano (2022). Poverty and inequality mapping based

on a unit-level log-normal mixture model. Journal of the Royal Statistical Society,

Series A, 185(4), 2073-2096.

Gretton, A., K. Borgwardt, M. Rasch, B. Schölkopf, A. Smola (2007). A kernel

method for the two-sample problem. In Advances in Neural Information Processing

Systems, vol. 19., pp. 513-520.
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